A. RNA Polymerase II

Total Page:16

File Type:pdf, Size:1020Kb

A. RNA Polymerase II UNIVUNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALRALE « des Sciences de la vie et de la santé » IGBMCC – Inserm U 964 – CNRS UMR 7104104 THÈSE présentée par : Lise-Marie DONNIO Soutenue le : 15 décembre 2014 Pour obtenirir le grade de : Docteur de l’université de Strasbrasbourg Discipline/Spécialité : Scienceences du Vivant/Aspects Moléculaires et Cellulallulaires de la Biologie Étudee tratranscriptionnelle des mutationtions dans le Médiaédiateur ou dans son partenaireaire NIPBL à l’orig’origine de maladies génétiques Thèse dirigée par : Dr EGLY Jean-Marc DRE INSERM,M, IIGBMC, Strasbourg RAPPORTEURS : Dr JALINOT Pierre DR CNRS, ENS Lyon Dr BROUSSET Pierre PR INSERM,, CHCHU Toulouse Pr DOLLFUS Hélène PR INSERM,, CHCHRU Strasbourg ACKNOWLEDGEMENTS Je tiens tout d’abord à exprimer mes remerciements à Pierre JALINOT, Pierre BROUSSET et Hélène DOLLFUS de m’avoir fait l’honneur d’accepter d’être membres de mon jury et ainsi participer à la dernière étape de ma thèse. Je remercie tout particulièrement Jean-Marc EGLY, pour m’avoir accueilli dans son laboratoire situé dans l’un des meilleurs centres scientifiques internationaux et pour avoir été mon directeur de thèse. Merci pour sa confiance tout au long de ces quatre années. Merci à l’Association de la Recherche contre le Cancer et à la Ligue contre le cancer, ainsi que leurs nombreux donateurs pour avoir financés les deux dernières années de mes études doctorales. Merci à tous les membres du laboratoire présents et passés (Annabel, Anton, Amita, Alex, Alexey, Baptiste, Cathy, Carlos, Charlotte, Christophe, Federico, Frédéric, Hussein, Izarn, Jikta, Manu, Maryssa, Marc, Nicolas, Philippe, Renier, Salim, Satoru, Serena, Sergey, Ulrik, Valérie, Yakov, Zita). Je remercie particulièrement Baptiste, mon compagnon de galère sur le projet Médiateur, pour les discussions scientifiques et bavardages en tous genres, ainsi que Manu pour toutes ses corrections. Un merci général pour l’ambiance (au labo et en dehors), ainsi que pour les nombreuses et vraiment très diverses discussions que nous avons eues. Je tiens à clamer haut et fort que le box 4025 est le plus cool. Je remercie tous les membres des services communs de l’IGBMC et en particulier les membres du service de culture cellulaire. Je remercie l’ensemble de mes amis (Julia, Christelle, Nico, Yvan, Céline, Elodie, Cyril, William, Laurence, Julien…etc) pour les nombreuses discussions sans rapport avec la recherche et les très nombreuses soirées jeux. Du côté musical, je n’oublie pas les membres des Sixtoys et de l’orchestre Vulcania, qui m’ont permis le temps d’une répétition ou d’un concert, d’oublier le quotidien du labo. Finalement, et il va sans dire, je remercie de tout mon cœur ma famille (papa, maman, mes sœurs, mon petit frère, mes neveux et nièces) sans qui rien de tout cela n’aurait été possible, même si le sujet de ma thèse restera en partie un mystère pour eux. En espérant n’avoir oublié personne… merci à tous ! 1 CONTENTS FIGURES AND TABLES ............................................................................................. 4 ABBREVIATIONS ...................................................................................................... 5 RÉSUMÉ DE LA THÈSE EN FRANÇAIS ..................................................................... 7 INTRODUCTION .................................................................................... 14 I. Transcription of class II genes .................................................................................................... 15 A. RNA polymerase II .......................................................................................................................... 15 A.1. Subunit composition .................................................................................................................................................... 15 A.2. Structure of Pol II .......................................................................................................................................................... 16 A.3. CTD and its modifications ......................................................................................................................................... 17 B. Regulatory sequence in the heart of DNA ...................................................................................... 17 B.1. The core promoter ........................................................................................................................................................ 17 B.1.a. The TATA-box ..................................................................................................................................................... 18 B.1.b. The initiator element (Inr) ............................................................................................................................ 18 B.1.c. The TFIIB recognition element (BREu and BREd) ............................................................................... 18 B.1.d. The Downstream promoter element (DPE) ............................................................................................ 18 B.1.e. The Motif ten element (MTE) ....................................................................................................................... 19 B.1.f. The downstream core element (DCE) ........................................................................................................ 19 B.1.g. The X core promoter element 1 (XCPE1) ................................................................................................. 19 B.2. Regulatory response element .................................................................................................................................. 19 C. General transcription factors.......................................................................................................... 20 D. The transcription cycle ................................................................................................................... 22 D.1. Promoter binding .......................................................................................................................................................... 22 D.2. Initiation and promoter clearance ........................................................................................................................ 22 D.3. Proximal pausing and elongation .......................................................................................................................... 24 D.4. Termination ..................................................................................................................................................................... 24 D.5. Re-initiation and gene looping ................................................................................................................................ 25 E. The activated transcription ............................................................................................................. 28 E.1. Immediate early response genes ............................................................................................................................ 28 E.2. Nuclear receptors regulated genes ........................................................................................................................ 28 E.2.a. Nuclear receptors structure.......................................................................................................................... 29 E.2.b. Nuclear receptor classification .................................................................................................................... 30 E.2.c. Retinoic acids receptors .................................................................................................................................. 30 E.2.d. Transcription of RAR target genes ............................................................................................................. 31 E.2.e. Vitamin D receptors ......................................................................................................................................... 34 II. REVIEW on the Mediator complex ........................................................................................... 35 III. Supplemental information ........................................................................................................ 64 2 Discovery of the Mediator complex ........................................................................................................................ 64 Composition and structure of the Mediator complex ..................................................................................... 64 The Mediator complex: a general transcription factor ................................................................................. 64 Cohesin complex ............................................................................................................................................................ 66 MATERIALS & METHODS ..................................................................... 69 Cells culture ..................................................................................................................................................................... 70 Isolation of mouse embryonic fibroblasts ........................................................................................................... 71 Treatments .....................................................................................................................................................................
Recommended publications
  • Mediator Head Subcomplex Med11/22 Contains a Common Helix Bundle
    Published online 15 April 2011 Nucleic Acids Research, 2011, Vol. 39, No. 14 6291–6304 doi:10.1093/nar/gkr229 Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization Martin Seizl, Laurent Larivie` re, Toni Pfaffeneder, Larissa Wenzeck and Patrick Cramer* Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universita¨ t (LMU) Mu¨ nchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany Received February 24, 2011; Revised and Accepted March 29, 2011 ABSTRACT Mediator undergoes conformational changes, which trig- Mediator is a multiprotein co-activator of RNA poly- ger its interaction with Pol II and promote pre-initiation merase (Pol) II transcription. Mediator contains a complex (PIC) formation (7). Mediator was purified from yeast (8,9), metazoans conserved core that comprises the ‘head’ and (10,11) and plants (12). Comparative genomics identified ‘middle’ modules. We present here a structure– an ancient 17-subunit Mediator core that is conserved function analysis of the essential Med11/22 hetero- in eukaryotes (13,14). Mediator from the yeast dimer, a part of the head module. Med11/22 forms a Saccharomyces cerevisiae (Sc) is a 1.4 MDa multiprotein conserved four-helix bundle domain with C-terminal complex comprising 25 subunits, of which 11 are essential extensions, which bind the central head subunit and 22 are at least partially conserved. Based on electron Med17. A highly conserved patch on the bundle microscopy and biochemical analysis, mediator subunits surface is required for stable transcription pre- were suggested to reside in four flexibly linked modules, initiation complex formation on a Pol II promoter the head, middle, tail and kinase module (15–17).
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Integrative Prediction of Gene Expression with Chromatin Accessibility and Conformation Data
    bioRxiv preprint doi: https://doi.org/10.1101/704478; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Integrative prediction of gene expression with chromatin accessibility and conformation data Florian Schmidt1;2;3;y, Fabian Kern1;3;4;y, and Marcel H. Schulz1;2;3;5;6;∗ 1High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbr¨ucken Germany 2Computational Biology & Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbr¨ucken Germany 3Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbr¨ucken Germany 4Chair for Clinical Bioinformatics, Saarland Informatics Campus, 66123 Saarbr¨ucken Germany 5Institute of Cardiovascular Regeneration, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany 6German Center for Cardiovascular Research, Partner site Rhein-Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany y These authors contributed equally ∗ Correspondence: [email protected] Abstract Background: Enhancers play a fundamental role in orchestrating cell state and development. Al- though several methods have been developed to identify enhancers, linking them to their target genes is still an open problem. Several theories have been proposed on the functional mechanisms of en- hancers, which triggered the development of various methods to infer promoter enhancer interactions (PEIs). The advancement of high-throughput techniques describing the three-dimensional organisa- tion of the chromatin, paved the way to pinpoint long-range PEIs.
    [Show full text]
  • Genetic Variation As a Tool for Identifying Novel Transducers of Itch
    Genetic variation as a tool for identifying novel transducers of itch By Takeshi Morita A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Diana M. Bautista, Co-Chair Professor Rachel B. Brem, Co-Chair Professor John Ngai Professor Kristin Scott Professor Michael W. Nachman Summer 2016 Abstract Genetic variation as a tool for identifying novel transducers of itch by Takeshi Morita Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Diana M. Bautista, Co-Chair Professor Rachel B. Brem, Co-Chair The mammalian somatosensory system mediates itch, the irritating sensation that elicits a desire to scratch. Millions of people worldwide suffer from chronic itch that fails to respond to current drugs and therapies. Even though recent studies have begun to elucidate the basic characteristics of the itch circuitry, we have little understanding about the molecules and signaling mechanisms that underlie detection and transduction of itch sensation, especially during chronic itch conditions. We have taken a genomic approach by harnessing natural variation in itch-evoked scratching behaviors in mice to identify novel molecular players that are involved in itch signal transduction at the level of primary sensory neurons. From our analysis, we identified numerous candidate itch genes, and further identified a serotonin receptor, HTR7 as a key transducer that is required for both development and maintenance of chronic itch. We further investigated the genetic basis of variation in itch, and identified a set of genes and regulatory pathways that may be involved in controlling itch behaviors.
    [Show full text]
  • Supplementary Appendix Table of Contents
    Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Table of Contents Supplementary Note ........................................................................................................................... 1 Author contributions ............................................................................................................................... 1 Additional authors from study groups .............................................................................................. 2 Task Force COVID-19 Humanitas ......................................................................................................................................... 2 TASK FORCE COVID-19 HUMANITAS GAVAZZENI & CASTELLI ............................................................................. 3 COVICAT Study Group ............................................................................................................................................................... 4 Pa COVID-19 Study Group ....................................................................................................................................................... 5 Covid-19 Aachen Study (COVAS) .......................................................................................................................................... 5 Norwegian SARS-CoV-2 Study group .................................................................................................................................
    [Show full text]
  • Structure of the Mammalian Mediator
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326918; this version posted October 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structure of the Mammalian Mediator Haiyan Zhao1.#, Natalie Young1,#, Jens Kalchschmidt2,#, Jenna Lieberman2, Laila El Khattabi3, Rafael Casellas2,4 and Francisco J. Asturias1,* 1Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora CO 80045, USA 2Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA 3Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, 75014 Paris France 4Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA #,*These authors contributed equally to this work *Correspondence should be addressed to F.J.A. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326918; this version posted October 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex.
    [Show full text]
  • Structure of Mammalian Mediator Complex Reveals Tail Module Architecture and Interaction with a Conserved Core
    ARTICLE https://doi.org/10.1038/s41467-021-21601-w OPEN Structure of mammalian Mediator complex reveals Tail module architecture and interaction with a conserved core Haiyan Zhao 1,5, Natalie Young1,5, Jens Kalchschmidt2,5, Jenna Lieberman2, Laila El Khattabi3, ✉ Rafael Casellas2,4 & Francisco J. Asturias1 1234567890():,; The Mediator complex plays an essential and multi-faceted role in regulation of RNA poly- merase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions. 1 Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA. 2 Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA. 3 Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, Paris, France. 4 Center for Cancer ✉ Research, NCI, NIH, Bethesda, MD, USA. 5These authors contributed equally: Haiyan Zhao, Natalie Young, Jens Kalchschmidt. email: Francisco. [email protected]
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Association of Germline Variation with the Survival of Women with BRCA1/2 Pathogenic Variants and Breast Cancer ✉ Taru A
    www.nature.com/npjbcancer ARTICLE OPEN Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer ✉ Taru A. Muranen 1 ,Sofia Khan1,2, Rainer Fagerholm1, Kristiina Aittomäki3, Julie M. Cunningham 4, Joe Dennis 5, Goska Leslie 5, Lesley McGuffog5, Michael T. Parsons 6, Jacques Simard 7, Susan Slager8, Penny Soucy7, Douglas F. Easton 5,9, Marc Tischkowitz10,11, Amanda B. Spurdle 6, kConFab Investigators*, Rita K. Schmutzler12,13, Barbara Wappenschmidt12,13, Eric Hahnen12,13, Maartje J. Hooning14, HEBON Investigators*, Christian F. Singer15, Gabriel Wagner15, Mads Thomassen16, Inge Sokilde Pedersen 17,18, Susan M. Domchek19, Katherine L. Nathanson 19, Conxi Lazaro 20, Caroline Maria Rossing21, Irene L. Andrulis 22,23, Manuel R. Teixeira 24,25, Paul James 26,27, Judy Garber28, Jeffrey N. Weitzel 29, SWE-BRCA Investigators*, Anna Jakubowska 30,31, Drakoulis Yannoukakos 32, Esther M. John33, Melissa C. Southey34,35, Marjanka K. Schmidt 36,37, Antonis C. Antoniou5, Georgia Chenevix-Trench6, Carl Blomqvist38,39 and Heli Nevanlinna 1 Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in BRCA1 or BRCA2 genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of BRCA1 carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03–6.30, P = 3.1 × 10−9). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker.
    [Show full text]
  • A Cell-Specific Regulatory Region of the Human ABO Blood Group Gene
    www.nature.com/scientificreports OPEN A cell‑specifc regulatory region of the human ABO blood group gene regulates the neighborhood gene encoding odorant binding protein 2B Rie Sano1*, Yoichiro Takahashi1, Haruki Fukuda1, Megumi Harada1, Akira Hayakawa1, Takafumi Okawa1, Rieko Kubo1, Haruo Takeshita2, Junichi Tsukada3 & Yoshihiko Kominato1 The human ABO blood group system is of great importance in blood transfusion and organ transplantation. ABO transcription is known to be regulated by a constitutive promoter in a CpG island and regions for regulation of cell‑specifc expression such as the downstream + 22.6‑kb site for epithelial cells and a site in intron 1 for erythroid cells. Here we investigated whether the + 22.6‑kb site might play a role in transcriptional regulation of the gene encoding odorant binding protein 2B (OBP2B), which is located on the centromere side 43.4 kb from the + 22.6‑kb site. In the gastric cancer cell line KATOIII, quantitative PCR analysis demonstrated signifcantly reduced amounts of OBP2B and ABO transcripts in mutant cells with biallelic deletions of the site created using the CRISPR/Cas9 system, relative to those in the wild‑type cells, and Western blotting demonstrated a corresponding reduction of OBP2B protein in the mutant cells. Moreover, single‑molecule fuorescence in situ hybridization assays indicated that the amounts of both transcripts were correlated in individual cells. These fndings suggest that OBP2B could be co‑regulated by the + 22.6‑kb site of ABO. Te human ABO blood group system is of great importance in blood transfusion and organ transplantation. Te carbohydrate structures of ABO blood group antigens are produced by the A- and B-transferases encoded by the A and B alleles, respectively1.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]