Unix Command Reference

Total Page:16

File Type:pdf, Size:1020Kb

Unix Command Reference ! n cd dir mv file dir Unix Command Reference Repeat recent shell command n Change to directory dir Move file to directory dir Frequently used Commands Ctrl/p (previous) cd mv dir1 dir2 Move up in history list Return to home directory If directory dir2 exists, move dir1 into dir2; otherwise, rename dir1 as dir2 Ctrl/n (next) pwd Words in monospace type are commands and Move down in history list Display working directory mv file1 file2 should be typed as they are printed Rename file1 as file2 Ctrl/b (backward) file file Words in bold type should be substituted with Cursor left to edit command Determine file type #!/bin/sh the appropriate filename or directory for i in * Ctrl/f (forward) du -ks *|sort -nr|more do Unix is case-sensitive — UPPER and lowercase Cursor right to edit command Show all directory sizes in order, largest first echo $i letters have different meanings mv $i `basename $i`.ext Ctrl/d (delete) ls done Delete character in command List the contents of the current directory Rename a number of files General clear ls dir rm file Clear terminal screen List the contents of the directory dir Remove file man command Display the Unix manual entry describing a lock ls -l rm -f file given command Lock terminal Show permissions, owner, size, and other Force, remove files without prompting file info apropos command reset rm -r file Locate commands by keyword Reset / initialize terminal ls -a Remove files, directories, and recursively, Show all files, including (hidden) files that begin any subdirectories alias name1 name2 set with a dot Create command alias name Show environment rmdir dir ls -R Remove empty directory dir alias name env Show files recursively, for all subdirectories Display command alias Show current settings vi file ls -d Vi fullscreen editor unalias name sentenv name v List directories like other files, without Remove command alias name Set env var to value v (csh/tcsh) displaying their contents emacs file Emacs fullscreen editor passwd export name="v" ls -k Change password Set environment variable to value v List file sizes in kilobytes pico file (ksh/bash) Pico text editor quota ls -X Display amount of disk space used exit Sort files by file extension wc file Terminate current session Count lines, words, & chars df ls -1 Show available system disk space script Display the listing in 1 column cat file Make a typescript of everything printed on List contents of file du the terminal ls -t Show disk space being used up by folders Show files in time order, newest to oldest more file sudo /usr/libexec/locate.updatedb Display contents of a file one screen at a bc Update the locate database ls -l | grep "^d" time Basic calculator List all directories in the current directory without any of the files less file bc obase=16 255 File System Navigation Opposite of more Displays FF ls -l | grep ^d | wc -l * Find the number of subdirectories in the head -n file bc ibase=16 obase=10 Wild card: match zero or more characters current directory Display first n lines of file Hex to Dec ? ls -ls|sort -nr|more tail -n file date List files by size, largest first Display last n lines of file Display date & time Wild card: match zero or one character . cmp file1 file2 cal month year Data Manipulation Compare two files Show calendar Shorthand for the current directory mkdir dir diff file1 file2 whoami .. Create new directory dir Show file differences Display current user Shorthand for the parent of the current directory cp file1 file2 cp file1 file2 history Copy file(s) Copy file file1 into file2 Display recent commands ~ Home directory cp file dir sort file !! Copy file(s) into a directory Display the lines of text file alphabetically Repeat last shell command ~username Home directory of user username cp -r dir1 dir2 sort -r file !string Sort in reverse order Repeat last shell command that began Copy a directory and, recursively, its subdi- with string rectories sort -n file cmd1 || cmd2 File Compression ssh host Sort numerically (2 before 10) cmd2 is executed only if the execution of rsh host cmd1 does not end up successfully Log into and execute commands on a sort +n file compress file remote machine Sort on n+1st field cmd1 ; cmd2 Reduce the size of a file Execute cmd2 after execution of cmd1 stop- lpr -P printer file cat file1 file2 > file3 ped uncompress file Output file to line printer Concatenate file1 & file2 into file3 Restore a compressed file nohup command < file.in >> file.out& mail user split [-n] file ’No hangup’: execution of command will tar cf - /home/file | compress > Send mail to user Split file into n-line pieces continue even if the user logs off the file.tar.Z system (exit). Run command in the bak- tar and compress a file biff y/n grep sample file kground (&), taking input from file.in and Instant notification of mail Output lines that match sample string or appending output to file.out. tar cf - /home/file | gzip > pattern file.tar.Z tar and gzip a file Process Control grep -i Permissions Case-insensitive search ls -al | awk '$0!~/^d/ {print $9}' | xargs tar cvf archive_name.tar sleep n -rwxr-xr-x Sleep for n seconds grep -n Archive only regular files in a directory, Directories have a d in the first column; omitting subdirectories and hidden files Show the line # along with the matched regular files have a –. jobs line The remaining 9 characters indicate the Display list of jobs owner, group, and world permissions of the grep -v Make an index file of the contents file. of the tar file Ctrl/c Invert match: find all lines that do not An r indicates that the file is readable; w is Interrupt process / stop execution of a match writable, and x is executable. tar cvf - /home/file command A dash in the column instead of a letter grep -w 2>file.idx | compress > file.tar.Z means that particular permission is turned For sh, ksh Ctrl/d Match entire words, rather than substrings off. End of typed input (End of File Key) t is the ’sticky bit’ for directories; pre- (tar cvf - /home/file | compress > touch file vents files from being deleted by anyone Ctrl/q Update the timestamp on a file, if the file /file.tar.Z) >&file.idx other than the owner. For csh Start / resume terminal output doesn’t exist, touch creates an empty file s is the ’setuid-bit’ for files; execute a pro- gram using the owner’s permissions (rather Ctrl/s I/O Redirection than those of the one who calls it). A simple backup script Stop terminal output sh: Ctrl/z The shell expects input from; and sends out- Setting Permissions with Letters % pico ~/bin/backup.sh Suspend execution of a command put to, a terminal. To write command output to files or read input from files, redirection is chmod u+rwx,go+rx file #!/bin/sh ps used. UNIX defines three I/O units with corre- u is the user’s (owner) permissions; g is the echo "Backup of Folder:" Show process status statistics sponding file descriptors: group permissions, and o is world (other) tar cvf - /home/file 2>file.idx | permissions. gzip > home/file.tar.Z ps aux 0: stdin (standard input) The + sign turns the stated permissions on; Show complete process listing 1: stdout (standard output) a – sign turns them off. Save the script in ~/bin 2: stderr (standard error) Directories should always have, at least for top the owner, the x permission set. % chmod +x ~/bin/backup.sh Show system usage statistics dynamically; prog > file A directory doesn’t have to be readable for Make it executable stop with q Redirect (write) stdout of prog to file the web server to read and execute files within that directory. Only the files them- % rehash kill -9 n prog >> file selves must be readable. Force the shell to rebuild its list of known Remove process n Append stdout of prog to file executables stop %n prog < file Numeric Permissions Suspend background job n Read stdin for prog from file chmod 711 file Networking & Communications command& prog < file1 > file2 Change permissions on a file. Run command in background Read stdin for prog from file1, redirect The first number translates to permissions who stdout to file2 by the owner (logon account). The second List logged in users bg %n is permissions for the group (a possibly Resume background job n prog 2>file empty group of logon accounts). The third finger user Write stderr of prog to file is permissions for everyone. Display user information fg %n Resume foreground job n prog 2>&1 0: --- (no permissions) chfn With file descriptor: write stderr of prog 1: --x (executable only) Change finger information to stdout 2: -w- (writable only) 3: -wx (writable and executable) ping host cmd1 | cmd2 4: r--- (readable only) Send ICMP ECHO_REQUEST packets to net- Pipeline: use cmd1’s output as input for cmd2 5: r-x (readable and executable) work hosts 6: rw- (readable and writable) cmd1 && cmd2 7: rwx (readable, writable, and executable) telnet hostname cmd2 is executed only if the execution of Connect to another remote system using Maintained by Alexander Becker the telnet protocol Published by kokhaviv press cmd1 ends up successfully www.kokhavivpublications.com/help/unix/ print 0.92 / 2004-10-19.
Recommended publications
  • A Highly Configurable High-Level Synthesis Functional Pattern Library
    electronics Article A Highly Configurable High-Level Synthesis Functional Pattern Library Lan Huang 1,2,‡, Teng Gao 1,‡, Dalin Li 1,†, Zihao Wang 1 and Kangping Wang 1,2,* 1 College of Computer Science and Technology, Jilin University, Changchun 130012, China; [email protected] (L.H.); [email protected] (T.G.); [email protected] (D.L.); [email protected] (Z.W.) 2 Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun 130012, China * Correspondence: [email protected] † Current address: Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai 519041, China. ‡ These authors contributed equally to this work. Abstract: FPGA has recently played an increasingly important role in heterogeneous computing, but Register Transfer Level design flows are not only inefficient in design, but also require designers to be familiar with the circuit architecture. High-level synthesis (HLS) allows developers to design FPGA circuits more efficiently with a more familiar programming language, a higher level of abstraction, and automatic adaptation of timing constraints. When using HLS tools, such as Xilinx Vivado HLS, specific design patterns and techniques are required in order to create high-performance circuits. Moreover, designing efficient concurrency and data flow structures requires a deep understanding of the hardware, imposing more learning costs on programmers. In this paper, we propose a set of functional patterns libraries based on the MapReduce model, implemented by C++ templates, Citation: Huang, L.; Gao,T.; Li, D.; which can quickly implement high-performance parallel pipelined computing models on FPGA with Wang, Z.; Wang, K.
    [Show full text]
  • Bash Guide for Beginners
    Bash Guide for Beginners Machtelt Garrels Garrels BVBA <tille wants no spam _at_ garrels dot be> Version 1.11 Last updated 20081227 Edition Bash Guide for Beginners Table of Contents Introduction.........................................................................................................................................................1 1. Why this guide?...................................................................................................................................1 2. Who should read this book?.................................................................................................................1 3. New versions, translations and availability.........................................................................................2 4. Revision History..................................................................................................................................2 5. Contributions.......................................................................................................................................3 6. Feedback..............................................................................................................................................3 7. Copyright information.........................................................................................................................3 8. What do you need?...............................................................................................................................4 9. Conventions used in this
    [Show full text]
  • PJM Command Line Interface
    PJM Command Line Interface PJM Interconnection LLC Version 1.5.1 11-18-2020 PJM Command Line Interface Table of Contents Purpose ..................................................................................................................................................................................... 4 System Requirements ............................................................................................................................................................... 4 Release History ......................................................................................................................................................................... 4 Usage ........................................................................................................................................................................................ 5 Standalone Application ......................................................................................................................................................... 5 Example Standalone Execution ....................................................................................................................................... 5 Parameter Details ............................................................................................................................................................. 7 Password Encryption .......................................................................................................................................................
    [Show full text]
  • TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to Using Tassel Pipeline
    TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens ([email protected]) Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853-2703 March 28, 2014 Prerequisites ............................................................................................................................................................ 1 Source Code ............................................................................................................................................................ 1 Install ....................................................................................................................................................................... 1 Execute .................................................................................................................................................................... 1 Increasing Heap Size ............................................................................................................................................... 2 Examples ................................................................................................................................................................. 2 Examples (XML Configuration Files) .................................................................................................................... 2 Usage ......................................................................................................................................................................
    [Show full text]
  • Chapter 5. Writing Your Own Shell
    Chapter 5. Writing Your Own Shell You really understand something until you program it. ­­GRR Introduction Last chapter covered how to use a shell program using UNIX commands. The shell is a program that interacts with the user through a terminal or takes the input from a file and executes a sequence of commands that are passed to the Operating System. In this chapter you are going to learn how to write your own shell program. Shell Programs A shell program is an application that allows interacting with the computer. In a shell the user can run programs and also redirect the input to come from a file and output to come from a file. Shells also provide programming constructions such as if, for, while, functions, variables etc. Additionally, shell programs offer features such as line editing, history, file completion, wildcards, environment variable expansion, and programing constructions. Here is a list of the most popular shell programs in UNIX: sh Shell Program. The original shell program in UNIX. csh C Shell. An improved version of sh. tcsh A version of Csh that has line editing. ksh Korn Shell. The father of all advanced shells. bash The GNU shell. Takes the best of all shell programs. It is currently the most common shell program. In addition to command­line shells, there are also Graphical Shells such as the Windows Desktop, MacOS Finder, or Linux Gnome and KDE that simplify theDraft use of computers for most of the users. However, these graphical shells are not substitute to command line shells for power users who want to execute complex sequences of commands repeatedly or with parameters not available in the friendly, but limited graphical dialogs and controls.
    [Show full text]
  • Working with the Windows Powershell Pipeline
    Module 3: Working with the Windows PowerShell pipeline Lab A: Using the pipeline Exercise 1: Selecting, sorting, and displaying data Task 1: Display the current day of the year 1. On LON-CL1, click Start and then type powersh. 2. In the search results, right-click Windows PowerShell, and then click Run as administrator. 3. In the Administrator: Windows PowerShell window, type the following command, and then press Enter: help *date* Note: Notice the Get-Date command. 4. In the console, type the following command, and then press Enter: Get-Date | Get-Member Note: Notice the DayOfYear property. 5. In the console, type the following command, and then press Enter: Get-Date | Select-Object –Property DayOfYear 6. In the console, type the following command, and then press Enter: Get-Date | Select-Object -Property DayOfYear | fl Task 2: Display information about installed hotfixes 1. In the console, type the following command, and then press Enter: Get-Command *hotfix* Note: Notice the Get-Hotfix command. 2. In the console, type the following command, and then press Enter: Get-Hotfix | Get-Member Note: The properties of the Hotfix object display. If needed, run Get-Hotfix to see some of the values that typically appear in those properties. 3. In the console, type the following command, and then press Enter: Get-Hotfix | Select-Object –Property HotFixID,InstalledOn,InstalledBy 4. In the console, type the following command, and then press Enter: Get-Hotfix | Select-Object –Property HotFixID,@{n='HotFixAge';e={(New- TimeSpan –Start $PSItem.InstalledOn).Days}},InstalledBy Task 3: Display a list of available scopes from the DHCP server 1.
    [Show full text]
  • Introduction to Linux/Unix
    Introduction to Linux/Unix Xiaoge Wang, ICER [email protected] Feb. 4, 2016 How does this class work • We are going to cover some basics with hands on examples. • Exercises are denoted by the following icon: • Bold means commands which I expect you type on your terminal in most cases. Green and red sticky Use the sJcKy notes provided to help me help you. – No s%cky = I am worKing – Green = I am done and ready to move on (yea!) – Red = I am stucK and need more Jme and/or some help Agenda • IntroducJon • Linux – Commands • Navigaon • Get or create files • Organizing files • Closer looK into files • Search files • Distribute files • File permission • Learn new commands – Scripts • Pipeline • Make you own command • Environment of a shell • Summary Agenda • Linux – Commands • Navigaon • Get or create files • Organizing files • Closer looK into files • Search files • Distribute files • File permission • Learn new commands – Scripts • Pipeline • Make you own command • Environment of a shell • Summary Introduction • Get ready for adventure? – TicKet(account)? • Big map – Linux/Unix – Shell • Overview of the trail – Commands – Simple Shell script – Get ready for HPC. Exercise 0: Get ready • Connect to HPCC (gateway) – $ ssh [email protected] • Windows users MobaXterm • Mac users Terminal • Linux users? • Read important message – $ mod • Go to a development node – $ ssh dev-nodename Message of the day (mod) • Mac Show screen Big picture Shell Shell Big picture • Shell – CLI ✔ – GUI OS shell example Overview of the trail • Commands • Simple Shell script • Get ready for HPC Linux shell tour Ready? GO! Agenda • IntroducJon – Scripts • Pipeline • Make you own command • Environment of a shell • Summary Example 1: Navigation • TasK: Wander around on a node.
    [Show full text]
  • Unix Tools As Visual Programming Components in a GUI-Builder
    Unix Tools as Visual Programming Components Ý in a GUI-builder Environment £ Diomidis Spinellis Department of Management Science and Technology Athens University of Economics and Business Patision 76, GR-104 34 Athens, Greece email: [email protected] September, 2001 Abstract Introduction A number of environments support the visual composition Development environments based on ActiveX controls and of graphical user interfaces (GUIs) using components with a JavaBeans are marketed as “visual programming” plat- predefined set of interfaces. In addition, technologies such forms; in practice their visual dimension is limited to the as ActiveX and JavaBeans allow the development of visual design and implementation of an application’s graphical components (typically GUI elements) that can be seamlessly user interface (GUI. The availability of sophisticated GUI incorporated into an integrated development environment development environments and visual component develop- (IDE) and subsequently used in application development. In ment frameworks is now providing viable platforms for this article we present how visual IDEs and components can implementing visual programming within general-purpose be extended beyond GUI development to support visual pro- platforms, i.e. for the specification of non-GUI program gramming for a particular domain. functionality using visual representations. We describe A visual programming language can be informally de- how specially-designed reflective components can be used in an industry-standard visual programming environment fined as a programming language with a syntax that in- cludes visual expressions such as diagrams, free-hand to graphically specify sophisticated data transformation sketches, icons, or graphical manipulations [1]. Visual pipelines that interact with GUI elements. The components are based on Unix-style filters repackaged as ActiveX con- programming approaches aim towards easing the program- ming learning curve or enhancing programming productiv- trols.
    [Show full text]
  • Shell Scripting and System Variables HORT 59000 Lecture 5 Instructor: Kranthi Varala Text Editors
    Shell scripting and system variables HORT 59000 Lecture 5 Instructor: Kranthi Varala Text editors • Programs built to assist creation and manipulation of text files, typically scripts. • nano : easy-to-learn, supports syntax highlighting, lacks GUI. • Emacs : provides basic editing functions but also extendible to add functionality. Supports GUI, extensions provide a wide range of functions. • vi/vim : extensive editing functions and relatively limited extensibility, command and insert modes distinct, steep learning curve, but very rewarding experience. Text manipulations • Tabular data files can be manipulated at a column- level. 1. Cut: Divide file & extract columns. 2. Paste: Combine multiple columns into a single table/file. • Sort: Sort lines in a file based on contents of one or more columns. • Regular expressions : defining patterns in text. Special characters and quantifiers allow search and replacement of simple-to-complex matches. • grep and awk use the power of regular expressions to make text processing very easy. Command-line operations • All commands so far are run one at a time. • Redirection and pipes allow combining a few commands together into a single pipeline. • Lacks logical complexity, such as ability to make decisions based on input / values in file. • Certain repetitive tasks are tedious to user. • All commands are being sent to and interpreted by the ‘shell’ Client/Server architecture User1 User2 Server (UNIX/ Web/ Database etc..) User3 User4 Terminology • Terminal: Device or Program used to establish a connection to the UNIX server • Shell: Program that runs on the server and interprets the commands from the terminal. • Command line: The text-interface you use to interact with the shell.
    [Show full text]
  • Linux Command Line Basics III: Piping Commands for Text Processing Yanbin Yin
    Linux command line basics III: piping commands for text processing Yanbin Yin 1 http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.1.1.pdf 2 The beauty of Unix for bioinformatics sort, cut, uniq, join, paste, sed, grep, awk, wc, diff, comm, cat All types of bioinformatics sequence analyses are essentially text processing. Unix Shell has the above commands that are very useful for processing texts and also allows the output from one command to be passed to another command as input using pipes (“|”). This makes the processing of files using Shell very convenient and very powerful: you do not need to write output to intermediate files or load all data into the memory. For example, combining different Unix commands for text processing is like passing an item through a manufacturing pipeline when you only care about the final product | Hold shift and press 4 cut: extract columns from a file less file | cut –f1 # cut the first column (default delimiter tabular key) less file | cut –f1 –d ‘ ‘ # specify delimiter to be regular space less file | cut –f1-3 # cut 1 to 3 col less file | cut –f1,7,10 > file.1-7-10 # cut 1, 7, 10 col and save as a new file sort: sort rows in a file, default on first col in alphabetical order (0-9 then a-z, 10 comes before 9) less file | sort –k 2 # sort on 2 col less file | sort –k 2,2n # sort in numeric order less file | sort –k 2,2nr # sort in reverse numeric order uniq: report file without repeated occurrences less file | cut –f2 | sort | uniq # unique text less file | cut –f2 | sort | uniq –c # count number
    [Show full text]
  • The AWK Manual Edition 1.0 December 1995
    The AWK Manual Edition 1.0 December 1995 Diane Barlow Close Arnold D. Robbins Paul H. Rubin Richard Stallman Piet van Oostrum Copyright c 1989, 1991, 1992, 1993 Free Software Foundation, Inc. This is Edition 1.0 of The AWK Manual, for the new implementation of AWK (sometimes called nawk). Notice: This work is derived from the original gawk manual. Adaptions for NAWK made by Piet van Oostrum, Dec. 1995, July 1998. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. Preface 1 Preface If you are like many computer users, you would frequently like to make changes in various text files wherever certain patterns appear, or extract data from parts of certain lines while discarding the rest. To write a program to do this in a language such as C or Pascal is a time-consuming inconvenience that may take many lines of code. The job may be easier with awk. The awk utility interprets a special-purpose programming language that makes it possible to handle simple data-reformatting jobs easily with just a few lines of code.
    [Show full text]
  • An Order-Aware Dataflow Model for Parallel Unix Pipelines
    65 An Order-Aware Dataflow Model for Parallel Unix Pipelines SHIVAM HANDA∗, CSAIL, MIT, USA KONSTANTINOS KALLAS∗, University of Pennsylvania, USA NIKOS VASILAKIS∗, CSAIL, MIT, USA MARTIN C. RINARD, CSAIL, MIT, USA We present a dataflow model for modelling parallel Unix shell pipelines. To accurately capture the semantics of complex Unix pipelines, the dataflow model is order-aware, i.e., the order in which a node in the dataflow graph consumes inputs from different edges plays a central role in the semantics of the computation and therefore in the resulting parallelization. We use this model to capture the semantics of transformations that exploit data parallelism available in Unix shell computations and prove their correctness. We additionally formalize the translations from the Unix shell to the dataflow model and from the dataflow model backtoa parallel shell script. We implement our model and transformations as the compiler and optimization passes of a system parallelizing shell pipelines, and use it to evaluate the speedup achieved on 47 pipelines. CCS Concepts: • Software and its engineering ! Compilers; Massively parallel systems; Scripting languages. Additional Key Words and Phrases: Unix, POSIX, Shell, Parallelism, Dataflow, Order-awareness ACM Reference Format: Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin C. Rinard. 2021. An Order-Aware Dataflow Model for Parallel Unix Pipelines. Proc. ACM Program. Lang. 5, ICFP, Article 65 (August 2021), 28 pages. https://doi.org/10.1145/3473570 1 Introduction Unix pipelines
    [Show full text]