Scottish Biodiversity List)

Total Page:16

File Type:pdf, Size:1020Kb

Scottish Biodiversity List) PRODUCTION OF THE LIST OF SPECIES AND HABITATS CONSIDERED TO BE OF PRINCIPAL IMPORTANCE FOR THE PURPOSE OF CONSERVATION OF BIODIVERSITY IN SCOTLAND (THE SCOTTISH BIODIVERSITY LIST) PART 2 – TECHNICAL REPORT November 2005 PRODUCTION OF THE LIST OF SPECIES AND HABITATS CONSIDERED TO BE OF PRINCIPAL IMPORTANCE FOR THE PURPOSE OF CONSERVATION OF BIODIVERSITY IN SCOTLAND (THE SCOTTISH BIODIVERSITY LIST) PART 2 – TECHNICAL REPORT Final Report This report has been checked in accordance with Scott Wilson’s Quality Assurance Procedure. Issue Report Date Prepared by Reviewed by Approved for Issue No. Status 1 Final 29/11/2005 Karen Blake Stephanie Peay Nigel Hackett Scott Wilson 23 Chester Street Edinburgh EH3 7ET Tel: +44 (0)131 225 1230 Fax: +44 (0)131 225 5582 Web: www.scottwilson.com Scottish Biodiversity List Part 2 Technical Report CONTENTS 1 Introduction ............................................................................................................................1 1.1 Organisation of the listing process 1 1.2 Use of proforma spreadsheets 2 1.3 Criteria used 2 1.4 Validity of criteria 4 2 Application of Social criterion ...............................................................................................5 2.1 Introduction 5 2.2 Definition of importance 6 2.3 Methodology 6 2.4 Results 7 2.5 Animals important to the Scottish Population 8 2.6 Plants important to the Scottish Population 11 2.7 Habitats important to the Scottish Population 13 2.8 Species and habitats important for conservation purposes 15 2.9 Interpretation of results 16 2.10 Species / habitats also meeting scientific criteria 18 2.11 Species / habitats meeting only the social criteria 18 2.12 Review process 18 3 Application of Criteria for Terrestrial and Freshwater Species 19 3.1 Explanation of Criteria 19 3.2 Application of the criteria 19 3.3 Terrestrial Mammals 20 3.4 Herpetofauna 22 3.5 Birds 24 3.6 Invertebrates 28 3.7 Fish 44 3.8 Vascular Plants 46 3.9 Bryophytes 56 3.10 Charophytes 63 3.11 Fungi 65 3.12 Lichens 72 Scottish Biodiversity List Part 2 Technical Report 3.13 Freshwater Algae 86 4 Application of Criteria for Terrestrial and Freshwater Habitats 94 4.1 Summary of Criteria for terrestrial and freshwater habitats 94 4.2 Terrestrial and Freshwater Habitats 94 5 Application of Criteria for Marine Species and Habitats 100 5.1 Explanation of Criteria 100 5.2 Marine Species 100 5.3 Marine Habitats 106 6 Appendices 112 6.1 Appendix 2A – Questionnaire used in social survey 112 6.2 Appendix 2B – Scottish Biodiversity List of terrestrial and freshwater species 112 6.3 Appendix 2C – Scottish Biodiversity List of terrestrial and freshwater habitats 112 6.4 Appendix 2D – Scottish Biodiversity List of marine species and habitats 112 6.5 Appendix 2E – Scottish Biodiversity List of data deficient species and habitats 112 6.6 Appendix 2F - Scottish Biodiversity List of extinct species and habitats 112 6.7Appendix 2G – Report on the Selection of Vascular Plants for the Scottish Biodiversity List 112 Scottish Biodiversity List Part 2 Technical Report 1 Introduction This technical report comprises Section 2 of the Scottish Biodiversity List project. It explains the application of the criteria, provides details about the species and habitats that have been included on the Scottish Biodiversity List (including which criteria were met) broken down by taxonomic group, and includes lists of species and habitats on the Data Deficient and Extinct Lists. For each taxonomic group, information is provided on the contributors, consultees, species that made the list, and comments applicable to the group. General comments are also provided in a separate section, where these were more widely applicable. The Technical Report also includes electronic versions of Excel spreadsheets, which comprise The Scottish Biodiversity Lists for : Terrestrial and Freshwater Species Terrestrial and Freshwater Habitats Marine Species and Habitats List of Data Deficient Species and Habitats List of Extinct Species and Habitats In addition, there are appendices of the social survey questionnaire, and a report on issues relating to the application of the criteria to the selection of the vascular plant species for the list. 1.1 Organisation of the listing process The timescale for the production of the Scottish Biodiversity List from the criteria developed during Phase 1 of the Project was 16 weeks. Given the huge size of the task, and the number of species and habitats to be evaluated, the consultants chose to use the same specialists who were involved with the development of the criteria, to coordinate the application of the criteria to the taxonomic groups. Because of their background knowledge of the criteria, it was felt that this would help to reduce the introductory phase of the project. Several of the specialist coordinators on the team were not based in Scotland, and it was not possible for them to contact every specialist for every group in Scotland to assist with the production of the list. The approach to the use of additional contributors was that the specialist coordinators, with their knowledge of their groups, would contact people whom they considered appropriate to provide input to the list, either formally or informally. For some groups, such as vascular plants and fungi, the coordinator compiled the list themselves, and then consulted other specialists to achieve consensus on the proposed list. In other groups, such as marine and terrestrial invetebrates, several individuals were responsible for compiling different species groups. As an additional source of assistance, at the start of the project, SNH’s data acquisition unit wrote to everyone who holds data that are on the National Biodiversity Network (NBN), to request permission for Scott Wilson and their specialists to have access to any relevant data. The response to this request was very poor, although input to the Scottish Biodiversity List was received for dragonflies and aquatic beetles through this route. November 2005 1 Scottish Biodiversity List Part 2 Technical Report 1.2 Use of proforma spreadsheets In order to assist with standardisation of input across the groups, and output of the final Scottish Biodiversity List, a standard proforma was developed for contributors to complete for their taxonomic group. The format of the proforma was agreed at the meeting of the Steering Group in late July 2005.The excel proforma were developed to ensure standard answers were received within columns where appropriate, for example, “yes”, “no”, “unknown”, “not appropriate”. This was designed to reduce the time required to edit the completed sheets. The proforma was adapted from the one used by JNCC to collect information at the UK level, which is pre-coded with taxon keys from the Natural History Museum Species Directory. A positive benefit of using taxon key codes, is that these are the same as are used on the NBN Gateway, and therefore facilitated the development of a presentation mechanism which will allow the interrogation of the Scottish list with links to the NBN. As a starting point, SNH were approached for a list of species occurring in Scotland. However, this list is still under development, and no Scottish list was available upon which to base the proforma spreadsheets. Scott Wilson therefore approached the JNCC to provide a list of UK species. The JNCC created a spreadsheet from the species directory, listing all species with their taxon reference codes. This spreadsheet comprised more than 60,000 records, which was then subdivided into broader taxonomic groups for distribution to specialist coordinators. This spreadsheet was missing several species groups (mostly aquatic) and contained some aquatic and marine species coded as terrestrial invertebrates. JNCC provided additional information to help solve these problems, although there was some cost in terms of time, particularly in the extraction of aquatic groups, as the database system did not have a specific aquatic category. As the spreadsheets were derived from the full UK species list they were sometimes large. For this reason, some specialists therefore chose to use alternative data sources to ‘weed’ the list to include only those species they considered relevant. Specialists sometimes also found it easier to supply information to Scott Wilson in document format, rather than using the spreadsheet proformas. This data was transposed by Scott Wilson to the relevant spreadsheets. 1.3 Criteria used This section explains how the individual criteria were applied, and any issues that were reported by the specialists when applying the criteria. Criteria were separate and different for three different groups, namely terrestrial and freshwater species, terrestrial and freshwater habitats, and marine species and habitats. The criteria are discussed in relation to each group in the sections below. 1.3.1 Exclusion criteria The first two criteria on the spreadsheet related to the exclusion of species which were introduced or escaped (unless they were of known conservation importance e.g. white-clawed crayfish, and sand lizard), and exclusion of species for which there were insufficient data to apply the scientific criteria. Exclusion on the basis of lack of information was deemed to relate only to information on species population and decline, as the first scientific criteria (UK BAP Prioirty) could be applied in all cases. The exclusion criteria applied to all groups. 1.3.2 UK BAP All three groups also had a criterion relating to the inclusion of a species or habitat on the UK BAP. If a species is a UK BAP species on the current list, it is on the Scottish Biodiversity List. November 2005 2 Scottish Biodiversity List Part 2 Technical Report This was the least problematic criterion for the specialists to apply, although it was important to note that species had to be on the existing BAP list, and not include species that have been proposed for the UK list that is currently under development. 1.3.3 International obligation For terrestrial and freshwater species and habitats, there was a criterion relating to international obligations.
Recommended publications
  • Phylogeny and Classification of Cryptodiscus, with a Taxonomic Synopsis of the Swedish Species
    Fungal Diversity Phylogeny and classification of Cryptodiscus, with a taxonomic synopsis of the Swedish species Baloch, E.1,3*, Gilenstam, G.2 and Wedin, M.1 1Department of Cryptogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. 2Department of Ecology and Environmental Sciences, Umeå University, SE-901 87 Umeå, Sweden. 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK. Baloch, E., Gilenstam, G. and Wedin, M. (2009). Phylogeny and classification of Cryptodiscus, with a taxonomic synopsis of the Swedish species. Fungal Diversity 38: 51-68. The phylogeny, taxonomy and classification of Cryptodiscus are examined. The current generic and species delimitations, and the relationship of the genus within the Ostropomycetidae, are tested by molecular phylogenetic analyses of the nuclear ITS and LSU rDNA and the mitochondrial SSU rDNA. In our new circumscription Cryptodiscus is a monophyletic group of saprotrophic and lichenized fungi characterized by small, urceolate apothecia, mostly hyaline ascomatal walls without any embedded crystals, no clear periphysoids, and with oblong to narrow- cylindrical septate ascospores. Cryptodiscus forms a well-supported clade together with Absconditella and the remaining Stictidaceae. Paschelkiella and Bryophagus are synonymised with Cryptodiscus. Species excluded from Cryptodiscus are Cryptodiscus anguillosporus, C. angulosus, C. microstomus, and C. rhopaloides. Cryptodiscus in Sweden is revised and six species are accepted, of which one is newly described: C. foveolaris, C. gloeocapsa comb. nov. (≡ Bryophagus gloeocapsa), C. incolor sp. nov., C. pallidus, C. pini comb. nov. (≡ Paschelkiella pini), and the rediscovered species C. tabularum. The additional new combinations Cryptodiscus similis comb. nov. and C.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • SLAM Project
    Biodiversity Data Journal 9: e69924 doi: 10.3897/BDJ.9.e69924 Data Paper SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019) Ricardo Costa‡, Paulo A. V. Borges‡,§ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Azores, Portugal § IUCN SSC Mid-Atlantic Islands Specialist Group,, Angra do Heroísmo, Azores, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 09 Jun 2021 | Accepted: 05 Jul 2021 | Published: 01 Sep 2021 Citation: Costa R, Borges PAV (2021) SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019). Biodiversity Data Journal 9: e69924. https://doi.org/10.3897/BDJ.9.e69924 Abstract Background Long-term monitoring of invertebrate communities is needed to understand the impact of key biodiversity erosion drivers (e.g. habitat fragmentation and degradation, invasive species, pollution, climatic changes) on the biodiversity of these high diverse organisms. The data we present are part of the long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). In this contribution, the design of the project, its objectives and the first available data for the spider fauna of two Islands (Pico and Terceira) are described.
    [Show full text]
  • <I>Cyanodermella Asteris</I> Sp. Nov. (<I>Ostropales</I>)
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 107–123 http://dx.doi.org/10.5248/132.107 Cyanodermella asteris sp. nov. (Ostropales) from the inflorescence axis of Aster tataricus Linda Jahn1,*, Thomas Schafhauser2, Stefan Pan2, Tilmann Weber2,7, Wolfgang Wohlleben2, David Fewer3, Kaarina Sivonen3, Liane Flor4, Karl-Heinz van Pée4, Thibault Caradec5, Philippe Jacques5,8, Mieke M.E. Huijbers6,9, Willem J.H. van Berkel6 & Jutta Ludwig-Müller1,* 1 Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany 2 Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany 3 Microbiology and Biotechnology Division, Dept. of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, FIN-00014, Helsinki, Finland 4 Allgemeine Biochemie, Technische Universität Dresden, 01069 Dresden, Germany 5 Laboratoire ProBioGEM, Université Lille1- Sciences et Technologies, Villeneuve d’Ascq, France 6 Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands 7 moved to: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark 8 moved to: Gembloux Agro-Bio Tech, Université de Liege, Passage des Déportés 2, 5030 Gembloux, Belgium 9 moved to: Department of Biotechnology, Technical University Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands *Correspondence to: [email protected], [email protected] Abstract—An endophytic fungus isolated from the inflorescence axis ofAster tataricus is proposed as a new species. Phylogenetic analyses based on sequences from the ribosomal DNA cluster (the ITS1+5.8S+ITS2, 18S, and 28S regions) and the RPB2 gene revealed a relationship between the unknown fungus and the Stictidaceae lineage of the Ostropales.
    [Show full text]
  • Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
    Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C.
    [Show full text]
  • New Records of Adscita Obscura (Zeller, 1847) (Lepidoptera, Zygaenidae, Procridinae) on the Balkan Peninsula
    Bulletin of the Natural History Museum - Plovdiv Bull. Nat. Hist. Mus. Plovdiv, 2019, vol. 4: 15-19 New records of Adscita obscura (Zeller, 1847) (Lepidoptera, Zygaenidae, Procridinae) on the Balkan Peninsula Ana Nahirnić1*, Stoyan Beshkov1, Dimitar Kaynarov2 1 - National Museum of Natural History, Tsar Osvoboditel Blvd.1, 1000 Sofia, BULGARIA; 2 - Pazardzhik Region, Byaga Village, 12th Street № 4, BULGARIA *Corresponding author: [email protected] Abstract. Adscita obscura (Zeller, 1847) is recorded in Albania for the first time. Several new records are given for Bulgaria where it has been known only from a single locality. One new record is presented for Greece where it is rare species. Key words: Adscita obscura, Albania, Bulgaria, Greece. Introduction the source of this data is not known and no There are seven Adscita species voucher specimen has been found in any (Zygaenidae, Procridinae) on the Balkan European museum collection (Ana Nahirnić, Peninsula and almost all of them are very Gerhard Tarmann, pers. obs.). Studies on similar to each other. Adscita obscura (Zeller, Procridinae in Albania are very scarce and data 1847) can be confused with A. statices exist mainly from the northern part of the (Linnaeus, 1758), A. geryon (Hübner, [1813]), country and studies have been undertaken, exclusively, by foreign authors (e.g. REBEL & A. mannii (Lederer, 1853) and with the female ZERNY, 1931; ALBERTI, 1966). A promising of A. albanica (Naufock, 1926), thus exception appeared in 2016 where only species examination of genitalia is necessary for correct collected in Albania were listed (VRENOZI et identification. Nothing is known on early al., 2016) and more recently Theresimima stages, host-plants and habitats of A.
    [Show full text]
  • Bedfordshire and Luton County Wildlife Sites
    Bedfordshire and Luton County Wildlife Sites Selection Guidelines VERSION 14 December 2020 BEDFORDSHIRE AND LUTON LOCAL SITES PARTNERSHIP 1 Contents 1. INTRODUCTION ........................................................................................................................................................ 5 2. HISTORY OF THE CWS SYSTEM ......................................................................................................................... 7 3. CURRENT CWS SELECTION PROCESS ................................................................................................................ 8 4. Nature Conservation Review CRITERIA (modified version) ............................................................................. 10 5. GENERAL SUPPLEMENTARY FACTORS ......................................................................................................... 14 6 SITE SELECTION THRESHOLDS........................................................................................................................ 15 BOUNDARIES (all CWS) ............................................................................................................................................ 15 WOODLAND, TREES and HEDGES ........................................................................................................................ 15 TRADITIONAL ORCHARDS AND FRUIT TREES ................................................................................................. 19 ARABLE FIELD MARGINS........................................................................................................................................
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
    Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23
    [Show full text]
  • Spider Biodiversity Patterns and Their Conservation in the Azorean
    Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae:
    [Show full text]
  • The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
    American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research.
    [Show full text]
  • First Records of Spiders (Araneae) Baryphyma Gowerense (Locket, 1965) (Linyphiidae), Entelecara Flavipes (Blackwall, 1834) (Linyphiidae) and Rugathodes Instabilis (O
    44Memoranda Soc. Fauna Flora Fennica 91:Pajunen 44–50. &2015 Väisänen • Memoranda Soc. Fauna Flora Fennica 91, 2015 First records of spiders (Araneae) Baryphyma gowerense (Locket, 1965) (Linyphiidae), Entelecara flavipes (Blackwall, 1834) (Linyphiidae) and Rugathodes instabilis (O. P.- Cambridge, 1871) (Theridiidae) in Finland Timo Pajunen & Risto A. Väisänen Pajunen, T. & Väisänen, R. A., Finnish Museum of Natural History (Zoology), P.O. Box 17, FI-00014 University of Helsinki, Finland. E-mail: [email protected], risto.vaisanen@ helsinki.fi Baryphyma gowerense (Locket, 1965), Entelecara flavipes (Blackwall, 1834) and Rugathodes in- stabilis (O. P.-Cambridge, 1871) are reported for the first time in Finland. The first species was found by pitfall trapping on a wide aapa mire in Lapland and the two others by sweep netting on hemiboreal meadows on the Finnish south coast. The spider assemblages of the sites are described. Introduction center of Sodankylä and north of the main road running to Pelkosenniemi. A forestry road branch- The Finnish spider fauna is relatively well known es off the main road through the mire. The open (Marusik & Koponen 2002). The number of spe- area of the mire extends for about 2 × 0.4 km. Pit- cies listed in the national checklist increased by fall traps were set up in a 50 × 50 m area (Finnish less than 10% in the last four decades, from 598 uniform grid coordinates 7479220:3488900) be- to 645 between the years 1977 and 2013 (Ko- tween the road and the easternmost ponds of the ponen & Fritzén 2013). Detections of new spe- northern margin of Mantovaaranaapa.
    [Show full text]