Untangling Patterns of Plant and Arthropod Diversity in a Fire-Adapted

Total Page:16

File Type:pdf, Size:1020Kb

Untangling Patterns of Plant and Arthropod Diversity in a Fire-Adapted University of Nevada, Reno Untangling patterns of plant and arthropod diversity in a fire-adapted ecosystem: Dynamic relationships between fire, scale, and trophic interactions in longleaf pine forests. A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Ecology, Evolution, and Conservation Biology By Jane E. Dell Dr. Lee A. Dyer/Dissertation Advisor August, 2018 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by JANE E. DELL Entitled Untangling patterns of plant and arthropod diversity in a fire-adapted ecosystem: Dynamic relationships between fire, scale, and trophic interactions in longleaf pine forests. be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Lee Dyer, Advisor Lora Robinson, Committee Member Elizabeth Leger, Committee Member Joseph O'Brien, Committee Member Vincent Catalano, Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School August, 2018 i ABSTRACT Fire has been a part of terrestrial ecosystems since the Silurian Period and is an essential process for maintaining both ecosystem function and biological diversity in fire dependent ecosystems, such as longleaf pine (Pinus palustris Mill.). In these frequently burned fire-dependent ecosystems, fire frequency is positively correlated with high species diversity. The removal of fire from the landscape initiates a shifting ecosystem trajectory where fire-adapted species are replaced by other species assemblages, yielding an alternative stable state. Patterns of biodiversity and the mechanisms driving them must be thoroughly understood to guide an effective monitoring and resource management programs. I describe cross-scale spatial and temporal patterns of plant and arthropod diversity, identification of the grain size and sampling effort to maximize efficiency in monitoring diversity, fine-scale examination of the role of fire in driving patterns of diversity, and mechanisms linking fire, biological diversity, and forest structure. Understanding these links mechanistically is critical for both guiding management now and in the future under the novel conditions expected with global change. By sampling arthropod diversity and creating linkages to plant diversity at multiple spatial and temporal scales, I could better understand how both plant and animal communities, as well as their interactions, are organized with respect to presence or absence of fire. My quantification of multiple dimensions of diversity, including taxonomic and functional metrics, reflect the current focus of biodiversity researchers in both basic and applied realms and further provides novel insight into debates about neutrality and ii correlations between diversity, stability, resiliency, and ecosystem services The interaction diversity measure is particularly important for linking biodiversity to the trillions of dollars of ecosystem services that are provided by natural ecosystems, since those services are all due to a diverse mix of ecological interactions. Taken together, these metrics of diversity can act as more sensitive indicators of how ecological communities respond to management activities, disturbances, or global change parameters. iii ACKNOWLEDGEMENTS I first and foremost want to express my gratitude to my advisor, Dr. Lee Dyer for giving me the opportunity to join his lab. You have taught me the meaning of collaboration by surrounding oneself with talented and amazing people – a model of friends as colleagues and elevating research to exceptional heights. I truly appreciate your dedication to my professional development and providing me an alternative perspective on research and a career in science. I am grateful for your generosity, especially the tireless assistance with editing, your art of storytelling, passion for biodiversity, and the chance to participate in an incredible citizen science project. I’d like to thank Dr. Lora Robinson for her overwhelming personal generosity by keeping my daughter well-dressed and looking polished. I appreciate the support you’ve given me in the lab and field, your accessibility and open door, willingness to listen, and your ability to distill the complex into the tangible. You are an exemplary role model for professionalism, patience, inclusiveness, perseverance, effective communication, and contagious laughter. My dissertation work could not have been completed without the exceptional work of my collaborators. It has been a pleasure to work with such a stellar crew and I’ve enjoyed the process of watching how our individual contributions strengthen our collective effort. I’d like to especially acknowledge Dr. Joe O’Brien for being the epitome of having fun while doing cutting-edge, sophisticated research. I appreciate your passion for fire ecology and defining success in terms of enabling and promoting those around you. I also want to thank Dr. Louise Loudermilk for her willingness to help and iv show me what it means to be a remarkable female scientist. Finally, I want to recognize Scott Pokswinski - aka “Daisy Cutter”, for assistance in the field, consistently having a repertoire of corny jokes, and keeping me from getting blown up at Eglin AFB. I am grateful for the contribution of numerous folks that have assisted and enhanced my dissertation. Thank you to my committee for your time and suggestions in improving my research. I have had the great fortune of working with volunteers with the Earthwatch Institute who taught me the absolute joy of fostering a foundation for future scientists. I appreciate their incredible field effort and contributions towards an impressive dataset of biological interactions and resulting manuscripts. I’d also like to recognize the efforts of Dyer Lab volunteers, especially the work of Lydia Doan and Rainier Pinili, for meticulously and tirelessly processing and curating thousands of individual specimens. My work has also been significantly improved through the contributions of the Dyer Lab group through reviewing manuscripts, grant applications, and presentations over the years. I feel incredibly fortunate to have such an amazing academic family. I’d also like to thank Eglin AFB fire managers, especially Brett Williams and his crew for access to prescribed fires. Without their allowing me to tag along on burns, I would not have the unique data set involving arthropod dispersal during fires. The willingness to support research while conducting logistically challenging operations makes Eglin a truly distinctive location for the continued advancement of fire science. This body of work would not have been possible without the following sources of financial support: The Department of Defense’s Strategic Environmental Research and v Development Program, the Earthwatch Institute, and UNR’s Ecology, Evolution, and Conservation Biology program, Whittell Forest, and Graduate Student Association. Most importantly, I want to thank my family. To my husband, Sean, for sacrificing a tremendous amount so that I might pursue this opportunity and to my daughter Sophie, for keeping me laughing when times got difficult. I honestly could not have done this without your love and support. “If I have seen further, it is by standing upon the shoulders of giants.” Sir Isaac Newton Thank you all for being my giants. vi TABLE OF CONTENTS ABSTRACT........................................................................................................................ i ACKNOWLEDGMENTS .................................................................................................iii TABLE OF CONTENTS....................................................................................................vi LIST OF TABLES.............................................................................................................vii LIST OF FIGURES .........................................................................................................viii INTRODUCTION ..............................................................................................................1 CHAPTER 1 – Additive partitioning of plant species diversity across Eglin Air Force Base.........................................................................................................................7 CHAPTER 2 - Overstory-Derived Surface Fuels Mediate Plant Species Diversity in Frequently Burned Longleaf Pine Forests.............................................................34 CHAPTER 3 - Quantifying the effects of burning on the diversity of arthropods in a fire- adapted longleaf pine (Pinus palustris) forest ......................................................70 CHAPTER 4 - An arthropod survival strategy in a frequently burned forest................100 CHAPTER 5 - A New tachinid genus and species record for North America: Iceliopsis borgmeieri Guimarães.........................................................................................109 CHAPTER 6 - Scale dependent patterns in interaction diversity maintain resiliency in a frequently disturbed ecosystem ...........................................................................119 CONCLUSION................................................................................................................149 LITERATURE CITED....................................................................................................156 vii LIST OF TABLES Table 1-1: Empirical additive partitioning of plant diversity in the inventory and monitoring datasets
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • Manitoba Oakworm Moth
    Manitoba Oakworm Moth because of their limited dispersal ability, and its larval preference for younger Bur Oak. This species may actually be Threatened, but data are currently insufficient to assess whether it meets thresholds for status criteria. Wildlife Species Description and e n n e Significance H n o D © : o Manitoba Oakworm Moth (Anisota manitobensis) t o h P is a medium-sized moth (forewing length 19-30 mm) in the family Saturniidae (silk worm moths). Scientific name There are four life stages and the species grows Anisota manitobensis through complete metamorphosis. Adults are brownish-orange, and females are typically Taxon pinker than darker males. The flattened, ovate Arthropods eggs are smooth and yellow, turning to brownish COSEWIC status with age. Larvae are typically dark brown to black Special Concern with paler stripes (tending to pink in later instars) with spines and thoracic horns. Pupae are brown Canadian range and approximately 3 cm long. Manitoba Reason for designation Distribution This large moth has a small global distribution, The known global and Canadian range of most of which is in Canada, and restricted to a Manitoba Oakworm Moth is restricted to southern small area in southern Manitoba and the adjacent Manitoba and extreme northern North Dakota United States. Localized population irruptions and Minnesota. The majority of the global range occurred irregularly through the 1900s, but their is in Manitoba where it has been recorded from frequency declined and the last one was in 1997; approximately 25 sites as far north as Riding no individuals have been detected since 2000. Mountain National Park.
    [Show full text]
  • Yaupon Holly Culture and Pest Management for Tea Production and Ornamental Use1 Matthew A
    ENY-2054 Yaupon Holly Culture and Pest Management for Tea Production and Ornamental Use1 Matthew A. Borden, Mark A. Wilhelm, and Adam G. Dale2 Yaupon holly, Ilex vomitoria Aiton (Figure 1), is an ever- green woody plant native to the southeastern United States. The species is widely used as a landscape ornamental plant because it tolerates a wide range of soil and environmental conditions, is available in various forms, and is well-suited for Florida-Friendly Landscaping™ (https://edis.ifas.ufl. edu/topic_ffl) because it requires few inputs and attracts wildlife, especially native birds. Recently, there has been a resurgence of interest in cultivating the plant for the Figure 1. Yaupon holly, Ilex vomitoria. caffeinated beverages that can be made from its leaves. Credits: Jeff McMillian, hosted by the USDA-NRCS PLANTS Database. Although commonly called yaupon tea, it should be noted Illustration credit: Mary Vaux Walcott, North American Wild Flowers, vol. that the word “tea” properly refers to beverages produced 3 (1925) from the tea plant, Camellia sinensis. Infusions made with all other plants, such as herbs and yaupon holly, are Yaupon holly typically blooms for several weeks between considered tisanes. For commercial growers and homeown- March and May with small white flowers, sometimes tinged ers to effectively grow and maintain yaupon holly for tea with pink. As with all Ilex species, yaupon holly is dioe- production or as an ornamental plant, it is important to cious, meaning individual plants are either male or female. be familiar with its pest susceptibility and management Male flowers are more abundant and produce pollen, while recommendations.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Phasmida (Stick and Leaf Insects)
    ● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects.
    [Show full text]
  • KEYS Tú the ETHIOPIAJ.'F TACHINIDAE-III MACQUARTIINAE by the Late F
    313 KEYS Tú THE ETHIOPIAJ.'f TACHINIDAE-III MACQUARTIINAE BY The late F. 1. VAN ENIDEN Commonwealth Institute of Entomology (Accepted 12th May, 1959) (With 11 figures in the text) CüNTENTS , Page Introduction 313 Abhreviations 314 Deñnition of the subfamily Macquartiinae 315 Biology of tha Ethiopian Macquartiinae 315 Key ta the tribes of Ethiopian Macquartiinae 317 Key ta tbe sub-tribes of Echinornyini 320 l. :Macqaartiini 320 2. Wagneriini 332 3. Campyiochaetini 350 4. Helocerini 353 5. Nemoraeini 358 6. Acemyini 368 7. Gennariini 371 8. Thelairini 372 9. Minthoini 377 10. Leskiini 384 11. Echinornyini 402 a. Ernestiina 402 b. Linnaernyina. 407 c. Echinomyina 467 References 486 [The present report was completed by DI' van Ernden with the exception of Olle descrip­ tion, of the figures (to which, however, he had made reference in the appropriate places) and of the section dealing with the biology of the group. The biological data have kindly been summarised by DI' S. V. Peris, of the Instituto de Edafología, Madrid, and the bibliographical references at the end of the paper were provided to support this parto It had been van Emden's intention to inelude a paragraph of thanks in the íntro• duction. This was not completed, but acknowledgments of help received are given at varíous places in the text, and on his behalí thanks are bere tendered to the authoritie" of the British Museum for the facilities which they have so kindly afforded. The present annotator is responsible fol' the deseription of J.l1arshallornyia and its single species, for the text figures and for following the original orthography of the generie names Acemya, Linnaemya and Echinornya.
    [Show full text]
  • Diptera) of the Czech Republic
    © Entomologica Fennica. 30 March 2009 Annotated host catalogue for the Tachinidae (Diptera) of the Czech Republic Jaromir Vafihara*, Hans-Peter Tschorsnig, Benno Herting’r, Petr Mfickstein & Veronika Michalkova J P. & V. Vanhara, ., Tschorsnig, H.-P., Herting, B., Miickstein, Michalkova, 2009: Annotated host catalogue for the Tachinidae (Diptera) of the Czech Re- public. — Entomol. Fennica 20: 22—48. An annotated host catalogue is given for the Tachinidae ofthe Czech Republic. It comprises 149 of476 tachinid species which are currently known from this coun- try (included the two new records cited below). 195 hosts are listed. The first host records ofTachinidae date back to the second halfofthe 19th century. The bibli- ography for the host records consists of 1 16 papers of 55 researchers. Several re- cords of hitherto unpublished material are included. Phryxe setifacies and Anthomyiopsis plagioderae are first records for the Czech Republic. J. Vanhara (*corresponding author), Masaryk University, Faculty ofScience, Kotlarska 2, CZ—6I I 3 7 Brno, Czech Republic, [email protected] H.—P. Tschorsnig, Staatliches Museumflir Naturkunde, Rosenstein I, D— 70 191 Stuttgart, Germany, tschorsnig.smns@naturkundemuseum—bw.de P. Muckstein Administration of the Protected Landscape Area Zd’drske' vrchy, Brnenska 39, CZ—591 01 Zd’dr nad Sazavou, Czech Republic, muchstein @email.cz V. Michalkova, Masaryk University, Faculty ofScience, Kotlarska 2, CZ—6I I 3 7 Brno, Czech Republic, [email protected] Received 22 August 200 7, accepted 21 January 2008 1. Introduction The tachinid species are listed in their actual valid nomenclature; probable misidentifications Tachinidae are a very large and important dipter- are — if possible — tentatively corrected, but the an family of (mainly) insect parasitoids.
    [Show full text]
  • Moths of Ohio Guide
    MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1.
    [Show full text]