(CMB) Radiation Was First Detected

Total Page:16

File Type:pdf, Size:1020Kb

(CMB) Radiation Was First Detected COSMOLOGY WITH THE JUBILEE AND MULTIDARK SIMULATIONS S. GOTTLOBER1, I. ILIEV2, G. YEPES3 1 Leibniz Institute for Astrophysics Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 2 Astronomy Centre, Department of Physics Astronomy, Pevensey II Building, University of Sussex, fj Falmer, Brighton BNl 9QH, United Kingdom 3 Grupo de Astrofisica, Universidad Aut6noma de Madrid, Madrid E-28049, Sp ain We review a series of Dark Matter only simulations with up to 216 and 57 billion particles, performed within the Jubilee and MultiDark projects, respectively. All the data products from these simulations are made available to the community through interactive public databases. 1 Introduction It is almost 50 years since the cosmic microwave background (CMB) radiation was first detected. This radiation was imprinted on the sky just a few hundred thousand years after the Big Bang. The measured temperature fluctuations of the CMB radiation tell us that shortly after the Big Bang the Universe was almost homogeneous with tiny density fluctuations of the order of 10-5. Starting from these tiny fluctuations generated duringthe early inflationary phase all the observed structures in the universe have been formed: huge clusters of galaxies with masses up to a few 1015 solar masses in the knots of the cosmic web which comprise galaxies in a wide range of masses fromdwarfs (109 solar masses) to massive elliptical galaxies (1013 solar masses). Comparing the power spectrum of measured temperature fluctuations with theoretical mod­ els, cosmologists conclude that the Universe is spatially flat and consists at present of about 693 of some unknown Dark Energy, 263 of also unknown Dark Matter and 53 of baryonS'. In the evolved universe one can directly observe the distribution of baryons and indirectly deduce (e.g. by gravitational lensing, velocity measurements, X-ray emission) the distribution of Dark Matter. The formation of structureon large scales is well understood. The initial small perturbations grow by gravitational instability and form bound objects called halos which decouple from the expansion of the universe. These bound objects grow hierarchically by accretion of matter and merging with smaller halos. The gravitational clustering becomes increasingly non-linear. Dark Matter is more abundant than baryons and hence becomes most important for formation of large scale structures where gravity dominates. The vastness of scales and the non-linearity of gravitational clustering are the reasons why numerical simulations and the intensive use of the largest supercomputers are the only methods suited to study the gravitationally driven growth of structures down to the high over densities in halos and the formationof galaxies therein. Cos­ mological simulations follow the clustering of matter by numerically solving the gravitational interaction based on an N-body approach. Additionally one would need to model hydrodynam­ ical processes, radiative cooling, star formation and the feedback of stars, in order to simulate in detail the formation ofgalaxies in their different environments. However, in large volumes and "These are the recent Planck values, the WMAP 5-year values differ slightly, see Table 1 for a large number of galaxiesit is practically impossible to followthe hydrodynamical processes. Therefore, Dark Matter only simulations are performed with very high resolution so that the evolution of halos and subhalos can be followed numerically. These halos and sub-halos host the galaxies. In a second (postprocessing) step the properties of the galaxies can be determined by semi-analytical or abundance matching algorithms. Semi analytical methods are based on the formationhistory of the dark matter halos and on recipes which predict the properties of galaxies formed in these halos. Abundance matching algorithms compare observed luminosity functions with halo mass or velocity functions deduced from dark matter only N-body simulations. In case of subhalos one needs also some information about the evolution, namely the properties of the subhalo at infall. In order to simulate the formation of structure in the universe fulfilling the above require­ ments, a very high mass and spatial resolutions are necessary which imposes a strong challenge for present day computational algorithms. Moreover, such simulations need a large amount of computational time and require huge amounts of available memory as well as large data storage facilities for further analyses of results. Therefore, they can be performed only at the largest su­ percomputer centres. In the followingtwo sections we review briefly two projects of Large Scale Structure formation in Gpc size cosmological volumes, the Jubilee and the MultiDark projects. 2 The Jubilee simulation The Jubilee simulation 7 is a N-body simulation with 60003 (216 billion) particles in a volume of (6 h-1Gpc)3 performed with the CUBEP3M N-body code, a P3M (particle-particle-particle­ mesh) code 2. CUBEP3M calculates the long-range gravity forces on a 2-level mesh and short­ range forces exactiy, by direct summation over local particles. The code is massively-parallel, using hybrid (combining MPI and OpenMP) parallelization and has been shown to scale well up to tens of thousands of computing cores. The cosmological and simulation parameters used in the Jubilee simulation are listed in § 2.1. The minimum resolved halo mass (with 20 particles) 12 -1 is 1.49 x 10 h M0, corresponding to galaxies slightly more massive than the Milky Way. Due to the large volume of the simulation, very massive objects exist so that the high end of the mass function can be determined with unprecedented accuracy. For instance, when comparing with the predictions of the widely-used Tinker mass function, we showed that there is an over prediction of these extreme objects G,s . During the last decade the precision in the determination of the Hubble parameter has reached the per cent level. Within the Jubilee simulation we studied statistical properties of the local Hubble parameter as measured by local observers and showed that the distribution of the local Hubble parameter depends not only on the scale of inhomogeneities, but also on how one defines the positions of observers in the cosmic web and what referenceframe is used 9. The predictions for the local Hubble parameter from the simulation can be compared with observational constraints based on Type Ia supernova (SNia) and CMB observations. Due to cosmic variance, for observers located in random haloes the Hubble constant determined from nearby SNia may differ from that measured from the CMB by ±0.8 per cent at lo- statistical significance. This scatter is too small to significantly alleviate a recently claimed discrepancy between current measurements assuming a fiat ACDM model. However, for observers located in the centres of the largest voids permitted by the standard ACDM model the local Hubble constant measurements could differ from SNia as high as 5 per cent. In future the ISW signal will be used to help to discriminate between cosmological models. At present the ISW effect does not constrain the ACDM model to anything like the precision of the standard datasets (CMB and BAOs). However, for a universe containing an amount of warm dark matter or one with a temporally varying dark energy component, the ISW effect will be an aid in constraining the theoretical models and predictions. For alternative cosmological models a variety of expectations of ISW signal arise. The ISW signal from the Jubilee simulation has been cross-correlated with the catalogue of mock Luminous Red Galaxies (LRGs) The ISW-LRG cross-correlation signal for a full-sky survey and £< 30 is strongest for lowerredshift 8. > bins (z � 0.2 to 0.5), whereas for £ 30 the signal is best observed with surveys covering z � 0.6 - 1.0. 2.1 The Jubilee database The Jubilee database http ://www jubilee-proj. ect . org contains data produced by two sim­ ulations, namely the Small Jubilee simulation ((3.072 h Gpc)3 cubic box with 30723 particles) and the Big Jubilee simulation ((6.0 h-1Gpc)3 cubic box-1 with 60003 particles). Both simulations were done with the CUBEP3M parallel N-body code in the Juropa Supercomputer at the Juelich 0.73, Supercomputer Center (Germany). The simulation parameters are !1m = 0.27, !1A = h = 0.70, !1b = 0.044, as = 0.80, n8 = 0.96, gravitational smoothing 50 h-1kpc comoving, mass resolution 7.49 1010 M , starting redshift 100. x h z The simulations have-1 been0 post-processed to extract= with spherical overdensity halos (AHF and SO) as well as Friends-of-Friends (FOF) algorithms catalogs of halos. These catalogs are very large, containing up to 400 million halos per snapshot. To avoid huge data transfers the user can choose which specific properties she/he wants to download. 3 The MultiDark simulations The MultiDark simulations are a series of large Dark Matter only simulations summarized in Table 1. These simulations have been performed with different codes: the ART code 1 (first two lines in Table 1) and the Gadget code 5 (all remaining simulations in Table 1). The first MultiDark database4 has been built with the two ART simulations. Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. However, it poses significant challenges when it comes to testing its predictions forthe distribution and properties of galaxies. The simulations provide very detailed predictions on the distribution of dark matter, but connecting the luminous galaxies with their dark matter haloes is a much more difficult task. There are different possibilities to make this galaxy-halo connection. Halo Abundance Matching (HAM) is a simple and yet realistic way to bridge the gap between dark matter haloes and galaxies. One key ingredient of these models are the subhaloes of more massive halos. They must be included in the abundance matching prescription because each lump of dark matter with enough mass and concentration should host a galaxy regardless whether that is the central object or a satellite.
Recommended publications
  • Anti-Helium from Dark Matter Annihilations Arxiv:1401.4017V3 [Hep-Ph] 24 Aug 2016
    SACLAY{T14/003 Anti-helium from Dark Matter annihilations Marco Cirelli a, Nicolao Fornengo b;c, Marco Taoso a, Andrea Vittino a;b;c a Institut de Physique Th´eorique, CNRS, URA 2306 & CEA/Saclay, F-91191 Gif-sur-Yvette, France b Department of Physics, University of Torino, via P. Giuria 1, I-10125 Torino, Italy c INFN - Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy Abstract Galactic Dark Matter (DM) annihilations can produce cosmic-ray anti-nuclei via the nuclear coalescence of the anti-protons and anti-neutrons originated directly from the annihilation process. Since anti-deuterons have been shown to offer a distinctive DM signal, with potentially good prospects for detection in large portions of the DM-particle parameter space, we explore here the production of heavier anti-nuclei, specifically anti-helium. Even more than for anti-deuterons, the DM-produced anti-He flux can be mostly prominent over the astrophysical anti-He background at low kinetic energies, typically below 3-5 GeV/n. However, the larger number of anti-nucleons involved in the formation process makes the anti-He flux extremely small. We therefore explore, for a few DM benchmark cases, whether the yield is sufficient to allow for anti-He detection in current-generation experiments, such as Ams-02. We account for the uncertainties due to the propagation in the Galaxy and to the uncertain details of the coalescence process, and we consider the constraints already imposed by anti-proton searches. We find that only for very optimistic configurations might it be possible to achieve detection with current generation detectors.
    [Show full text]
  • The Boundary of Galaxy Clusters and Its Implications on SFR Quenching
    The splashback boundary of galaxy clusters in mass and light and its implications for galaxy evolution T.-H. Shin, Ph.D. candidate at UPenn Collaborators: S. Adhikari, E. J. Baxter, C. Chang, B. Jain, N. Battaglia et al. (DES collaboration) (SPT collaboration) (ACT collaboration) https://arxiv.org/abs/1811.06081 (accepted to MNRAS); 2019 paper in preparation Based on ~400 public cluster sample from ACT+SPT Ongoing analysis of 1000+ SZ-selected clusters from DES+ACT+SPT Background Mass and boundary of dark matter halos However, MΔ and RΔ are subject to pseudo-evolution due to the decrease in the ρ ρ reference density ( c or m) Haloes continuously accrete matter; there is no radius within which the matter is fully virialized ⇒ where is the physical boundary of the halos? Credit: Andrey Kravtsov Cosmology with galaxy clusters Galaxy clusters live in the high-mass tail of the halo mass function ⇒ very sensitive to the growth of the structure Ω σ ( m and 8) Thus, it is important to accurately define/measure Tinker et al. (2008) the mass of the cluster Preliminary work by Diemer et al. illuminates that the mass function becomes more universal against redshift when we use so-called “splashback radius” as the physical boundary of the dark matter halos Background ● Galaxies fall into the cluster potential, escaping from the Hubble flow ● They form a sharp “physical” boundary around their first apocenters after the infall, which we call “splashback radius” Background ● A simple spherical collapse model can predict the existence of the splashback feature (Gunn & Gott 1972, Fillmore & Goldreich 1984, Bertschinger 1985, Adhikari et al.
    [Show full text]
  • Clustering and Halo Abundances in Early Dark Energy Cosmological Models
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 6-1-2021 Clustering And Halo Abundances In Early Dark Energy Cosmological Models A. Klypin V. Poulin F. Prada J. Primack M. Kamionkowski See next page for additional authors Follow this and additional works at: https://works.swarthmore.edu/fac-physics Part of the Physics Commons Let us know how access to these works benefits ouy Recommended Citation A. Klypin, V. Poulin, F. Prada, J. Primack, M. Kamionkowski, V. Avila-Reese, A. Rodriguez-Puebla, P. Behroozi, D. Hellinger, and Tristan L. Smith. (2021). "Clustering And Halo Abundances In Early Dark Energy Cosmological Models". Monthly Notices Of The Royal Astronomical Society. Volume 504, Issue 1. 769-781. DOI: 10.1093/mnras/stab769 https://works.swarthmore.edu/fac-physics/430 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Authors A. Klypin, V. Poulin, F. Prada, J. Primack, M. Kamionkowski, V. Avila-Reese, A. Rodriguez-Puebla, P. Behroozi, D. Hellinger, and Tristan L. Smith This article is available at Works: https://works.swarthmore.edu/fac-physics/430 MNRAS 504, 769–781 (2021) doi:10.1093/mnras/stab769 Advance Access publication 2021 March 31 Clustering and halo abundances in early dark energy cosmological models Anatoly Klypin,1,2‹ Vivian Poulin,3 Francisco Prada,4 Joel Primack,5 Marc Kamionkowski,6 Vladimir Avila-Reese,7 Aldo Rodriguez-Puebla ,7 Peter Behroozi ,8 Doug Hellinger5 and Tristan L.
    [Show full text]
  • Arxiv:1208.6426V2 [Hep-Ph]
    FTUAM-12-101 IFT-UAM/CSIC-12-86 Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection D. G. Cerde˜no 1,2, M. Fornasa 3, J.-H. Huh 1,2,a, and M. Peir´o 1,2,b 1 Instituto de F´ısica Te´orica, UAM/CSIC, Universidad Aut´onoma de Madrid, Cantoblanco, E-28049, Madrid, Spain 2 Departamento de F´ısica Te´orica, Universidad Aut´onoma de Madrid, Cantoblanco, E-28049, Madrid, Spain and 3 School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, United Kingdom We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment. We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross- section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. The method is illustrated for germanium and xenon detectors with an exposure of 300 kg yr, assuming a hypothetical detection of DM and studying a series of benchmark points for the DM properties. We find that the effect of these uncertainties can be similar in amplitude to that of astrophysical uncertainties, especially in those cases where the spin-dependent contribution to the elastic scattering cross-section is sizable. I. INTRODUCTION [9], XENON100 [10, 11], EDELWEISS [12], SIMPLE [13], KIMS [14], and a combination of CDMS and EDEL- Direct searches of dark matter (DM) aim to observe WEISS data [15] are in strong tension with the regions this abundant but elusive component of the Universe by of the parameter space compatible with WIMP signals detecting its recoils off target nuclei of a detector (for in DAMA/LIBRA or CoGeNT.
    [Show full text]
  • The Story of Dark Matter Halo Concentrations and Density Profiles
    Mon. Not. R. Astron. Soc. 000, 1–21 (0000) Printed 5 February 2016 (MN LATEX style file v2.2) MultiDark simulations: the story of dark matter halo concentrations and density profiles. Anatoly Klypin1⋆, Gustavo Yepes2, Stefan Gottl¨ober3, Francisco Prada4,5,6, and Steffen Heß3 1 Astronomy Department, New Mexico State University, Las Cruces, NM, USA 2 Departamento de F´ısica Te´orica M8, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049, Madrid, Spain 3 Leibniz-Institut f¨ur Astrophysik Potsdam (AIP), Potsdam, Germany 4 Instituto de F´ısica Te´orica, (UAM/CSIC), Universidad Aut´onoma de Madrid, Cantoblanco, E-28049 Madrid, Spain 5 Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain 6 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Glorieta de la Astronom´ıa, E-18080 Granada, Spain 5 February 2016 ABSTRACT Predicting structural properties of dark matter halos is one of the fundamental goals of modern cosmology. We use the suite of MultiDark cosmological simulations to study the evolution of dark matter halo density profiles, concentrations, and velocity anisotropies. We find that in order to understand the structure of dark matter halos and to make 1–2% accurate predictions for density profiles, one needs to realize that halo concentration is more complex than the ratio of the virial radius to the core radius in the Navarro-Frenk-White profile. For massive halos the average density profile is far from the NFW shape and the concentration is defined by both the core radius and the shape parameter α in the Einasto approximation. We show that halos progress through three stages of evolution.
    [Show full text]
  • Pos(DSU 2012)044 Ce
    Gamma rays from gravitationally boosted neutralinos at the galactic center PoS(DSU 2012)044 † Mirco Cannoni∗ Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain E-mail: [email protected] Neutralinos may be gravitationally boosted near the super-massive black hole at the galactic cen- ter so that they can have enough collision energy to annihilate into a stau pair. Since in some phenomenologically favored supersymmetric models the mass splitting between the neutralino and the lightest stau is a few GeVs, this channel may be allowed. In addition, staus can only de- cay into a tau lepton and another neutralino. We discuss the mechanisms behind this phenomenon and the gamma-ray spectrum and flux generated by the tau pair. VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012 Rio de Janeiro, Brazil ∗Speaker. †MultiDark fellow. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Gamma rays from gravitationally boosted neutralinos Mirco Cannoni 1. Introduction In one the favored regions of the parameter space of the constrained minimal supersymmetric standard model (CMSSM) where the lightest neutralino has the correct dark matter relic density, the lightest stau, τ˜1, is almost degenerate in mass with the neutralino [1]. This region is not charac- teristic of the CMSSM only, but also of the general MSSM without unification conditions. In fact the recent evidence at LHC of the Higgs boson with mass around 125 GeV [2] and a decay width into two photons larger the in the Standard Model, single out a region of the MSSM parameter space where the neutralino and τ˜1 are light and degenerate [3].
    [Show full text]
  • A Robust and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy Clusters
    Draft version December 23, 2020 Typeset using LATEX twocolumn style in AASTeX61 A ROBUST AND EFFICIENT DEEP LEARNING METHOD FOR DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS Submitted to ApJ ABSTRACT We demonstrate the ability of convolutional neural networks (CNNs) to mitigate systematics in the virial scaling relation and produce dynamical mass estimates of galaxy clusters with remarkably low bias and scatter. We present two models, CNN1D and CNN2D, which leverage this deep learning tool to infer cluster masses from distributions of member galaxy dynamics. Our first model, CNN1D, infers cluster mass directly from the distribution of member galaxy line-of-sight velocities. Our second model, CNN2D, extends the input space of CNN1D to learn on the joint distribution of galaxy line-of-sight velocities and projected radial distances. We train each model as a regression over cluster mass using a labeled catalog of realistic mock cluster observations generated from the MultiDark simulation and UniverseMachine catalog. We then evaluate the performance of each model on an independent set of mock observations selected from the same simulated catalog. The CNN models produce cluster mass predictions with lognormal residuals of scatter as low as 0:132 dex, greater than a factor of 2 improvement over the classical M-σ power-law estimator. Furthermore, the CNN model reduces prediction scatter relative to similar machine learning approaches by up to 17% while executing in drastically shorter training and evaluation times (by a factor of 30) and producing considerably more robust mass predictions (improving prediction stability under variations in galaxy sampling rate by 30%). Keywords: cosmology: theory - galaxies: clusters: general - galaxies: kinematics and dynamics - methods: statistical arXiv:1902.05950v2 [astro-ph.CO] 22 Dec 2020 2 1.
    [Show full text]
  • Arxiv:1305.3651V1 [Astro-Ph.CO] 15 May 2013 E Omn Ttendso Lmns Ist the to Fits Galaxy the to at and filaments
    Draft version October 3, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND Harley Katz1, Stacy McGaugh1,2, Peter Teuben1, G. W. Angus3 1Department of Astronomy, University of Maryland, College Park, MD 20742, USA 2Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106, USA and 3Astrophysics, Cosmology & Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa Draft version October 3, 2018 ABSTRACT We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher veloci- ties than those found in ΛCDM simulations. The bulk motions of clusters attain 1000 kms−1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to∼ fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for “pink elephants” like El Gordo. However, it is not obvious that the cluster mass function can be recovered. Subject headings: Modified Newtonian Dynamics, Bullet Cluster, Cosmic Flows 1. INTRODUCTION ies in which the prediction fails (Oh et al. 2008; The formation of large scale structure is well under- Trachternach et al. 2008; Kuzio de Naray et al. 2009; stood with linear perturbation theory in ΛCDM. This de Blok 2010). Feedback may also play a role in re- paradigm provides a compelling description of the emer- shaping the cores of dark matter halos, but simula- gence of the cosmic web with massive clusters of galax- tions of these effects (Governato et al.
    [Show full text]
  • Giovanni Cantatore University and INFN Trieste - Italy
    CAST at CERN as a laboratory for Axion and WISP physics Giovanni Cantatore University and INFN Trieste - Italy G. Cantatore - IBS MultiDark - Daejeon 17/10/2014 1 Summary • Why hunting for WISPs (and Axions of course…)? • Welcome to CAST • Physics programs at CAST • Solar Axions & ALPs (Axion Like Particles) • Relic Axions & other WISPs • the dish antenna concept • dielectric loaded waveguides (hint) • (crazy ideas) • Dark Energy and Chameleons • CAST as a Chameleon helioscope • Chamelon direct matter coupling and the KWISP force sensor • Conclusions G. Cantatore - IBS MultiDark - Daejeon 17/10/2014 2 Hunting for WISPs G. Cantatore - IBS MultiDark - Daejeon 17/10/2014 3 WISPs ? • What are WISPs? a. I don’t know b. Something blowing in the wind c. Weakly Interacting Slim Particles • Why bother with WISPs at all? • A few possible answers • address difficulties in the Standard Model • find the Dark Matter (and perhaps the Dark Energy) • … • it is fun! G. Cantatore - IBS MultiDark - Daejeon 17/10/2014 4 Main puzzles in the Standard Model • Large number of free parameters • Does not include gravity • (g-2)μ deviates from SM prediction • “Fine-tuning” • θ parameter (CP conserved in strong interactions ⇒ Axions!) • … • (see your favourite theorist for more…) G. Cantatore - IBS MultiDark - Daejeon 17/10/2014 5 Hints and puzzles from cosmology • Matter-antimatter asymmetry • Composition of the Universe (see your favourite cosmologist for more…) • STScI-PRC-01-09 ding xpan univ e e ers h e T Pr ese nt This diagram shows how the universe slowed down and then revved up since the Big Bang. The concentric red circles denote that galaxies are migrating apart at a slower rate during the first half of the cosmos.
    [Show full text]
  • A Python Toolkit for Cosmology, Large-Scale Structure, and Dark Matter Halos
    The Astrophysical Journal Supplement Series, 239:35 (13pp), 2018 December https://doi.org/10.3847/1538-4365/aaee8c © 2018. The American Astronomical Society. All rights reserved. COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos Benedikt Diemer Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; [email protected] Received 2018 July 31; revised 2018 October 10; accepted 2018 November 1; published 2018 December 18 Abstract This paper introduces COLOSSUS, a public, open-source python package for calculations related to cosmology, the large-scale structure (LSS) of matter in the universe, and the properties of dark matter halos. The code is designed to be fast and easy to use, with a coherent, well-documented user interface. The cosmology module implements Friedman–Lemaitre–Robertson–Walker cosmologies including curvature, relativistic species, and different dark energy equations of state, and provides fast computations of the linear matter power spectrum, variance, and correlation function. The LSS module is concerned with the properties of peaks in Gaussian random fields and halos in a statistical sense, including their peak height, peak curvature, halo bias, and mass function. The halo module deals with spherical overdensity radii and masses, density profiles, concentration, and the splashback radius. To facilitate the rapid exploration of these quantities, COLOSSUS implements more than 40 different fitting functions from the literature. I discuss the core routines in detail, with particular emphasis on their accuracy. COLOSSUS is available at bitbucket.org/bdiemer/colossus. Key words: cosmology: theory – methods: numerical 1. Introduction quantities in one or a few lines of code.
    [Show full text]
  • Weak Lensing Reveals a Tight Connection Between Dark Matter Halo Mass and the Distribution of Stellar Mass in Massive Galaxies
    MNRAS 492, 3685–3707 (2020) doi:10.1093/mnras/stz3314 Advance Access publication 2019 December 5 Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies Song Huang ,1,2,8‹ Alexie Leauthaud ,1 Andrew Hearin,3 Peter Behroozi ,4 Downloaded from https://academic.oup.com/mnras/article-abstract/492/3/3685/5658706 by University College London user on 01 March 2020 Christopher Bradshaw,1 Felipe Ardila ,1 Joshua Speagle ,5 Ananth Tenneti ,6 Kevin Bundy,7 Jenny Greene,8 Cristobal´ Sifon´ 9 and Neta Bahcall8 1Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA 2Kavli-IPMU, The University of Tokyo Institutes for Advanced Study, the University of Tokyo (Kavli IPMU, WPI), Kashiwa 277-8583, Japan 3Argonne National Laboratory, Argonne, IL 60439, USA 4Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA 5Department of Astronomy, Harvard University, 60 Garden St, MS 46, Cambridge, MA 02138, USA 6McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA 7UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA 8Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540, USA 9Instituto de F´ısica, Pontificia Universidad Catolica´ de Valpara´ıso, Casilla 4059, Valpara´ıso, Chile Accepted 2019 November 8. Received 2019 November 8; in original form 2018 November 1 ABSTRACT Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its unprecedented weak lensing capabilities, we reveal a remarkably tight connection between the stellar mass distribution of massive central galaxies and their host dark matter halo mass.
    [Show full text]
  • Predictions for JWST from the Universemachine DR1
    The Universe at z > 10: predictions for JWST from the universemachine DR1 Item Type Article Authors Behroozi, Peter; Conroy, Charlie; Wechsler, Risa H; Hearin, Andrew; Williams, Christina C; Moster, Benjamin P; Yung, L Y Aaron; Somerville, Rachel S; Gottlöber, Stefan; Yepes, Gustavo; Endsley, Ryan Citation Behroozi, P., Conroy, C., Wechsler, R. H., Hearin, A., Williams, C. C., Moster, B. P., ... & Endsley, R. (2020). The Universe at z > 10: predictions for JWST from the universemachine DR1. Monthly Notices of the Royal Astronomical Society, 499(4), 5702-5718. DOI 10.1093/mnras/staa3164 Publisher Oxford University Press Journal Monthly Notices of the Royal Astronomical Society Rights © 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. Download date 27/09/2021 10:23:12 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/658231 MNRAS 499, 5702–5718 (2020) doi:10.1093/mnras/staa3164 Advance Access publication 2020 October 14 The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1 Peter Behroozi ,1‹ Charlie Conroy,2 Risa H. Wechsler,3,4 Andrew Hearin,5 Christina C. Williams,1† Benjamin P. Moster ,6 L. Y. Aaron Yung ,7,8 Rachel S. Somerville,7,8 Stefan Gottlober,¨ 9 Downloaded from https://academic.oup.com/mnras/article/499/4/5702/5923580 by Arizona Health Sciences Library user on 07 May 2021 Gustavo Yepes10,11 and Ryan Endsley 1 1Department of Astronomy and Steward Observatory, University of Arizona,
    [Show full text]