Exploring Hostassociated Differentiation in the North American
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A REVISION of the GENUS ERIOSOMA and ITS ALLIED GENERA in JAPAN (HOMOPTERA : Title APHIDOIDEA)
A REVISION OF THE GENUS ERIOSOMA AND ITS ALLIED GENERA IN JAPAN (HOMOPTERA : Title APHIDOIDEA) Author(s) Akimoto, Shin'ichi Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 27, Citation 37-106 Issue Date 1983-10 Doc URL http://hdl.handle.net/2115/9821 Type bulletin (article) File Information 27_p37-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECT A M ATSUMURANA NEW SERIES 27: 37-106 OCTOBER 1983 A REVISION OF THE GENUS ERIOSOMA AND ITS ALLIED GENERA IN JAPAN (HOMOPTERA: APHIDOIDEA) By SHIN'rcHI AKIMOTO Abstract AKIMOTO, S. 1983. A reVlSIOn of the genus Eriosoma and its allied genera in Japan (Homoptera: Aphidoidea). Ins. matsum. n.S. 27: 37-106, 3 tabs., 26 figs. Nine species of Eriosoma and its allied genera, all leaf-roll aphids on Ulmaceae and occur ring in Japan, are dealt with. Descriptions of gall-generations, exules, sexuparae and galls are given, with brief biological notes for some species. The species-complex hitherto called Eriosoma japonicum is classified into 6 species, including 5 ones new to science. A parasitic form of Eriosoma yangi, occurring on Ulmus davidiana var. japonica, is formally described as a new subspecies different from the nominate form on Ulmus parvifolia in not only behavior but also morphological characters of their fundatrices. The subdivision of Eriosoma is recon sidered in connection with the divergence and distribution of the host plants, and the ulmi group is newly proposed. A leaf-roll aphid associated with Zelkova is described as a new species belonging to Hemipodaphis, which has only been known from the morph occurring on the secon dary host in India; on the basis of the new species Hemipodaphis is transferred to the Pemphigidae (Eriosomatinae) from the Hormaphididae. -
JAVELIN WG® Spray Must Be Deposited at the Larval Feeding Site
For Control of Insect Pests of Vegetables, Fruit and Field Crops ACTIVE INGREDIENT: Bacillus thuringiensis, subspecies kurstaki strain SA-11 solids, spores, and Lepidopteran active toxins* .............................................................................. 85.0% OTHER INGREDIENTS: ........................................................................................ 15.0% TOTAL 100.0% * The percentage active ingredient does not indicate product performance and potency measurements are not federally standardized. KEEP OUT OF REACH OF CHILDREN CAUTION See additional precautionary statements EPA REG. NO.: 70051-66 Lot No. EPA EST. NO.: Net Contents: Manufactured by: Certis USA LLC ESL 20160825 9145 Guilford Road, Suite 175 rev20191112 Columbia, MD 21046 This is a Specimen Label. It may not reflect the most-recent approved label for use in your state. Always refer to the label on the product packaging for approved use instructions. Please contact your Certis sales representative for more information. Page 1 of 17 PRECAUTIONARY STATEMENTS HAZARDS TO HUMANS AND DOMESTIC ANIMALS CAUTION. Harmful if absorbed through skin. Avoid contact with skin, eyes or clothing. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, using tobacco, or using the toilet. Remove and wash contaminated clothing before reuse. Harmful if inhaled. Avoid breathing spray mist. Prolonged or frequently repeated skin contact may cause allergic reactions in some individuals. FIRST AID If on skin or clothing: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. If in eyes: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. If inhaled: Move person to fresh air. -
Colonization of Ecological Islands: Galling Aphid Populations (Sternorrhyncha: Aphidoidea: Pemphigidae) on Recoveringpistacia Trees After Destruction by Fire
Eur. J. Entomol. 95: 41-53, 1998 ISSN 1210-5759 Colonization of ecological islands: Galling aphid populations (Sternorrhyncha: Aphidoidea: Pemphigidae) on recoveringPistacia trees after destruction by fire D avid WOOL and M oshe INBAR* Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Israel; e-mail: [email protected] Gall-forming aphids, Pemphigidae, Fordinae,Pistacia, fire, recolonization Abstract. Pistacia palaestina (Anacardiaceae) is a common tree in the natural forest of Mt. Carmel, Is rael, and the primary host of five common species of gall-forming aphids (Sternorrhyncha: Aphidoidea: Pemphigidae: Fordinae). After a forest fire, resprouting P. palaestina trees, which are colonized by migrants from outside the burned area, become “ecological islands” for host-specific herbivores. A portion of the Carmel National Park was destroyed by fire in September of 1989. The same winter, thirty-nine resprouting trees that formed green islands in the otherwise barren environment were identified and marked. Tree growth was extraordinarily vigorous during the first year after the fire, but shoot elon gation declined markedly in subsequent years. Recolonization of the 39 “islands” by the Fordinae was studied for six consecutive years. Although the life cycle of the aphids and the deciduous phenology of the tree dictate that the “islands” must be newly recolonized every year, the results of this study show that trees are persistently occupied once colonized. This is probably due to establishment of aphid colonies on the roots of secondary hosts near each tree following the first successful production of a gall. Differences in colonization success of different species could be related to both the abundance of dif ferent aphid species in the unburned forest and the biological characteristics of each aphid species. -
Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion
Journal of Insect Science (2017) 17(2): 54; 1–6 doi: 10.1093/jisesa/iex025 Research article Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion Shawn A. Steffan,1,2,3 Elissa M. Chasen,1,2 Annie E. Deutsch,2,4 and Agenor Mafra-Neto5 1USDA-ARS Vegetable Crops Research Unit, 1630 Linden Drive, Madison, WI 53706 ([email protected]; elissa.chasen@ ars.usda.gov), 2Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706 (steffan@entomology. wisc.edu; [email protected]; [email protected]), 3Corresponding author, e-mail: ([email protected]), 4Door County University of Wisconsin-Extension, 421 Nebraska St., Sturgeon Bay, WI 54235 ([email protected]), and 5ISCA Technologies, Incorporated, 1230 W. Spring St., Riverside, CA 92507 ([email protected]) Subject Editor: Cesar Rodriguez-Saona Received 11 October 2016; Editorial decision 11 March 2017 Abstract Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruit- worm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hu¨ bner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system. -
Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology
The European Journal of Plant Science and Biotechnology ©2007 Global Science Books Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology Daniele Prodorutti1* • Ilaria Pertot2 • Lara Giongo3 • Cesare Gessler2 1 Plant Protection Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 2 Safecrop Centre, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 3 Agrifood Quality Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy Corresponding author : * [email protected] ABSTRACT Highbush blueberry is one of the most commercially significant berry crops. It is mainly cultivated in the United States and Canada, but also in Europe, Australia, Chile and New Zealand. Production of this crop is likely to increase in response to increased consumer demand for healthy foods, including the antioxidant-rich blueberry. This review describes several issues and developments in sustainable blueberry farming, including agronomical and cultural techniques (mulching, irrigation, the beneficial effects of mycorrhizae and fertilization), disease management (biology and control of common and emerging diseases), pest management, pollinators (effects on fruit set and production), conventional breeding and molecular techniques for examining and engineering blueberry germplasm. This paper describes past problems and current challenges associated with the commercial production of highbush blueberry, as well as new approaches and techniques for -
Download Download
UNIVERSITY THOUGHT doi:10.5937/univtho7-15336 Publication in Natural Sciences, Vol. 7, No. 2, 2017, pp. 1-27. Original Scientific Paper A CONTRIBUTION TO KNOWLEDGE OF THE BALKAN LEPIDOPTERA. SOME PYRALOIDEA (LEPIDOPTERA: CRAMBIDAE & PYRALIDAE) ENCOUNTERED RECENTLY IN SOUTHERN SERBIA, MONTENEGRO, THE REPUBLIC OF MACEDONIA AND ALBANIA COLIN W. PLANT1*, STOYAN BESHKOV2, PREDRAG JAKŠIĆ3, ANA NAHIRNIĆ2 114 West Road, Bishops Stortford, Hertfordshire, CM23 3QP, England 2National Museum of Natural History, Sofia, Bulgaria 3Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia ABSTRACT Pyraloidea (Lepidoptera: Crambidae & Pyralidae) were sampled in the territories of southern Serbia, Montenegro, the Former Yugoslav Republic of Macedonia and Albania on a total of 53 occasions during 2014, 2016 and 2017. A total of 173 species is reported here, comprising 97 Crambidae and 76 Pyralidae. Based upon published data, 29 species appear to be new to the fauna of Serbia, 5 species are new to the fauna of Macedonia and 37 are new to the fauna of Albania. The data are discussed. Keywords: Faunistics, Serbia, Montenegro, Republic of Macedonia, Albania, Pyraloidea, Pyralidae, Crambidae. of light trap. Some sites were visited on more than one occasion; INTRODUCTION others were sampled once only. Pyraloidea (Lepidoptera: Crambidae and Pyralidae) have As a by-product of this work, all remaining material from been examined in detail in the neighbouring territory of the the traps was returned to Sofia where Dr Boyan Zlatkov was Republic of Bulgaria and the results have been published by one given the opportunity to extract the Tortricoidea. The remaining of us (Plant, 2016). That work presented data for the 386 species material was retained and sent by post to England after the end of and 3 additional subspecies known from that country. -
U.S. EPA, Pesticide Product Label, JAVELIN WG, 03/25/2008
. '. .3 - d-S-J-oog- . UNITED S(=~ES ENVIRONMENTAL PROTECTION AG('~CY Christine A. Dively MAR 25 2008 Director of Regulatory Affairs Certis USA 9145 Guilford Road, Suite 175 Columbia, MD 21046 Dear Ms. Dively: Subject: Javelin WG (EPA Reg. No. 70051-66) Label submitted for Bt reregistration !' . As part of the reregistration ofBt microbial pesticides, the Agency has issued a stamped approved label for each reregistered product. Part of the labeling that was required for reregistrationwas an Environmental Hazards statement containing language to protect endangered or threatened Lepidoptera. After finalizing reregistration of the subject product, the Agency was made aware that registrants were given an erroneous version of the Environmental Hazard statement to include on product labels. .The correct statement should read as follows: "This product must not be applied aerially within 1/4 mile of any habitats of endangered or threatened Lepidoptera. No manual application can be made within 300 feet of any threatened or endangered Lepidoptera." . In light of this error, EPA has re-stamped the label forthe subject product with the corrected Environmental Hazards text. A copy of the label is enclosed for yoUr records. If you have any questions, please contact Alan Reynolds of my staff at (703) 605-0515 (e-mail: [email protected]). Sincerely, Sheryl Reilly, Ph.D., Branch Chief Microbial Pesticides Branch (7511P) Biopesticides and Pollution Prevention Division Enclosure CONCURRENCES' SYMBOL .. '/ S"lj () '. SURNAME ~ ··4····· ·lJ..~·: ..................................... -
Ecosystem Services Provided by Bats
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Ecosystem services provided by bats Thomas H. Kunz,1 Elizabeth Braun de Torrez,1 Dana Bauer,2 Tatyana Lobova,3 and Theodore H. Fleming4 1Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts. 2Department of Geography, Boston University, Boston, Massachusetts. 3Department of Biology, Old Dominion University, Norfolk, Virginia. 4Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Address for correspondence: Thomas H. Kunz, Ph.D., Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215. [email protected] Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. -
Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley
Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley. June 1, 1871. Letter from Charles Darwin to Riley thanking him for report and instructions on noxious insects. Downs, Beckerham, Kent (England). (handwritten copy of original). Box 1 Folder 2 Koble to Riley. June 30, 1874. Letter from John C. Koble giving physical description of chinch bugs and explaining how the bugs are destroying corn crops in western Kentucky. John C. Koble of L. S. Trimble and Co., Bankers. Box 1 Folder 3 Saunders to Riley. Nov. 12, 1874. William Saunders receipt to C. V. Riley for a copy of descriptions of two insects that baffle the vegetable carnivora. William Saunders, Department of Agriculture, Washington, D. C. Box 1 Folder 4 Young to Riley. Dec. 13, 1874. William Young describes the flat-headed borer and its effects on orchards during summer and winter seasons. From Palmyra Gate Co., Nebraska. Box 1 Folder 5 Saunders to Riley. Dec. 22, 1874. William Saunders receipt of notes of investigation on the insects associated with Sarracenia. William Saunders, Department of Agriculture, Washington, D.C. Box 1 Folder 6 Bonhaw to Riley. Jan. 19, 1875. L. N. Bonhaw requesting a copy of his Missouri report, for him to establish a manual or handbook on entomology, and to find out about an insect that deposits eggs. Subject: tomato worm, hawk moth. 1 http://www.nal.usda.gov/speccoll/ Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Box 1 Folder 7 Holliday to Riley. -
County Genus Species Species Author Common
County Genus Species Species Author Common Name Tribe Subfamily Family Superfamily Lee County Achatia distincta Hubner,1813 Distinct Quaker Orthosiini Noctuinae Noctuidae Noctuoidea Lee County Acleris braunana (McDunnough, 1934) Tortricini Tortricinae Tortricidae Tortricoidea Lee County Acrobasis angusella Grote, 1880 Hickory Leafstem borer Moth Phycitini Phycitinae Pyralidae Pyraloidea Lee County Acrobasis palliolella Ragonot, 1887 Mantled Acrobasis Moth Phycitini Phycitinae Pyralidae Pyraloidea Lee County Acrobasis stigmella Dyar, 1908 Phycitini Phycitinae Pyralidae Pyraloidea Lee County Acrobasis tricolorella Grote, 1878 Destructive Pruneworm Moth Phycitini Phycitinae Pyralidae Pyraloidea Lee County Acrolophus arcanella (Clemens, 1849) (None) (None) Acrolophidae Tineoidea Lee County Acronicta exilis Grote, 1874 Exiled Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta funeralis Grote and Robinson, 1866 Funerary Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta haesitata (Grote, 1882) Hesitant Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta hamamelis Guenee, 1852 Witch Hazel Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta hasta Guenee, 1852 Speared Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta impleta Walker, 1856 Nondescript Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta increta Morrison, 1974 Raspberry Bud Dagger Moth (None) Acronictinae Noctuidae Noctuoidea Lee County Acronicta interrupta -
POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn. -
Pyralidae, Phycitinae) in Tunisia
Turkish Journal of Forestry | Türkiye Ormancılık Dergisi 2016, 17(Special Issue): 44-47 | Research article (Araştırma makalesi) Contribution to the bio-ecology of Acrobasis consociella (Hübner, 1813) (Pyralidae, Phycitinae) in Tunisia Olfa Ezzinea,b,*, Sonia Hammamia,b, Samir Dhahria, Mohamed Lahbib Ben Jamâaa Abstract: Q. coccifera is the characteristic species present in the north-eastern forest (Jebel Abderrahmane) and the north- western forest (Sejnane). At the end of April of 2005, a complete defoliation of more than 500 ha of evergreen shrubs of Jebel Abderrahmane caused by larvae of Orgyia trigotephras was observed. At the beginning of April 2010, a severe defoliation of a shrub-forest was noted in Sejnane, where about 2500 ha of the forest were defoliated by larvae of O. trigotephras. However, on defoliated Halimium halimifolium trees we found in addition to larvae and pupae of O. trigotephras, larvae and pupae of Anacampsis scintillella. In March 2012, pupae of Acrobasis consociella were observed on Q. coccifera in Jebel Abderrahmane and Sejnane to compete with O. trigotephras. Preliminary investigations of bioecology of A. consociella were carried out in the two forests. To estimate host plant infestations’, a direct counting was carried out on the host plant, yielding a mean number of shelters of 5.80 shelters for A. consociella and 0.24 for O. trigotephras at the two sites. About 30 shelters of A. consociella from Q. coccifera were collected to be analyzed in the lab. The mean number of larvae was 0.59 at Sejnane and 0.93 at Jebel Abderrahmane. Results show that the life cycle of A.