Trace Fossils in Coal-Bearing Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Trace Fossils in Coal-Bearing Sequences Journal of the Geological Society, London, Vol. 145, 1988, pp. 339-350, 5 figs. Printed in Northern Ireland Trace fossils in coal-bearing sequences J. E. POLLARD Department of Geology, University of Manchester, Manchester M13 9PL, UK Abstract: Inthe past decade trace fossils have been recorded extensively from coal-bearing sedi- ments, differingwidely in facies, age and location.Westphalian or Stephanian‘coal-measures’ in Britain,Europe and EasternCanada contain an ichnofaunaproduced by invertebrates and/or vertebrates in upper delta plain sediments. This contrasts with the marine-related lower delta plain ichnofaunas known from Pennsylvanian rocks of the United States and Permian Gondwana ‘coal- measures’ of South Africa. Deltaic complexes of Middle Jurassic age in the North Sea basin and UpperCretaceous age in NorthAmerica contain marine trace fossils and dinosaurfootprints in coastal coal-bearing facies. Thesecase histories illustrate the importance of trace fossils both in facies analysis of coal-bearing sequences and in recording the presence of animals rarely known as body fossils in such clastic sediments. The recognition and use of trace fossils in the sedimen- to the diverse studies presented at the Egham Symposium tological and palaeontological analyses of coal-bearing and appearing in its publications. (Scott 19870, 19876). sediments is a major advance of the past decade. Although distinctive burrows, tracks and trails have been known from Silesian coal measures Euramerica Westphalian rocks since the mid 19th century, for example of fromLancashire (Binney 1852) and the Maritime Provinces, Canada (Dawson 1868), little notice was taken of Westphalian coal measuresof Britain them until the 1950s and 1960s. Over this period German Atthe previous British symposium on ‘Coal and workers established that trace fossil associations in the Ruhr Coal-BearingStrata’, Calver (196th) reviewed the trace CoalMeasures paralleled fauna1 and sedimentary cycles fossils then recognized in the Coal Measures of Britain. He (Jessen 1949; Jessen et al. 1952; Seilacher 1963, 1964). concluded that they demonstratedthe presence of the From this beginning we may recognize the two-fold Planolites ophthalmoides assemblage inmarine bands and development of moderntrace fossil studies, firstly in the P. montanus assemblage in non-marine strata as known conjunction with sedimentological or facies analysis of from theRuhr (Seilacher 1964), but totalling only four coal-bearing sedimentsand secondly, in recording the ichnogenera. More recent work in the Lancashire, presence,behaviour patternsand environmental distribu- Yorkshire and East Midlands coalfields (Eagar et al. 1985; tions of the animals producing the traces. Guion 1985; Pollard 1986) established the presence of more Detailed stratigraphical and sedimentological analysis of than fifteen ichnogenera, in five or morerecurring Silesian deltaicsequences of both Britianand North associations; these associations may be correlated with America in the past decadedemonstrated a close sediment type and specific sedimentary environments (Fig. relationship between trace fossil assemblages, sediments and 1). These diverse ichnofossils form part of a series which environmental models (Hakes 1977; Archer & Maples 1984; first appeared in interchannel strata of late Namurian sheet Eagar et al. 1985). Comparable results are being obtained by deltas of the Pennine area (Eagar et al. 1985, figs 5 and 8) workers on Gondwanacoal-bearing facies andNorth and they constitute a distinct lower delta-plain ichnofauna of American Cretaceous sequences (see below). Recent major largely Westphalian Aage. Figure 1 relatesthese trace publications on ichnology of marginal marineand fossils to specific subaqueous delta plain environments. The continental environments (Miller et al. 1984), on the use of traces reflect the variety of producersand differing biogenic structures in interpretingdepositional environ- behavioural responses to sedimentation conditions in the ments (Curran 1985) and on trace fossils in cores respective environments. (Chamberlain 1978; Ekdale et al. 1984) all contain Muddy sediments of marinea band contain both coal-bearing sediment case-studies. The relative abundance Ophthalmidium [‘Planolites’] ophthalmoides (Calver 1968b; of good quality corematerial produced during coalfield Rippon 1984) and newly recognized Lingula burrows, exploration can reveal a wealth of trace fossil information to Lingulichnus, in the regressive phase of the vanderbecki the trained observer. MarineBand in Lancashire (Fig. 2a). The ichnofauna of Palaeontologistsinterested in the ethological aspect of laminated muddy sediments of the interdistributary bay, or trace fossils have produced new information on diversity and floodbasin lake in higher Westphalian sediments, is the P. environmental distribution of both arthropods and tetrapods montanus association, (Fig. 2b) including Cochlichnus, by the detailed analysis of their trackways. Such ‘Gyrochorte’ carbonaria, Arenicolites, bivalve resting traces information is complementary tothe very limited data (Pelecypodichnus), and rare arthropod resting or crawling available from body fossils of these animals in clastic traces (Selenichnus and Acripes) (Rippon 1984; Guion 1985; coal-bearing sequences. Eagar et al. 1985; Pollard 1986; Romano & Whyte 1987). This paper reviews briefly some of these discoveries and The greatest diversity of traces is recorded from crevasse developments of the past decade particularly in relationship splay sheet sands (Fig. 1) wheretraces frequently show a 339 Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/145/2/339/4889504/gsjgs.145.2.0339.pdf by guest on 02 October 2021 340 J. E.POLLARD Trace fossil associations T I I Lithology and I sedimentaryenvironment I I T I I I I I 7 I l Crevasse splay I I -1- mdallt l m ..l fig. 1. Diversity, associations and facies relationships of trace fossils in Westphalian Coal measures of Britain. 1, Ophthalmidium association; 2, Planolites montanus association; 3, Arenicolites carbonarius association; 4, Pelecypodichnus association; 5, spreiten burrows; 6a, aquatic arthropod traces; 6b, terrestrial arthropod traces; 7, vertebrate tracks. Key to lithologies, see Fig. 4. behavioural response to sedimentation. Burrows of suspen- 1983, 1985; Hardy 1970a; Eagar et al. 1985) (association sion feeders, Arenicolites carbonarius and Polykladichnus 6a). The sinuoussurface trail or burrow Cochlichnus has are usually initiated from the topof the crevasse splays (Fig. recently been the subject of behavioural and mathematical 2c, e). Resting burrows Pelecypodichnus, preserved on the analysis (Elliot 1985). It was probably formed by nematode base of the crevassesplay sands frequently show current worms duringlocomotion or feeding,sometimes on response orientation or are associated with vertical escape decaying bivalves (Hardy 1970b). shaftsindicating behavioural response to seasonal flood The diverseichnofauna of the WestphalianCoal sedimentation (Hardy & Broadhurst 1978; Broadhurst et al. Measures of Britainillustrates clearly both the facies 1980) (Fig.2d). In channel fill sequencesbioturbation is significance and behaviouralaspects of trace fossils. limited to finer sediments although Arenicolites, Pelecypod- However it is remarkably different from contemporaneous ichnus and Planolites arerecorded (Guion 1985; Fielding ichnofaunas of coal-bearingsediments of the Canadian 1986; H. Williams pers.comm. 1986), perhaps associated Maritime Provinces. (Fig. 3). with starvation of active channel fill. Rare horizontal U-shapedor spreiten burrows (association 5) have been recordedfrom channel floor deposits or leveesediments Westphalian sequencesof eastern Canada (Hardy 1970b; Eagar et al. 1985) (Fig. 2f). The classic 'Joggins Section' of coal-bearing strata of the Trackways of terrestrialarthropods Diplichnites, Cumberland Basin of Nova Scotia has long been famous for Paleohelcura (association6b) tetrapodor footprints its fossils, especially vertebrates and upright trees. However (association 7)are not known from CoalMeasures of it also contains a variety of arthropodand vertebrate Britain below the Keele Beds (Westphalian D or trackways figured by Dawson (1868, 1873), suggestive of a Stephanian)but diversebehaviour patterns of aquatic or diversetrace-producing freshwater and terrestrial fauna. semi-aquatic belinurids (limulids) including burrows, resting Thevertebrate footprints show a predominance of traces and locomotion trackways are known (Chisholm amphibians,microsaurs (but also rhachitomes),and rarer Fig. 2. Burrows from British Westphalian sediments (a-e are cut vertical sections or core section). (Scale bars are 10 mm long.) (a) Lingulichnus sp. Vertical burrows with variable diameter and thick mud-lined walls inlaminated siltstone. uanderbecki Marine Band, Westphalian A/B, Lancs. MGSF 100 (Manchester Geology Department Special FossilCollection) (b) Planolites rnontanus (Richter). Sand-filled irregular horizontal burrows in laminated siltstone. Westphalian A, Lancashire. MGSF 101. (c) Arenicolites carbonarius (Binney). Mud-filled, small U-shaped burrows without spreiten. Westphalian A, Elland, Yorkshire. Manchester Museum L6211. (a) Pelecypodichnus and bivalve escape shaft. Cross section (V-shaped) of bivalve resting burrows which are repeated vertically by upward escape. Westphalian A, Up Holland, Lancashire. MGSF 102. (e) Polykladichnus sp. Small upward Y-branching burrows in ripple cross-laminated fine standstone.
Recommended publications
  • FALL 2017 President’S Reflections
    PriscumPriscum NEWSLETTER OF THE VOLUME 24, ISSUE 1 President’s Reflections Paleobiology, the finances of both journals appear secure for INSIDE THIS ISSUE: the foreseeable future, and with a much-improved online presence for both journals. To be sure, more work lies ahead, Report on Student but we are collaborating with Cambridge to expand our au- 3 Diversity and Inclusion thor and reader bases, and, more generally, to monitor the ever-evolving publishing landscape. Our partnership with The Dry Dredgers of 10 Cambridge is providing additional enhancements for our Cincinnati, Ohio members, including the digitization of the Society’s entire archive of special publications; as of this writing, all of the PS Embraces the 13 Hydrologic Cycle Society’s short course volumes are now available through the member’s portal, and all remaining Society publications will be made available soon. We are also exploring an exciting PS Events at 2017 GSA 14 new outlet through Cambridge for all future Special Publica- By Arnie Miller (University of tions. Stay tuned! Book Reviews 15 Cincinnati), President In my first year as President, the Society has continued to These are challenging times for move forward on multiple fronts, as we actively explore and Books Available for 28 scientists and for the profes- pursue new means to carry out our core missions of enhanc- Review Announcement sional societies that represent ing and broadening the reach of our science and of our Socie- them. In the national political ty, and providing expanded developmental opportunities for arena, scientific findings, policies, and funding streams that all of our members.
    [Show full text]
  • An Analysis of Multiple Trackways of Protichnites Owen, 1852, from the Potsdam Sandstone (Late Cambrian), St
    AN ANALYSIS OF MULTIPLE TRACKWAYS OF PROTICHNITES OWEN, 1852, FROM THE POTSDAM SANDSTONE (LATE CAMBRIAN), ST. LAWRENCE VALLEY, NY by Matthew E. Burton-Kelly A Bachelors Thesis Submitted to the Faculty of the Department of Geology of St. Lawrence University in partial fulfillment of the requirements for the degree of Bachelor of Science with Honors in Geology Canton, New York 2005 1 2 3 This thesis submitted by in partial fulfillment of the requirements for the degree of Bachelor of Science with Honors in Geology from St. Lawrence University is hereby approved by the Faculty Advisor under whom the work was done. Faculty Advisor Date Department Chairman Date ii 4 ACKNOWLEDGMENTS The author would like to thank Dr. J. Mark Erickson for his assistance and guidance throughout the course of this project, as well as the St. Lawrence University Geology Department, which provided research materials and covered transportation costs. Attendance at the annual meeting of the Northeastern Section of the Geological Society of America to present preliminary results was funded by the Jim Street Fund, St. Lawrence University Geology. Jim Dawson provided vital insight into the nature of these trackways. Any number of additional people provided support for the author, most notably Camille Partin, Trisha Smrecak, and Joanne Cavallerano, but thanks go out to all the members of the St. Lawrence University Geology Department and the St. Lawrence University Track and Field teams. iii 5 TABLE OF CONTENTS THESIS APPROVAL..........................................................................................................ii
    [Show full text]
  • A Global Overview of Pterosaur Ichnology: Tracksite Distribution in Space and Time
    185 Zitteliana B28 185 - 198 8 Figs München, 31.12.2008 ISSN 1612 - 4138 A global overview of pterosaur ichnology: tracksite distribution in space and time By Martin Lockley1*, Jerald D. Harris2 & Laura Mitchell3 1Dinosaur Tracks Museum, University of Colorado at Denver, PO Box 173364, Denver, CO 80217-3364, U.S.A. 2Dixie State College, Physical Sciences Department, 225 South 700 East, St. George, UT 84770, U.S.A. 3Department of Geology and Geophysics, University of Wisconsin – Madison, 1215 West Dayton Street, Madison, WI 53706, U.S.A. Manuscript received November 23, 2007; revised manuscript accepted March 7, 2008. Abstract whether Agadirichnus from the Late Cretaceous of Morocco (foot length 10–12 cm) is pterosaurian. Most Cretaceous sites At least 50 pterosaur track sites have been reported from Late represent lacustrine, not marginal marine, habitats. Both Juras- Jurassic through Late Cretaceous localities in North America, sic and Cretaceous assemblages often contain very high track Europe, East Asia and South America, plus one possible site densities and a range of track sizes associated with invertebrate from north Africa. Tracks from these sites have been assigned traces. This suggests that diverse pterosaurian fl ocks may have to 11 ichnospecies in four ichnogenera. Of these, Pteraichnus congregated in large numbers to feed. Some assemblages reveal is by far the most prevalent, well-preserved, and represented swim tracks that suggest pterosaurs fl oated in shallow water, by multiple (presently eight) ichnospecies. The majority of touching the submerged substrate with only their hind feet. Pteraichnus tracksites are Late Jurassic or earliest Cretaceous These swim track assemblages also contain possible beak traces (Berriasian) in age.
    [Show full text]
  • Alberta Palaeontological Society Bulletin 28(4), December 2013
    Palæontological Society Bulletin AlbertaVOLUME 28 • NUMBER 4 www.albertapaleo.org DECEMBER 2013 ALBERTA PALAEONTOLOGICAL SOCIETY OFFICERS THE SOCIETY WAS INCORPORATED IN 1986 as a non-profit President organization formed to: Cory Gross [email protected] (403) 617-2079 a. Promote the science of palaeontology through study and education. Vice-President b. Make contributions to the science by: 1) Discovery. 2) Collection. Reg Spratley [email protected] (403) 263-0556 3) Description. 4) Education of the general public. 5) Preservation Treasurer of material for study and the future. Mona Marsovsky [email protected] (403) 547-0182 c. Provide information and expertise to other collectors. Secretary d. Work with professionals at museums and universities to add to Arnold Ingelson [email protected] (403) 249-6748 the palaeontological collections of the province (preserve Alberta’s Past-President heritage). Wayne Braunberger [email protected] (403) 278-5154 MEMBERSHIP: Any person with a sincere interest in palaeontology is DIRECTORS eligible to present their application for membership in the Society. Please Editor enclose membership dues with your request for application. Howard Allen [email protected] (403) 274-1858 Single membership $20.00 annually Membership Family or Institution $25.00 annually Vaclav Marsovsky [email protected] (403) 547-0182 Programs SOCIETY MAILING ADDRESS: Harold Whittaker [email protected] (403) 286-0349 Alberta Palaeontological Society Field Trips P.O. Box 35111, Sarcee Postal Outlet Wayne Braunberger [email protected] (403) 278-5154 Calgary, AB, Canada T3E 7C7 www.albertapaleo.org COMMITTEES Fossil Collection THE BULLETIN WILL BE PUBLISHED QUARTERLY: March, June, Howard Allen [email protected] (403) 274-1858 September and December.
    [Show full text]
  • Geologic Map of Alaska
    Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.
    [Show full text]
  • The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy.
    [Show full text]
  • Ichnology As a Tool in Carbonate Reservoir Characterization, Khuff Formation Gulf Petrolink, Bahrain
    GeoArabia, v. 14, no. 3, 2009, p. 17-38 Ichnology as a tool in carbonate reservoir characterization, Khuff Formation Gulf PetroLink, Bahrain Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian – Triassic Khuff Formation in the Middle East Dirk Knaust ABSTRACT In the Upper Permian to Lower Triassic Khuff Formation in the Arabian Gulf, a vast shallow-marine carbonate platform developed broad facies belts with little significant changes in the lithofacies. However, trace fossil assemblages and ichnofabrics, in combination with sedimentological observations, serve in subdividing this platform and in distinguishing sub-environments. From proximal to distal, these are sabkha and salina, tidal flat, restricted lagoon, open lagoon, platform margin, shoreface/inner ramp, slope/outer ramp and basin/deeper intra-shelf. In this way, changes in relative sea level can be better reconstructed and guide the sequence stratigraphic interpretation. Meter- scale shallowing-upward cycles dominate the succession and, in addition to conventional methods, bioturbation, trace fossil assemblages and tiering patterns aid in interpreting subtidal, lower and upper intertidal and supratidal portions of these peritidal cycles. Bioturbation (and cryptobioturbation) have an impact on the primary reservoir quality before diagenetic processes overprint the deposits. For instance, deposit-feeders (such as vermiform organisms) introduce a certain amount of mud and decrease porosity and permeability considerably, whereas others like the Zoophycos-producers fill their dwellings with ooid grains and turn a mudstone from a barrier to a flow unit. This novel study demonstrates the value of ichnological information in carbonate reservoir characterization and the significance of trace fossil analysis in facies interpretation, reservoir zonation and the impact of bioturbation on the reservoir quality.
    [Show full text]
  • The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal,
    [Show full text]
  • 39674887.Pdf
    35 Palaeont. afr., 18, 35-45 (1975) THE "TRILOBITEH TRACKWAYS IN THE TABLE MOUNTAIN GROUP (ORDOVICIAN) OF SOUTH AFRICA by Ann M. Anderson ABSTRACT A lerminology for arthropod trackways is defined and the nomenclature of trace fossils is dis­ cussed briefly. Most of the trackways from the reddish sandstone Graafwater Formation are assigned to I he ichnospecies PetaLichnus capensis sp. nov. which includes bilaterally symmetrical walking Irails consisting ofa repetition of9-12 pairs ofunifid tracks sometimes accompanied by a median drag line. These trackways are associated with hemispherical burrows Metaichna rw/;m gen. ('1 sr. nov. The same animals possibly made both the trackways and the burrows, but whel her or nOI I hey were trilobites is not clear. INTRODUCTION Tracks , Trails , Trackways In 1962 Taljaard recorded trilobite trackways Pettijohn (1957, p. 220) defined "TRACKS ... [as] from the Table Mountain Sandstone series on the impressions left in soft materials by the feet of birds · farm Brandenburg 25 km west-south-west of , Clanwilliam in the western Cape Province. He • • , • presented a sketch of a 7 m 2 slab, now mounted in an •• • entrance hall of the Department of Geology at •• • • Stellenbosch University (Figure 2), and two •• • photographs : one is of a specimen 1, 5 m 2 housed at • the South African Museum in Cape Town, the other • ,• is of a specimen retained on the farm (18° 38' E, 32° • ; . .. .. .•............. 16' S). ~. : , • Rust (I 967; 1969) elucidated the stratigraphic set­ •• • ting of trackways and discovered further occurrences ,• • repeated (1967,p.60): "•• " .. at Tierhoek and Waterval [farms], and in the , ,• track cycle vicinity of Stellenbosch and Hout Bay, .
    [Show full text]
  • Forgotten Paleogene Limulid Tracks: Xishuangbanania from Yunnan, China
    Available online at www.sciencedirect.com Palaeoworld 21 (2012) 217–221 Forgotten Paleogene limulid tracks: Xishuangbanania from Yunnan, China a,b,c,∗ d a e b Li-Da Xing , Martin G. Lockley , Qing He , Masaki Matsukawa , W. Scott Persons IV , f a Yin-Wen Xiao , Jian-Ping Zhang a School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada c Key Laboratory of Evolutionary Systematics of Vertebrates, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China d Dinosaur Tracks Museum, University of Colorado at Denver, PO Box 173364, Denver, CO 80217, USA e Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan f Independent Researcher, No. 195 Wenxian Road, South of Dali Old Town South Gate, Dali 671003, China Received 9 May 2012; received in revised form 26 September 2012; accepted 26 September 2012 Available online 6 October 2012 Abstract A re-examination of the problematic ichnotaxon Xishuangbanania daieuensis from the Paleogene of Yunnan Province, China, reveals that the type specimen is not a lizard trackway as inferred by C.C. Young in 1979. Instead, the specimen is interpreted as a limulid trackway. The specimen is best referred to the ichnogenus Kouphichnium and represents the first discovered limulid tracks in China. © 2012 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved. Keywords: Paleogene; Limulid tracks; Xishuangbanania; Kouphichnium 1. Introduction Of these ichnogenera, Kouphichnium is among the most stratigraphically and geographically widespread (Caster, 1938, Limulids (horseshoe crabs) are aquatic arthropods.
    [Show full text]
  • The Cambrian-Ordovician Siliciclastic Platform of the Balcarce Formation
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Poiré, D.G.; Spalletti, L.A.; Del Valle, A. The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy Geologica Acta: an international earth science journal, vol. 1, núm. 1, 2003, pp. 41-60 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50510105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.1, Nº1, 2003, 41-60 Available online at www.geologica-acta.com The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy D.G. POIRÉ 1 L.A. SPALLETTI 1 and A. DEL VALLE 1 Centro de Investigaciones Geológicas. UNLP-CONICET calle 1 n° 644, 1900 La Plata, Argentina. E-mail: [email protected] ABSTRACT The Lower Palaeozoic sedimentary cover of the Tandilia (Balcarce Formation) is made up of thick quartz are- nite beds together with kaolinitic claystones and thin fine-grained conglomerates. The Balcarce Formation was formed in the nearshore and inner shelf environments of a tide-dominated and storm influenced open platform. It shows many features suggesting tidal sedimentation. Coarse-grained facies were formed by sand bar migra- tion and accretion. Heterolithic packages are interpreted as interbar (swale) deposits.
    [Show full text]
  • JOGGINS RESEARCH SYMPOSIUM September 22, 2018
    JOGGINS RESEARCH SYMPOSIUM September 22, 2018 2 INTRODUCTION AND ACKNOWLEDGEMENTS The Joggins Fossil Cliffs is celebrating its tenth year as a UNESCO World Heritage Site! To acknowledge this special anniversary, the Joggins Fossil Institute (JFI), and its Science Advisory Committee, organized this symposium to highlight recent and current research conducted at Joggins and work relevant to the site and the Pennsylvanian in general. We organized a day with plenty of opportunity for discussion and discovery so we invite you to share, learn and enjoy your time at the Joggins Fossils Cliffs! The organizing committee appreciates the support of the Atlantic Geoscience Society for this event and in general. Sincerely, JFI Science Advisory Committee, Symposium Subcommittee: Elisabeth Kosters (Chair), Nikole Bingham-Koslowski, Suzie Currie, Lynn Dafoe, Melissa Grey, and Jason Loxton 3 CONTENTS Symposium schedule 4 Technical session schedule 5 Abstracts (arranged alphabetically by first author) 6 Basic Field Guide to the Joggins Formation______________________18 4 SYMPOSIUM SCHEDULE 8:30 – 9:00 am Registration 9:00 – 9:10 am Welcome by Dr. Elisabeth Kosters, JFI Science Advisory Committee Chair 9:10 – 10:30 am Talks 10:25 – 10:40 am Coffee Break and Discussion 10:45 – 12:00 pm Talks and Discussion 12:00 – 1:30 pm Lunch 1:30 – 4:30 pm Joggins Formation Field Trip 4:30 – 6:00 pm Refreshments and Wrap-up 5 TECHNICAL SESSION SCHEDULE Chair: Melissa Grey 9:10 – 9:20 am Peir Pufahl 9:20 – 9:30 am Nikole Bingham-Koslowski 9:30 – 9:40 am Michael Ryan 9:40 – 9:50 am Lynn Dafoe 9:50 – 10:00 am Matt Stimson 10:00 – 10:15 am Olivia King 10:15 – 10:25 am Hillary Maddin COFFEE BREAK Chair: Elisabeth Kosters 10:40 – 10:50 am Martin Gibling 10:50 – 11:00 am Todd Ventura 11:10 – 11:20 am Jason Loxton 11:20 – 11:30 am Nathan Rowbottom 11:30 – 11:40 am John Calder 11:40 – 12:30 Discussion led by Elisabeth Kosters LUNCH 6 ABSTRACTS Breaking down Late Carboniferous fish coprolites from the Joggins Formation NIKOLE BINGHAM-KOSLOWSKI1, MELISSA GREY2, PEIR PUFAHL3, AND JAMES M.
    [Show full text]