The Small Gtpases Ras and Rheb Studied by Multidimensional NMR Spectroscopy: Structure and Function

Total Page:16

File Type:pdf, Size:1020Kb

The Small Gtpases Ras and Rheb Studied by Multidimensional NMR Spectroscopy: Structure and Function Biol. Chem. 2017; 398(5-6): 577–588 Review Open Access Miriam Schöpel, Veena Nambiar Potheraveedu, Thuraya Al-Harthy, Raid Abdel-Jalil, Rolf Heumann and Raphael Stoll* The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function DOI 10.1515/hsz-2016-0276 Keywords: ligand binding; nuclear magnetic resonance Received September 1, 2016; accepted January 23, 2017; previously (NMR); Ras; Rheb. published online February 15, 2017 Abstract: Ras GTPases are key players in cellular signal- ling because they act as binary switches. These states Introduction: the small GTPases Ras manifest through toggling between an active (GTP-loaded) and an inactive (GDP-loaded) form. The hydrolysis and and Rheb replenishing of GTP is controlled by two additional pro- Cells are constantly sending messages and are checking tein classes: GAP (GTPase-activating)- and GEF (Guanine nutrient levels and growth rates within the cell as well as nucleotide exchange factors)-proteins. The complex inter- with other cells. These messages need to be explicit and play of the proteins is known as the GTPase-cycle. Several one way to amplify signals is to link them to a process that point mutations of the Ras protein deregulate this cycle. is chemically irreversible, like the cleavage of ATP or GTP. Mutations in Ras are associated with up to one-third of Adenosine triphosphate (ATP) and guanosine triphos- human cancers. The three isoforms of Ras (H, N, K) exhibit phate (GTP) are used in living cells as cofactors for various high sequence similarity and mainly differ in a region biochemical transformation reactions. called HVR (hypervariable region). The HVR governs the Whereas ATP is regarded as a ‘molecular unit of cur- differential action and cellular distribution of the three rency’ in intracellular energy metabolism, the hydroly- isoforms. Rheb is a Ras-like GTPase that is conserved from sis of GTP to GDP (guanosine diphosphate) mainly plays yeast to mammals. Rheb is mainly involved in activation a regulatory role in biochemical processes, including of cell growth through stimulation of mTORC1 activity. In cell growth, cell differentiation, as well as vesicular and this review, we summarise multidimensional NMR studies nuclear transport. Proteins capable of binding guanosine on Rheb and Ras carried out to characterise their struc- nucleotides are called guanosine binding proteins (or ture-function relationship and explain how the activity of guanine nucleotide-binding proteins, GNBPs). The super- these small GTPases can be modulated by low molecular family of monomeric small GTPases includes proteins weight compounds. These might help to design GTPase- with a size of 20–25 kDa and a common fold that consists selective antagonists for treatment of cancer and brain of a central six-stranded mixed β-sheet surrounded by a disease. total of five α-helices. The regulatory role of the small GTPases is fulfilled through their capability to act as binary switches by tog- gling between an ‘on’ and ‘off’ state (Figure 1). These *Corresponding author: Raphael Stoll, Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum, Germany, states are chemically characterised by the bound nucle- e-mail: [email protected] otides: GTP ( = on) and GDP ( = off). Since the intrinsic Miriam Schöpel: Biomolecular NMR, Ruhr University of Bochum, GTP hydrolysis, performed by the small GTPases, is D-44780 Bochum, Germany very slow (10−6 1/s), it is accelerated by GTPase activat- Molecular Veena Nambiar Potheraveedu and Rolf Heumann: ing proteins (GAPs) by several magnitudes (Gibbs et al., Neurobiochemistry, Ruhr University of Bochum, D-44780 Bochum, Germany 1984). The hydrolysis products GDP and Pi are not auto- Thuraya Al-Harthy and Raid Abdel-Jalil: Chemistry Department, matically released, because the protein exhibits the College of Science, Sultan Qaboos University, Muscat, Oman same affinity for GTP and GDP (Renault et al., 2003; ©2017, Miriam Schöpel et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. 578 M. Schöpel et al.: NMR studies on Rheb and Ras Figure 1: The GTPase cycle involves the exchange of GDP by guanine nucleotide exchange factors (GEFs), which control the nucleotide exchange by increasing the dissociation rate. The GEF protein directly inserts certain amino acids into the nucleotide binding domain (NBD). Thereby, the affinity of the GTPase towards the nucleotide is reduced. Once activated, the GTP-bound state enables GTPases to interact with various effectors. GTPase activating pro- teins (GAPs) catalyse GTP hydrolysis and return GTPases to their GDP-bound ‘OFF’-state, thereby completing the GTPase cycle. Pasqualato and Cherfils, 2005; Cherfils, 2014). There- Our project mainly focused on two small GTPases, fore, the exchange process is also catalysed by a group Rheb and K-Ras4B. Ras is probably the most famous small of different proteins, which are structurally totally unre- GTPase, because of its importance for cell growth, differ- lated: guanine exchange factors (GEFs). Ultimately, entiation, and survival. In the human proteome, three Ras GTPases bind and hydrolyse GTP and thereby switch isoforms (or splice versions) and one splice variants are from an active (GTP-loaded) to an inactive (GDP-loaded) found: N-, H-Ras, K-Ras4A, and K-Ras4B. These amino form. Thus they play a crucial role in cellular signal- acid sequences share a high similarity ( >95%) and differ ling. The communication between the G-Domain and only in a ‘hyper variable region’ (HVR), that comprises the its various effector proteins is mediated by two regions, carboxy-terminal 25 amino acids. The final four residues switch I and switch II, to transmit external signals from of the HVR region are known as the CAAX-box, which is growth factors to intracellular signalling cascades. Both the target of posttranslational modification (Figure 2). regions undergo dramatic structural changes, depend- The Ras proteins undergo four steps of modification to ing on which nucleotide is bound. The underlying mediate membrane binding: isoprenylation, proteolysis, molecular mechanism is known as the ‘loaded-spring methylation, and palmitoylation (Aronheim et al., 1994). mechanism’, introduced by Vetter and Wittinghofer Additionally, K-Ras4B possesses a polybasic stretch of six (2001). This universal mechanism involves two amino lysines that is capable of binding to negatively charged acids, a conserved threonine (T35), located in switch I, phospholipids of distinct cell membranes. The Ras protein and a glycine (G60), which adopt distinct conformations is a known proto-oncogene and approximately up to one- when GTP is bound. During the process of GTP-hydroly- third of all human cancers are caused by a mutation in sis, the ɣ-phosphate is released and the switch regions this particular protein. The highest frequency of Ras muta- are allowed to relax into different conformations. Hith- tions are mostly found in pancreatic (90%), lung (40%), erto, 167 proteins have been identified that are part of and colorectal cancer types (50%) (Schubbert et al., 2007). the human Ras superfamily, of which 39 proteins belong Three mutations hotspots have been identified, which to the Ras family (Rojas et al., 2012). mainly occur at codons 12, 13, and 61. In total, these three M. Schöpel et al.: NMR studies on Rheb and Ras 579 Figure 2: Schematic presentation of the four Ras isoforms. H-Ras, N-Ras, K-Ras4A and K-Ras4B are highly homologous throughout the conserved G domain (amino acids 1–166). The C-terminal hypervariable domain (amino acids 166–188/189) specifies membrane localisation through post-translational modifications that include the farnesylation of each isoform on the C-terminal CAAX motif and palmitoylation of cysteines on H-Ras, N-Ras, and K-Ras4A (highlighted in yellow). Membrane localisation of K-Ras4B is also facilitated by a stretch of lysine residues in support of the farnesyl moiety. mutation sites occur in 97–99% of all Ras mutations in the cell stress state. While in cancer cells Rheb promotes cancer (Cox and Der, 2010). Interestingly, most mutations cell cycle progression, there is an enhancement of apopto- are found in K-Ras (85%), followed by N-Ras (12%), and sis by Rheb observed after cellular application of various rarely in H-Ras (3%) (Cox et al., 2014). toxic stimuli such as UV stress or ER-stress (Ozcan et al., Rheb (Ras homologue enriched in brain) is a small 2008; Karassek et al., 2010). Furthermore, Rheb synthesis GTPase that is related to Ras, Rap, and Ral (Tee et al., is rapidly up-regulated as an immediate-early response 2003, 2005; Ehrkamp et al., 2013). Rheb, is part of the gene after injury (Yamagata et al., 1994; Potheraveedu mTOR pathway that integrates intra- and extracellular et al., 2017). Over-expression of Rheb enhances cellular signals and thereby regulates cell metabolism and growth degeneration, which can be prevented by rapamycin or by proliferation. Unlike Ras, Rheb harbours an Arg and knock down of apoptosis signal-regulating kinase (ASK-1) Ser instead of Gly residues in its P-loop that binds the β (Karassek et al., 2010). Thus, clinical application of rapa- phosphate of either GDP or GTP (Karassek et al., 2010). mycin should take into consideration the cellular stress As a molecular switch, Rheb regulates cell volume, cell state which could change its therapeutic effects (Karassek growth, cell cycle progression, neuronal axon regenera- et al., 2010).
Recommended publications
  • The Rac Gtpase in Cancer: from Old Concepts to New Paradigms Marcelo G
    Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-17-1456 Cancer Review Research The Rac GTPase in Cancer: From Old Concepts to New Paradigms Marcelo G. Kazanietz1 and Maria J. Caloca2 Abstract Rho family GTPases are critical regulators of cellular func- mislocalization of Rac signaling components. The unexpected tions that play important roles in cancer progression. Aberrant pro-oncogenic functions of Rac GTPase-activating proteins also activity of Rho small G-proteins, particularly Rac1 and their challenged the dogma that these negative Rac regulators solely regulators, is a hallmark of cancer and contributes to the act as tumor suppressors. The potential contribution of Rac tumorigenic and metastatic phenotypes of cancer cells. This hyperactivation to resistance to anticancer agents, including review examines the multiple mechanisms leading to Rac1 targeted therapies, as well as to the suppression of antitumor hyperactivation, particularly focusing on emerging paradigms immune response, highlights the critical need to develop ther- that involve gain-of-function mutations in Rac and guanine apeutic strategies to target the Rac pathway in a clinical setting. nucleotide exchange factors, defects in Rac1 degradation, and Cancer Res; 77(20); 5445–51. Ó2017 AACR. Introduction directed toward targeting Rho-regulated pathways for battling cancer. Exactly 25 years ago, two seminal papers by Alan Hall and Nearly all Rho GTPases act as molecular switches that cycle colleagues illuminated us with one of the most influential dis- between GDP-bound (inactive) and GTP-bound (active) forms. coveries in cancer signaling: the association of Ras-related small Activation is promoted by guanine nucleotide exchange factors GTPases of the Rho family with actin cytoskeleton reorganization (GEF) responsible for GDP dissociation, a process that normally (1, 2).
    [Show full text]
  • A GTP-State Specific Cyclic Peptide Inhibitor of the Gtpase Gαs
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs Shizhong A. Dai1,2†, Qi Hu1,2†, Rong Gao3†, Andre Lazar1,4†, Ziyang Zhang1,2, Mark von Zastrow1,4, Hiroaki Suga3*, Kevan M. Shokat1,2* 5 1Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA 2Howard Hughes Medical Institute 3Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 10 4Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA *Correspondence to: [email protected], [email protected] †These authors contributed equally. 15 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The G protein-coupled receptor (GPCR) cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable receptors and enzymes with the exception of the stimulatory G protein α subunit, Gαs.
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]
  • Tumor Markers
    Tumor Markers Alan H.B. Wu, Ph.D. Professor, Laboratory Medicine, UCSF Section Chief, Clinical Chemistry, Toxicology, Pharmacogenomics Laboratory, SFGH Learning objectives • Know the ideal characteristics of a tumor marker • Understand the role of tumor markers for diagnosis and management of patients with cancer. • Know the emerging technologies for tumor markers • Understand the role of tumor markers for therapeutic selection How do we diagnose cancer today? Physical Examination Blood tests CT scans Biopsy Human Prostate Cancer Normal Blood Smear Chronic Myeloid Leukemia Death rates for cancer vs. heart disease New cancer cases per year Cancer Site or Type New Cases Prostate 218,000 Lung 222,500 Breast 207,500 Colorectal 149,000 Urinary system 131,500 Skin 68,770 Pancreas 43,100 Ovarian 22,000 Myeloma 20,200 Thyroid 44,700 Germ Cell 9,000 Types of Tumor Markers • Hormones (hCG; calcitonin; gastrin; prolactin;) • Enzymes (acid phosphatase; alkaline phosphatase; PSA) • Cancer antigen proteins & glycoproteins (CA125; CA 15.3; CA19.9) • Metabolites (norepinephrine, epinephrine) • Normal proteins (thyroglobulin) • Oncofetal antigens (CEA, AFP) • Receptors (ER, PR, EGFR) • Genetic changes (mutations/translocations, etc.) Characteristics of an ideal tumor marker • Specificity for a single type of cancer • High sensitivity and specificity for cancerous growth • Correlation of marker level with tumor size • Homogeneous (i.e., minimal post-translational modifications) • Short half-life in circulation Roles for tumor markers • Determine risk (PSA)
    [Show full text]
  • Screening for Tumor Suppressors: Loss of Ephrin PNAS PLUS Receptor A2 Cooperates with Oncogenic Kras in Promoting Lung Adenocarcinoma
    Screening for tumor suppressors: Loss of ephrin PNAS PLUS receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma Narayana Yeddulaa, Yifeng Xiaa, Eugene Kea, Joep Beumera,b, and Inder M. Vermaa,1 aLaboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037; and bHubrecht Institute, Utrecht, The Netherlands Contributed by Inder M. Verma, October 12, 2015 (sent for review July 28, 2015; reviewed by Anton Berns, Tyler Jacks, and Frank McCormick) Lung adenocarcinoma, a major form of non-small cell lung cancer, injections in embryonic skin cells identified several potential tu- is the leading cause of cancer deaths. The Cancer Genome Atlas morigenic factors (14–16). None of the reported studies have analysis of lung adenocarcinoma has identified a large number of performed direct shRNA-mediated high-throughput approaches previously unknown copy number alterations and mutations, re- in adult mice recapitulating the mode of tumorigenesis in humans. quiring experimental validation before use in therapeutics. Here, we Activating mutations at positions 12, 13, and 61 amino acids in describe an shRNA-mediated high-throughput approach to test a set Kirsten rat sarcoma viral oncogene homolog (KRas) contributes of genes for their ability to function as tumor suppressors in the to tumorigenesis in 32% of lung adenocarcinoma patients (2) by background of mutant KRas and WT Tp53. We identified several activating downstream signaling cascades. Mice with the KRasG12D candidate genes from tumors originated from lentiviral delivery of allele develop benign adenomatous lesions with long latency to shRNAs along with Cre recombinase into lungs of Loxp-stop-Loxp- develop adenocarcinoma (17, 18).
    [Show full text]
  • The Effects of Oncogenic G12d Mutation on K-Ras Structure, Conformation and Dynamics
    bioRxiv preprint doi: https://doi.org/10.1101/178483; this version posted August 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. THE EFFECTS OF ONCOGENIC G12D MUTATION ON K-RAS STRUCTURE, CONFORMATION AND DYNAMICS Sezen Vatansever1, 2, 3, Zeynep H. Gümüş2, 3*, Burak Erman1* 1Department of Chemical and Biological Engineering, College of Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey 2Department of Genetics and Genomics, 3Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 *Correspondence: [email protected] (B.E.) and [email protected] (Z.H.G.) ABSTRACT K-Ras is the most frequently mutated protein in human tumors. Activating K-Ras mutations drive cancer initiation, progression and drug resistance, directly leading to nearly a million deaths per year. To understand the mechanisms by which mutations alter K-Ras function, we need to understand their effects on protein dynamics. However, despite decades of research, how oncogenic mutations in K-Ras alter its conformation and dynamics remain to be understood. Here, we present how the most recurrent K-Ras oncogenic mutation, G12D, leads to structural, conformational and dynamical changes that lead to constitutively active K- Ras. We have developed a new integrated MD simulation data analysis approach to quantify such changes in a protein and applied it to K-Ras. Our results show that G12D mutation induces strong negative correlations between the fluctuations of SII and those of the P-loop, Switch I (SI) and α3 regions in K-RasG12D.
    [Show full text]
  • Agonist-Induced Formation of Unproductive Receptor-G12 Complexes Najeah Okashaha, Shane C
    Agonist-induced formation of unproductive receptor-G12 complexes Najeah Okashaha, Shane C. Wrightb, Kouki Kawakamic, Signe Mathiasend,e,f, Joris Zhoub, Sumin Lua, Jonathan A. Javitchd,e,f, Asuka Inouec, Michel Bouvierb, and Nevin A. Lamberta,1 aDepartment of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912; bInstitute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; cGraduate School of Pharmaceutical Sciences, Tohoku University, 980-8578 Sendai, Japan; dDepartment of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032; eDepartment of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032; and fDivision of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032 Edited by Brian K. Kobilka, Stanford University School of Medicine, Stanford, CA, and approved July 24, 2020 (received for review February 28, 2020) G proteins are activated when they associate with G protein- association does not always promote G protein activation and coupled receptors (GPCRs), often in response to agonist-mediated may in some circumstances inhibit downstream signaling. receptor activation. It is generally thought that agonist-induced receptor-G protein association necessarily promotes G protein acti- Results vation and, conversely, that activated GPCRs do not interact with V2R Interacts with G12 Heterotrimers. Conventional GPCR-G pro- G proteins that they do not activate. Here we show that GPCRs can tein coupling is understood as an allosteric interaction where an form agonist-dependent complexes with G proteins that they do agonist-bound active receptor mediates GDP release by stabi- not activate.
    [Show full text]
  • 1 Gα13 Loss Promotes Tumor Progression in the KPC Transgenic
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435488; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Gα13 loss promotes tumor progression in the KPC transgenic mouse model of advanced pancreatic cancer Mario A. Shields1,2,*, Christina Spaulding1,3, Mahmoud G. Khalafalla1, Thao N.D. Pham1, and Hidayatullah G. Munshi1,2,3,* 1 Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 2 The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA 3 Jesse Brown VA Medical Center, Chicago, IL, USA Running title: Effects of epithelial Gα13 loss in vivo Keywords: Gα13, KC mouse model, KPC mouse model, human PDAC tumors, E-cadherin, mTOR The authors have declared that no conflict of interest exists. *Address correspondence to Mario A. Shields, Ph.D. or Hidayatullah G. Munshi, M.D. Department of Medicine Northwestern University Feinberg School of Medicine 303 E. Superior Ave., Lurie 3-220 (M.A. Shields) or Lurie 3-117 (H.G. Munshi) Chicago, IL 60611, USA. Phone: (312) 503-0312; [email protected] (M.A. Shields) Phone: (312) 503-2301; [email protected] (H.G. Munshi) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435488; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Gα13 transduces signals from G protein-coupled receptors.
    [Show full text]
  • The Frequency of Ras Mutations in Cancer
    Author Manuscript Published OnlineFirst on March 24, 2020; DOI: 10.1158/0008-5472.CAN-19-3682 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The frequency of Ras mutations in cancer Ian A. Prior1*, Fiona E. Hood1 and James L. Hartley2 CAN-19-3682R Running Title: Ras cancer statistics Keywords: HRAS, KRAS, NRAS, cancer, mutation, genetics Word Count: 3220 + references and Figure legends 1. Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, L69 3BX, UK. 2. NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA. * Corresponding Author: Ian A. Prior Email: [email protected] Tel: +44-151-794-5332 Fax: +44-151-794-4434 Conflict of interest statement All authors declare that they have no conflicts of interest relevant to this manuscript. Author contributions All authors have contributed to the writing and design of this manuscript. IAP is responsible for the conception, analysis, design and writing. 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 24, 2020; DOI: 10.1158/0008-5472.CAN-19-3682 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Ras is frequently mutated in cancer; however, there is a lack of consensus in the literature regarding the cancer mutation frequency of Ras, with quoted values varying from 10-30%. This variability is at least in part due to the selective aggregation of data from different databases and the dominant influence of particular cancer types and particular Ras isoforms within these datasets.
    [Show full text]
  • Identification of Novel GNAS Mutations in Intramuscular Myxoma Using Next- Generation Sequencing with Single-Molecule Tagged Molecular Inversion Probes Elise M
    Bekers et al. Diagnostic Pathology (2019) 14:15 https://doi.org/10.1186/s13000-019-0787-3 RESEARCH Open Access Identification of novel GNAS mutations in intramuscular myxoma using next- generation sequencing with single-molecule tagged molecular inversion probes Elise M. Bekers1,2* , Astrid Eijkelenboom1, Paul Rombout1, Peter van Zwam3, Suzanne Mol4, Emiel Ruijter5, Blanca Scheijen1 and Uta Flucke1 Abstract Background: Intramuscular myxoma (IM) is a hypocellular benign soft tissue neoplasm characterized by abundant myxoid stroma and occasional hypercellular areas. These tumors can, especially on biopsy material, be difficult to distinguish from low-grade fibromyxoid sarcoma or low-grade myxofibrosarcoma. GNAS mutations are frequently involved in IM, in contrast to these other malignant tumors. Therefore, sensitive molecular techniques for detection of GNAS aberrations in IM, which frequently yield low amounts of DNA due to poor cellularity, will be beneficial for differential diagnosis. Methods: In our study, a total of 34 IM samples from 33 patients were analyzed for the presence of GNAS mutations, of which 29 samples were analyzed using a gene-specific TaqMan genotyping assay for the detection of GNAS hotspot mutations c.601C > T and c602G > A in IM, and 32 samples using a novel next generation sequencing (NGS)-based approach employing single-molecule tagged molecular inversion probes (smMIP) to identify mutations in exon 8 and 9 of GNAS. Results between the two assays were compared for their ability to detect GNAS mutations with high confidence. Results: In total, 23 of 34 samples were successfully analyzed with both techniques showing GNAS mutations in 12 out of 23 (52%) samples.
    [Show full text]
  • Colorectal Cancer Invasion and Atrophy of the Enteric Nervous System: Potential Feedback and Impact on Cancer Progression
    International Journal of Molecular Sciences Review Colorectal Cancer Invasion and Atrophy of the Enteric Nervous System: Potential Feedback and Impact on Cancer Progression Janusz Godlewski 1,* and Zbigniew Kmiec 2 1 Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland 2 Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-89-5245302 Received: 31 March 2020; Accepted: 8 May 2020; Published: 11 May 2020 Abstract: Colorectal cancer (CRC) invasion within the large intestine wall results in the replacement of normal tissue architecture by tumour mass. Cancer cells digest the extracellular matrix (ECM) by the release of proteolytic enzymes. The disintegration of matrix ground substance activates several deposited growth factors which stimulate cell proliferation. Stromal (mainly fibroblasts), immune and cancer cells dominate in this area and become involved in a network of multimodal interactions which significantly induce proliferation of colon cancer cells, inhibit their apoptosis and promote their spreading within the local tumour microenvironment. Cancer invasion destroys nerve fibres and neurons of the local enteric nervous system (ENS) and induces subsequent atrophy of the submucosal and myenteric plexuses in areas adjacent to the cancer boundary. Interestingly, the reduction of plexuses’ size is accompanied by the increased number of galanin-immunoreactive neurons and increased galanin content in parts of the colon located close to the tumour. Galanin, a neuroprotective peptide, may inhibit the extrinsic pathway of apoptosis and in this way promote cancer cell survival. The possible role of acetylcholine and some ENS neuropeptides was also discussed.
    [Show full text]
  • Next-Generation Sequencing Expanded NGS Gene List
    Next-Generation Sequencing Expanded NGS Gene List Mutations (DNA) ABI1 BRD4 CRLF2 FOXO4 HOXC11 KLF4 MUC1 PAK3 RHOH TAL2 ABL1 BTG1 DDB2 FSTL3 HOXC13 KLK2 MUTYH PATZ1 RNF213 TBL1XR1 ACKR3 BTK DDIT3 GATA1 HOXD11 LASP1 MYCL (MYCL1) PAX8 RPL10 TCEA1 AKT1 C15orf65 DNM2 GATA2 HOXD13 LMO1 NBN PDE4DIP SEPT5 TCL1A ® AMER1 (FAM123B) CBLC DNMT3A GNA11 HRAS LMO2 NDRG1 PHF6 SEPT6 TERT Tumor Profiling Services from Caris Molecular Intelligence AR CD79B EIF4A2 GPC3 IKBKE MAFB NKX2-1 PHOX2B SFPQ TFE3 ARAF CDH1 ELF4 HEY1 INHBA MAX NONO PIK3CG SLC45A3 TFPT ATP2B3 CDK12 ELN HIST1H3B IRS2 MECOM NOTCH1 PLAG1 SMARCA4 THRAP3 ATRX CDKN2B ERCC1 HIST1H4I JUN MED12 NRAS PMS1 SOCS1 TLX3 BCL11B CDKN2C ETV4 HLF KAT6A (MYST3) MKL1 NUMA1 POU5F1 SOX2 TMPRSS2 BCL2 CEBPA FAM46C HMGN2P46 KAT6B MLLT11 NUTM2B PPP2R1A SPOP UBR5 Next-Generation BCL2L2 CHCHD7 FANCF HNF1A KCNJ5 MN1 OLIG2 PRF1 SRC VHL Sequencing BCOR CNOT3 FEV HOXA11 KDM5C MPL OMD PRKDC SSX1 WAS Multi-platform, solid tumor BCORL1 COL1A1 FOXL2 HOXA13 KDM6A MSN P2RY8 RAD21 STAG2 ZBTB16 Next-Generation Sequencing for BRD3 COX6C FOXO3 HOXA9 KDSR MTCP1 PAFAH1B2 RECQL4 TAL1 ZRSR2 biomarker analysis for therapeutic decision support additional biomarker analysis Mutations and Copy Number Variations (DNA) ABL2 BRCA21 COPB1 ESR1 FUS KIT MYB PER1 RUNX1 TFG ACSL3 BRIP1 CREB1 ETV1 GAS7 KLHL6 MYC PICALM RUNX1T1 TFRC Chemotherapy 4 – ACSL6 BUB1B CREB3L1 ETV5 GATA3 KMT2A (MLL) MYCN PIK3CA SBDS TGFBR2 AFF1 C11orf30 (EMSY) CREB3L2 ETV6 GID4 (C17orf39) KMT2C (MLL3) MYD88 PIK3R1 SDC4 TLX1 Immunotherapy 4 – AFF3 C2orf44 CREBBP EWSR1
    [Show full text]