Preparation and Biological Evaluation of New Triterpene Derivatives of Ursolic and Oleanolic Acids

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Biological Evaluation of New Triterpene Derivatives of Ursolic and Oleanolic Acids Preparation and biological evaluation of new triterpene derivatives of ursolic and oleanolic acids Dissertation presented to the Faculty of Pharmacy, University of Coimbra, to obtain the degree of Doctor of Philosophy in Pharmacy in the speciality of Pharmaceutical Chemistry. Faculdade de Farmácia Universidade de Coimbra 2012 Ana Sofia Mendes Leal II Preparation and biological evaluation of new triterpene derivatives of ursolic and oleanolic acids Work developed under the scientific supervision of: Professor Doctor Jorge António Ribeiro Salvador Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy University of Coimbra With the collaboration of: Doctor Yongkui Jing Division of Hematology/Oncology, The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA IV This thesis was supported by Fundação para a Ciência e a Tecnologia Under the programme POCI 2010 SFRH / BD / 41566 / 2007 VI Aos meus pais e irmã Aos meus avós Aos restantes familiares e amigos VIII Agradecimentos/ Acknowledgements Ao Professor Doutor Jorge António Ribeiro Salvador, expresso aqui o meu agradecimento pela confiança que depositou e continua a depositar em mim e que culminou com a apresentação desta dissertação. Presto ainda o meu reconhecimento pelo modo optimista, empenho e disponibilidade que demonstrou ao longo deste trabalho e que foram determinantes para a conclusão do mesmo. Por fim, agradeço as sugestões e a revisão do presente texto. À Professora Doutora Maria Luísa Sá e Melo, à data do ínicio do projeto Directora do Laboratório de Química Farmacêutica da Faculdade de Farmácia da Universidade de Coimbra, agradeço o acolhimento neste Laboratório e os ensinamentos de química farmacêutica transmitidos ao longo dos anos. I would like to thank Doctor Yongkui Jing (Ph.D.) for welcoming me in his lab and providing all the conditions needed for the work I developed at the Division of Hematology/Oncology, The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA, and also for his supervision, continuous support and enthusiasm with this work. His intrinsic know-how and clear vision of cancer biology and medicinal chemistry provided me a much broader experience. Ao Professor Doutor António José Paixão e à Doutora Ana Matos Beja Alte de Veiga, do CEMDRX, Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade de Coimbra, agradeço a disponibilidade e apoio prestados no trabalho de difracção de raios-X deste projecto. A todos os docentes e funcionários do Laboratório de Química Farmacêutica da Faculdade de Farmácia da Universidade de Coimbra, o meu agradecimento pela convivência, e pelos ensinamentos científicos e de vida. Agradeço também à Fátima Nunes e ao Pedro Cruz pela amizade e paciente trabalho técnico desenvolvido de elucidação estrutural das minhas inúmeras amostras, no IPN e L- RMN, respectivamente. Aos colegas de laboratório, que foram uma peça essencial para a realização deste trabalho, pela disponibilidade que sempre demostraram em ajudar e pelo apoio prestado mesmo nas situações mais caricatas. Agradeço, também a amizade, o interesse e preocupação pelo trabalho desenvolvido, assim como a importante troca de ideias. I thank Rui, Hao and Lixuan in Doctor Jing’s lab for their assistance and friendship. I also thank all the floor colegues and friends who worked on the same floor for their support. With them I felt true friendship and personal concern, which was the main reason for my pleasant stay in New York. Aos Funcionários da biblioteca da Faculdade de Farmácia da Universidade de Coimbra, agradeço também todo o apoio e disponibilidade. À Fundação para a Ciência e a Tecnologia, agradeço o apoio financeiro sob a forma de uma bolsa de doutoramento (SFRH / BD / 41566 / 2007). Aos meus pais e à minha irmã, agradeço o apoio incondicional e a paciência infinita durante o desenvolvimento deste trabalho, pois sem eles não teria chegado a bom porto. Agradeço lhes também a compreensão pelas minhas longas ausências, e pelos valores e educação que me incutiram. Aos meus avós, já falecidos, agradeço o carinho com que sempre me trataram e a preocupação que sempre nutriram pelo meu precurso académico, que em muito contribuíram para que chegasse até aqui. À minha avó Conceição agradeço a preocupação e o olhar sempre atento durante esta fase atribulada. X À minha madrinha Maria e aos meus primos Nuno, Sónia e Saul agradeço a amabilidade com que receberam em Nova Iorque na sua casa, e o apoio e carinho incondicional com que me presentearam durante a minha estadia nos Estados Unidos. À minha restante família agradeço o apoio incondicional nas escolhas que foi fazendo ao longo da minha vida, e que sem dúvida fizeram de mim uma melhor cientista e pessoa. Aos amigos pelos momentos de partilha e por compreenderem as minhas incontáveis ausências. I thank all the friends that I left behind in the USA for their friendship, happy moments lived and support. A todos os que de alguma forma contribuíram para a execução deste trabalho o meu muito obrigado. XII Contents Resumo ....................................................................................................... I Abstract......................................................................................................III List of abbreviations ................................................................................... V List of tables .............................................................................................. IX List of figures ............................................................................................ XV List of schemes ...................................................................................... XXIII Thesis organization ................................................................................. XXV 1. Introduction ............................................................................................. 1 1.1. Cancer .......................................................................................... 3 1.1.1. Biology of cancer ........................................................................................ 4 1.1.1.1. Targeting the cell cycle in cancer treatment .............................. 6 1.1.1.2. Targeting apoptosis in cancer treatment ................................... 8 1.2. Natural products in medicinal chemistry ...................................... 10 1.2.1. Natural products and treatment of cancer .............................................. 13 1.3. Terpenoids .................................................................................. 19 1.3.1. General dispositions ................................................................................ 19 1.3.2. Biosynthetic diversity of triterpenoids .................................................... 20 1.3.3. Ursolic acid ............................................................................................... 21 1.3.3.1. General activities ...................................................................... 23 1.3.3.2. Antitumor activity ..................................................................... 29 1.3.3.3. Semisynthetic derivatives with antitumor activity ................... 44 1.3.4. Oleanolic acid ........................................................................................... 58 1.3.4.1. General activities ...................................................................... 59 1.3.4.2. Antitumor activity ..................................................................... 65 1.3.4.3. Semisynthetic derivatives with antitumor activity ................... 72 1.4. General objectives of this thesis ......................................................... 85 2. Ursolic acid derivatives: synthetic routes, structural elucidation, biological evaluation and SAR studies ....................................................................... 87 2.1. Intermediates synthesis .............................................................. 90 2.2. Heterocyclic derivatives .............................................................. 95 2.2.1. Introduction .............................................................................................. 95 2.2.2. Results and Discussion.............................................................................. 97 2.2.2.1. Chemistry ............................................................................................ 97 2.2.2.1.1. Imidazole derivatives .................................................................. 97 2.2.2.1.2. Methylimidazole derivatives .....................................................110 2.2.2.1.3. Triazole derivatives ...................................................................121 2.2.2.2. Biological evaluation .........................................................................126 2.2.3. Conclusions .............................................................................................132 2.3. Fluorolactones and fluorine derivatives ..................................... 133 2.3.1. Introduction ............................................................................................133 2.3.2. Results and Discussion............................................................................136 2.3.2.1. Chemistry ..........................................................................................136 2.3.2.1.1. Fluorolactones ..........................................................................136 2.3.2.1.2. Acyl fluorides ............................................................................150
Recommended publications
  • Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models
    molecules Review Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010–2020): A Review Maria Elaine Araruna 1, Catarina Serafim 1, Edvaldo Alves Júnior 1, Clelia Hiruma-Lima 2, Margareth Diniz 1,3 and Leônia Batista 1,3,* 1 Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; [email protected] (M.E.A.); [email protected] (C.S.); [email protected] (E.A.J.); [email protected] (M.D.) 2 Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; [email protected] 3 Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil * Correspondence: [email protected]; Tel.: +55-83-32167003; Fax: +55-83-32167502 Academic Editors: Maurizio Battino, Jesus Simal-Gandara and Esra Capanoglu Received: 8 September 2020; Accepted: 28 September 2020; Published: 20 November 2020 Abstract: Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities.
    [Show full text]
  • Antiviral Activities of Oleanolic Acid and Its Analogues
    molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2].
    [Show full text]
  • Integrated Metabolomics and Transcriptomics Study of Traditional Herb Astragalus Membranaceus Bge. Var. Mongolicus
    Wu et al. BMC Genomics 2020, 21(Suppl 10):697 https://doi.org/10.1186/s12864-020-07005-y RESEARCH Open Access Integrated metabolomics and transcriptomics study of traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao reveals global metabolic profile and novel phytochemical ingredients Xueting Wu1†, Xuetong Li1,2†, Wei Wang3†, Yuanhong Shan1, Cuiting Wang1, Mulan Zhu1,4, Qiong La5, Yang Zhong3,5,YeXu6*, Peng Nan3* and Xuan Li1,2* From The 18th Asia Pacific Bioinformatics Conference Seoul, Korea. 18-20 August 2020 Abstract Background: Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is one of the most common herbs widely used in South and East Asia, to enhance people’s health and reinforce vital energy. Despite its prevalence, however, the knowledge about phytochemical compositions and metabolite biosynthesis in Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is very limited. (Continued on next page) * Correspondence: [email protected]; [email protected]; [email protected] †Xueting Wu, Xuetong Li and Wei Wang contributed equally to this work. 6Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China 3Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China 1Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
    [Show full text]
  • Phytochemicals
    Phytochemicals HO O OH CH OC(CH3)3 3 CH3 CH3 H H O NH O CH3 O O O O OH O CH3 CH3 OH CH3 N N O O O N N CH3 OH HO OH HO Alkaloids Steroids Terpenoids Phenylpropanoids Polyphenols Others Phytochemicals Phytochemical is a general term for natural botanical chemicals Asiatic Acid [A2475] is a pentacyclic triterpene extracted from found in, for example, fruits and vegetables. Phytochemicals are Centella asiatica which is a tropical medicinal plant. Asiatic Acid not necessary for human metabolism, in contrast to proteins, possess wide pharmacological activities. sugars and other essential nutrients, but it is believed that CH3 phytochemicals affect human health. Phytochemicals are CH3 components of herbs and crude drugs used since antiquity by humans, and significant research into phytochemicals continues today. H C CH H C OH HO 3 3 O Atropine [A0754], a tropane alkaloid, was first extracted from H CH3 the root of belladonna (Atropa belladonna) in 1830s. Atropine is a HO competitive antagonist of muscarine-like actions of acetylcholine CH3 H and is therefore classified as an antimuscarinic agent. OH [A2475] O NCH3 O C CHCH2OH Curcumin [C0434] [C2302], a dietary constituent of turmeric, has chemopreventive and chemotherapeutic potentials against various types of cancers. OO CH3O OCH3 [A0754] HO OH Galantamine Hydrobromide [G0293] is a tertiary alkaloid [C0434] [C2302] found in the bulbs of Galanthus woronowi. Galantamine has shown potential for the treatment of Alzheimer's disease. TCI provides many phytochemicals such as alkaloids, steroids, terpenoids, phenylpropanoids, polyphenols and etc. OH References O . HBr Phytochemistry of Medicinal Plants, ed.
    [Show full text]
  • Bright” Future?
    UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE “AMEDEO AVOGADRO” DIPARTIMENTO DI SCIENZE DEL FARMACO Dottorato di Ricerca in Chemistry and Biology XXXI cycle PENTACYCLIC TRITERPENIC ACIDS AS MODULATORS OF TRANSCRIPTION FACTORS: OLD SCAFFOLDS WITH A “BRIGHT” FUTURE? Federica Rogati Supervised by Prof. Alberto Minassi Ph.D program co-ordinator Prof. Guido Lingua UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE “AMEDEO AVOGADRO” DIPARTIMENTO DI SCIENZE DEL FARMACO Dottorato di Ricerca in Chemistry and Biology XXXI cycle PENTACYCLIC TRITERPENIC ACIDS AS MODULATORS OF TRANSCRIPTION FACTORS: OLD SCAFFOLDS WITH A “BRIGHT” FUTURE? Federica Rogati Supervised by Prof. Alberto Minassi Ph.D program co-ordinator Prof. Guido Lingua ai miei Nonni, ai miei angeli “una nave è al sicuro nel porto, ma questo non è il posto per cui le navi sono fatte” William G.T Shedd ~ CONTENTS ~ Preface 1 CHAPTER 1: DEOXYGENATION OF URSOLIC, OLEANOLIC AND 9 BETULINIC ACID TO THEIR CORRESPONDING C-28 METHYL DERIVATIVES (α-AMYRIN, β-AMYRIN, LUPEOL) 1.1 Introduction 10 1.2 Rationale of the project 13 1.3 Results and discussion 15 1.3.1 Chemistry 15 1.3.2 Biological evaluation 19 1.3.3 Conclusions 19 1.4 Experimental section 20 1.5 Bibliography 25 CHAPTER 2: TRITERPENOID HYDROXAMATES AS HIF PROLYL 27 HYDROLASE INHIBITORS 2.1 Introduction 28 2.2 Rationale of the project 32 2.3 Results and discussion 33 2.3.1 Chemistry 33 2.3.2 Biological evaluation 46 2.3.3 Conclusions 61 2.4 Experimental section 62 i 2.5 Bibliography 76 CHAPTER 3: STRIGOTERPENOIDS, A CLASS OF CROSS-KINGDOM 81 STRESS RESPONSE MODULATORS 3.1 Introduction 82 3.2 Rationale of the project 90 3.3 Results and discussion 94 3.3.1 Chemistry 94 3.3.2 Biological evaluation 101 3.3.3 Conclusions 104 3.4 Experimental section 105 3.5 Bibliography 118 CHAPTER 4: SYNTHESIS OF 1,2,3- TRIAZOLE ANALOGUES OF 121 ANTI-HIV DRUG BEVIRIMAT 4.1 Introduction 122 4.2 Rationale of the project 131 4.3 Results and discussion 132 4.3.1 Chemistry 132 4.3.2 Conclusions 139 4.4 Experimental section 140 4.5 Bibliography 151 5.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.271,949 B2 Hazan Et Al
    US00927 1949B2 (12) United States Patent (10) Patent No.: US 9.271,949 B2 Hazan et al. (45) Date of Patent: Mar. 1, 2016 (54) COMPOSITIONS COMPRISING ACIDIC 2005/023874O A1 10/2005 Fotinos EXTRACTS OF MASTC GUM 2009/004.8205 A1 2/2009 Meyer 2014/0294928 A1 10/2014 Hazan et al. (75) Inventors: Zadik Hazan, Zichron Yaakov (IL); Andre C. B. Lucassen, Rehovot (IL) FOREIGN PATENT DOCUMENTS CN 1173134 A 2, 1998 (73) Assignee: REGENERA PHARMA LTD., EP 152O585 4/2005 Rehovot (IL) GR 1.003541 3, 2001 GR 10O3868 4/2002 JP 2007135493 6, 2007 (*) Notice: Subject to any disclaimer, the term of this WO 01.21212 A1 3, 2001 patent is extended or adjusted under 35 WO O3,O92712 11, 2003 U.S.C. 154(b) by 0 days. WO O3,O97212 11, 2003 WO 2005/094837 10/2005 (21) Appl. No.: 13/821,194 WO 2005/112967 12/2005 WO 2006/OO3659 1, 2006 WO 20080243.74 A2 2, 2008 (22) PCT Filed: Sep. 7, 2011 WO 2010030082 A2 3, 2010 WO 2010/100650 9, 2010 (86). PCT No.: PCT/L2O11AOOO724 WO 2010/100651 9, 2010 S371 (c)(1), (2), (4) Date: Mar. 6, 2013 OTHER PUBLICATIONS (87) PCT Pub. No.: WO2012/032523 CAS Registry record for “Masticadienoic Acid' (retrieved Aug. 2014).* PCT Pub. Date: Mar. 15, 2012 Al-Habbal, M.J., Al-Habbal, Z, Huwez, F.U. A double-blind con trolled clinical trial of mastic and placebo in the treatment of (65) Prior Publication Data duodenal ulcer, Clin Exp Pharmacol Physiol, 1984, 11.
    [Show full text]
  • Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases
    International Journal of Molecular Sciences Review Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases Thanasekaran Jayakumar 1, Periyakali Saravana Bhavan 2 and Joen-Rong Sheu 1,3,* 1 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; [email protected] 2 Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; [email protected] 3 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected]; Tel.: +886-2-27361661-3199; Fax: +886-27390450 Received: 16 June 2020; Accepted: 8 July 2020; Published: 13 July 2020 Abstract: Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities.
    [Show full text]
  • Extraction of High Value Triterpenic Acids from Eucalyptus Globulus Biomass Using Hydrophobic Deep Eutectic Solvents
    molecules Article Extraction of High Value Triterpenic Acids from Eucalyptus globulus Biomass Using Hydrophobic Deep Eutectic Solvents Nuno H. C. S. Silva , Eduarda S. Morais, Carmen S. R. Freire, Mara G. Freire and Armando J. D. Silvestre * CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (N.H.C.S.S.); [email protected] (E.S.M.); [email protected] (C.S.R.F.); [email protected] (M.G.F.) * Correspondence: [email protected] Academic Editor: Mert Atilhan Received: 9 December 2019; Accepted: 31 December 2019; Published: 4 January 2020 Abstract: Triterpenic acids (TTAs), known for their promising biological properties, can be found in different biomass sources and related by-products, such as Eucalyptus globulus bark, and have been extracted using organic volatile solvents such as dichloromethane. Recently, deep eutectic solvents (DES) have been identified as promising alternatives for the extraction of value-added compounds from biomass. In the present work, several hydrophobic DES were tested for the extraction of TTAs from E. globulus bark. Initial solubility studies revealed that DES based on menthol and thymol as the most promising solvents for these compounds given the highest solubilities obtained for ursolic acid (UA) at temperatures ranging from room temperature up to 90 ◦C. Accordingly, an eutectic mixture of menthol:thymol (1:2) was confirmed as the best candidate for the TTAs extraction from E. globulus outer bark, leading to extraction yields (weight of TTA per weight of biomass) at room temperature of 1.8 wt% for ursolic acid, 0.84 wt% for oleanolic acid and 0.30 wt% for betulinic acid.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,615,546 B2 Gupta (45) Date of Patent: Nov
    USOO761.5546B2 (12) United States Patent (10) Patent No.: US 7,615,546 B2 Gupta (45) Date of Patent: Nov. 10, 2009 (54) TOPICAL DELIVERY SYSTEM FOR 6,407,085 B1* 6/2002 Kief ........................... 514, 182 PHYTOSTEROLS * cited by examiner (75) Inventor: Shyam K Gupta, Scottsdale, AZ (US) Primary Examiner Shaojia Anna Jiang Assistant Examiner Eric S Olson (73) Assignee: BioDerm Research, Scottsdale, AZ (US) (57) ABSTRACT (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 This invention relates to certain Sugaresters of phytosterols of U.S.C. 154(b) by 0 days. formula (I). These esters are useful for topical application, and for the treatment of skin condition, including age spots, (21) Appl. No.: 12/210,266 acne, loss of cellular antioxidants, collagen loss, loss of skin pliability, loss of skin Suppleness, skin wrinkles including (22) Filed: Sep.15, 2008 fine lines, oxidation, damage from radiation, malfunction of matrix metalloproteases, malfunction of tyrosinases, damage (65) Prior Publication Data from free radicals, damage from UV, dry skin, Xerosis, ich US 2009/0042846A1 Feb. 12, 2009 thyosis, dandruff, brownish spots, keratoses, melasma, len tigines, liver spots, pigmented spots, dark circles under the Related U.S. Application Data eyes, skin pigmentation including darkened skin, blemishes, (63) Continuation-in-part of application No. 1 1/161,856, oily skin, warts, eczema, pruritic skin, psoriasis, inflamma filed on Aug. 19, 2005, now abandoned, and a continu tory dermatoses, topical inflammation, disturbed keratiniza ation-in-part of application No. 12/139,659, filed on tion, skin changes associated with aging, nail or skin requir ing cleansers, conditioning or treatment, and hair or scalp Jun.
    [Show full text]
  • Pentacyclic Triterpenes Baran Lab GM 2013-04-27
    Q. Michaudel Pentacyclic Triterpenes Baran Lab GM 2013-04-27 Me Me Me Triterpenes (C30): Me * More than 20,000 triterpenes have been isolated thus far. Among them, tetracyclic and pentacyclic triterpenes are the most abundant. Me Me H CO2H Me Me H R * Triterpenes can be found in their free form (sapogenins), or bound to glycosides HO (saponins). H Me H Me HO HO * Pentacyclic triterpenes are divided into many subgroups: gammaceranes, hopanes, H H lupanes, oleananes, ursanes, etc. based on their carbon skeleton. Me Me Me Me Me corosolic acid β-amyrin, R = Me Me ≥98%, $12,480/g $21,450/g E Isol. Crape-myrtle (Lagerstroemia Tot. synth. (+/–) Johnson, J. Am. Chem. H H H Me H speciosa). Soc. 1993, 115, 515. Me C Isol. Rubber trees. Me Me Me Me Me Me Me H Me Me Me H Me Corey, J. Am. Chem. Soc. 1993, 115, 8873. D erythrodiol, R = CH2OH A H Me H Me H Me $12,550/g B Isol. Olives. H H H Tot. synth. Corey, J. Am. Chem. Soc. 1993, Me Me Me Me Me Me 115, 8873. gammacerane hopane lupane oleanolic acid, R = CO2H ≥97%, $569/g Me Me Me Isol. mistletoe, clove, sugar beet, olive Me Wikimedia Commons leaves, beeches, American Pokeweed (Phytolacca americana)... H H Me Me Tot. synth. Corey, J. Am. Chem. Soc. 1993, 115, 8873. Me Me H Me Me Me H Me H Me Me H Me H Me Me Me Me H H Me Me Me Me Me H Me H H Me oleanane ursane HO H Me Me * Since 1985, Connelly and Hill have been publishing an annual review on the newly Me Me isolated triterpenoids.
    [Show full text]
  • Terpenes: Substances Useful in Human Healthcare
    REVIEW Arch. Immunol. Ther. Exp., 2007, 55, 315–327 DOI 10.1007/s00005-007-0039-1 PL ISSN 0004-069X Terpenes: substances useful in human healthcare Roman Paduch1, Martyna Kandefer−Szerszeń1, Mariusz Trytek2 and Jan Fiedurek2 1 Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sk³odowska University, Lublin, Poland 2 Department of Industrial Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sk³odowska University, Lublin, Poland Received: 2007.01.23, Accepted: 2007.05.10, Published online first: 2007.10.01 Abstract Terpenes are naturally occurring substances produced by a wide variety of plants and animals. A broad range of the biolog- ical properties of terpenoids is described, including cancer chemopreventive effects, antimicrobial, antifungal, antiviral, anti- hyperglycemic, anti-inflammatory, and antiparasitic activities. Terpenes are also presented as skin penetration enhancers and agents involved in the prevention and therapy of several inflammatory diseases. Moreover, a potential mechanism of their action against pathogens and their influence on skin permeability are discussed. The major conclusion is that larger-scale use of terpenoids in modern medicine should be taken into consideration. Abbreviations: 5-FU – 5-fluorouracil, AKBA – acetyl-11-keto-β-boswellic acid, AZT – zidovudine, CoQ – coenzyme Q, COX-2 – cyclooxygenase 2, DMAPP – dimethylallyl pyrophosphate, HIV – human immunodeficiency virus, HSV – herpes simplex virus, iNOS – inducible nitric oxide synthetase, IPP – isopentenyl pyrophosphate, LPS – lipopolysaccharide, NF-κB – nuclear κ β β factor B, NO – nitric oxide, PGE2 – prostaglandin E2, PLA2 – phospholipase A2, TGF- – transforming growth factor , TNF-α – tumor necrosis factor α. Key words: terpenes, terpene activity, antitumor, antimicrobial, antifungal, antiviral, antihyperglycemic, anti-inflammatory, antiparasitic.
    [Show full text]
  • Metabolomic Profile and Cytotoxic Activity of Cissus Incisa Leaves
    plants Article Metabolomic Profile and Cytotoxic Activity of Cissus incisa Leaves Extracts Deyani Nocedo-Mena 1,*, María Yolanda Ríos 2 , M. Ángeles Ramírez-Cisneros 2 , Leticia González-Maya 3 , Jessica N. Sánchez-Carranza 3 and María del Rayo Camacho-Corona 1,* 1 Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66451, Nuevo León, Mexico 2 Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; [email protected] (M.Y.R.); [email protected] (M.Á.R.-C.) 3 Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; [email protected] (L.G.-M.); [email protected] (J.N.S.-C.) * Correspondence: [email protected] (D.N.-M.); [email protected] (M.d.R.C.-C.); Tel.: +52-81-22-01-3777 (D.N.-M.); +52-81-8329-4000 (ext. 3414) (M.d.R.C.-C.) Abstract: Cissus incisa leaves have been traditionally used in Mexican traditional medicine to treat certain cancerous illness. This study explored the metabolomic profile of this species using untargeted technique. Likewise, it determined the cytotoxic activity and interpreted all data by computational tools. The metabolomic profile was developed through UHPLC-QTOF-MS/MS for dereplication pur- Citation: Nocedo-Mena, D.; Ríos, poses. MetaboAnalyst database was used in metabolic pathway analysis and the network topological M.Y.; Ramírez-Cisneros, M.Á.; analysis. Hexane, chloroform/methanol, and aqueous extracts were evaluated on HepG2, Hep3B, González-Maya, L.; HeLa, PC3, A549, and MCF7 cancer cell lines and IHH immortalized hepatic cells, using Cell Titer Sánchez-Carranza, J.N.; proliferation assay kit.
    [Show full text]