ERP, a New Member of the Ets Transcription Factor/Oncoprotein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhibitor of Differentiation 4 (ID4) Represses Myoepithelial Differentiation Of
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.06.026963; this version posted April 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Inhibitor of Differentiation 4 (ID4) represses myoepithelial differentiation of 2 mammary stem cells through its interaction with HEB 3 Holly Holliday1,2, Daniel Roden1,2, Simon Junankar1,2, Sunny Z. Wu1,2, Laura A. 4 Baker1,2, Christoph Krisp3,4, Chia-Ling Chan1, Andrea McFarland1, Joanna N. Skhinas1, 5 Thomas R. Cox1,2, Bhupinder Pal5, Nicholas Huntington6, Christopher J. Ormandy1,2, 6 Jason S. Carroll7, Jane Visvader5, Mark P. Molloy3, Alexander Swarbrick1,2 7 1. The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, 8 NSW 2010, Australia 9 2. St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 10 2010, Australia 11 3. Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 12 2109, Australia 13 4. Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric 14 Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, 15 Germany 16 5. ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of 17 Medical Research, Parkville, Victoria 3052, Australia 18 6. Biomedicine Discovery Institute, Department of Biochemistry and Molecular 19 Biology, Monash University, Clayton, VIC 3168, Australia 20 7. Cancer Research UK Cambridge Institute, University of Cambridge, Robinson 21 Way, Cambridge CB2 0RE, UK 22 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.06.026963; this version posted April 6, 2020. -
Expression of Oncogenes ELK1 and ELK3 in Cancer
Review Article Annals of Colorectal Cancer Research Published: 11 Nov, 2019 Expression of Oncogenes ELK1 and ELK3 in Cancer Akhlaq Ahmad and Asif Hayat* College of Chemistry, Fuzhou University, China Abstract Cancer is the uncontrolled growth of abnormal cells anywhere in a body, ELK1 and ELK3 is a member of the Ets-domain transcription factor family and the TCF (Ternary Complex Factor) subfamily. Proteins in this subfamily regulate transcription when recruited by SRF (Serum Response Factor) to bind to serum response elements. ELK1 and ELK3 transcription factors are known as oncogenes. Both transcription factors are proliferated in a different of type of cancer. Herein, we summarized the expression of transcription factor ELK1 and ELK3 in cancer cells. Keywords: ETS; ELK1; ELK3; Transcription factor; Cancer Introduction The ETS, a transcription factor of E twenty-six family based on a dominant ETS amino acids that integrated with a ~10-basepair element arrange in highly mid core sequence 5′-GGA(A/T)-3′ [1-2]. The secular family alter enormous 28/29 members which has been assigned in human and mouse and similarly the family description are further sub-divided into nine sub-families according to their homology and domain factor [3]. More importantly, one of the subfamily members such as ELK (ETS-like) adequate an N-terminal ETS DNA-binding domain along with a B-box domain that transmit the response of serum factor upon the formation of ternary complex and therefore manifested as ternary complex factors [4]. Further the ELK sub-divided into Elk1, Elk3 (Net, Erp or Sap2) and Elk4 (Sap1) proteins [3,4], which simulated varied proportional of potential protein- protein interactions [4,5]. -
Interaction and Functional Cooperation of the Cancer-Amplified Transcriptional Coactivator Activating Signal Cointegrator-2 and E2F-1 in Cell Proliferation
948 Vol. 1, 948–958, November 2003 Molecular Cancer Research Interaction and Functional Cooperation of the Cancer-Amplified Transcriptional Coactivator Activating Signal Cointegrator-2 and E2F-1 in Cell Proliferation Hee Jeong Kong,1 Hyun Jung Yu,2 SunHwa Hong,2 Min Jung Park,2 Young Hyun Choi,3 Won Gun An,4 Jae Woon Lee,5 and JaeHun Cheong2 1Laboratory of Molecular Growth Regulation, National Institute of Health, Bethesda, MD; 2Department of Molecular Biology, Pusan National University, Busan, Republic of Korea; 3Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Republic of Korea; 4Department of Biology, Kyungpook National University, DaeGu, Republic of Korea; and 5Department of Medicine/Endocrinology, Baylor College of Medicine Houston, TX. Abstract structure and recruitment of a transcription initiation complex Activating signal cointegrator-2 (ASC-2), a novel coac- containing RNA polymerase II to the promoter (1). Recent tivator, is amplified in several cancer cells and known to studies have shown that DNA-bound transcriptional activator interact with mitogenic transcription factors, including proteins accomplish these two tasks with the assistance of a serum response factor, activating protein-1, and nuclear class of proteins called transcriptional coactivators (2, 3). They factor-KB, suggesting the physiological role of ASC-2 in may be thought of as adaptors or components in a signaling the promotion of cell proliferation. Here, we show that pathway that transmits transcriptional activation signals from the expression pattern of ASC-2 was correlated with that DNA-bound activator proteins to the chromatin and transcrip- of E2F-1 for protein increases at G1 and S phase. -
Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897 -
The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia
International Journal of Molecular Sciences Review The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia Marta Weronika Lato 1 , Anna Przysucha 1, Sylwia Grosman 1, Joanna Zawitkowska 2 and Monika Lejman 3,* 1 Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (M.W.L.); [email protected] (A.P.); [email protected] (S.G.) 2 Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 3 Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland * Correspondence: [email protected] Abstract: Childhood acute lymphoblastic leukemia is a genetically heterogeneous cancer that ac- counts for 10–15% of T-cell acute lymphoblastic leukemia (T-ALL) cases. The T-ALL event-free survival rate (EFS) is 85%. The evaluation of structural and numerical chromosomal changes is important for a comprehensive biological characterization of T-ALL, but there are currently no ge- netic prognostic markers. Despite chemotherapy regimens, steroids, and allogeneic transplantation, relapse is the main problem in children with T-ALL. Due to the development of high-throughput molecular methods, the ability to define subgroups of T-ALL has significantly improved in the last few years. The profiling of the gene expression of T-ALL has led to the identification of T-ALL subgroups, and it is important in determining prognostic factors and choosing an appropriate treatment. Novel therapies targeting molecular aberrations offer promise in achieving better first remission with the Citation: Lato, M.W.; Przysucha, A.; hope of preventing relapse. -
Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes. -
Supplementary Tables
Supp Table 1. Patient characteristics of samples used for colony assays, xenografts and intracellular colony assays Sr.No Age Sex Diagnosis Blast% Cytogenetics Mutations (IPSS) (AF%) Patient samples used for colony assays 1. 68 F Low risk 1% N/A None MDS 2. 78 M RAEB-1 7% N/A DNMT3A 3. 66 F High risk 12.2% 5q-,7q-,+11, DNMT3A MDS 20q- (28%) TP53 (58%) 4. 61 M High risk 6.2% Monosomy 7 ASXL1 (36%) MDS EZH2 (77%) RUNX1(18%) 5. 63 M Low risk Normal ETV6 (34%), MDS KRAS(15%), RUNX1 (40%), SRSF2 (43%), ZRSR2 (86%) 6. 62 F RAEB-2 Del 5q TP53 (7%) 7. 76 F t-MDS <1% Normal TET2(10%) 8. 80 M Low risk 5% Normal SF3B1(21%) MDS TET2(8%) ZRZR2(62%) 9. 74 F MPN 5% JAK2V617F+ 10. 76 M Low risk <1% Deletion Y None MDS 11. 84 M Low risk N/A N/A N/A MDS 12. 86 M Int-2 MDS 4-8% Normal U2AF1 (43%) blasts CBL (15%) 13. 64 M low risk 1-3% 20q deletion ASXL1 (17%) MDS SETBP1(17%) U2AF1(15%) 14. 81 F Low risk <1% Normal None MDS Patient samples used for PDX 15. 87 F Int-2 risk 1.2% Complex SETBP1 (38%) MDS cytogenetics, del 7, dup 11, del 13q 16. 59 F High-risk 7-10% Complex NRAS (12%), MDS cytogenetics RUNX1 (20%), (-5q31, -7q31, SRSF2 (22%), trisomy 8, del STAG2 (17%) 11q23 17. 79 F Int-2 risk 5-8% None MDS 18. 67 M MPN 6.6% Normal CALR (51%) IDH1(47%) PDGFRB (47%) Patient samples used for intracellular ASO uptake 19. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Analysis of Genomic Aberrations and Gene Expression Profiling Identifies
Citation: Blood Cancer Journal (2011) 1, e40; doi:10.1038/bcj.2011.39 & 2011 Macmillan Publishers Limited All rights reserved 2044-5385/11 www.nature.com/bcj ORIGINAL ARTICLE Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms KL Rice1, X Lin1, K Wolniak1, BL Ebert2, W Berkofsky-Fessler3, M Buzzai4, Y Sun5,CXi5, P Elkin5, R Levine6, T Golub7, DG Gilliland8, JD Crispino1, JD Licht1 and W Zhang5 1Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; 2Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA; 3Translational Research Sciences, Hoffmann-La Roche, Inc., Nutley, NJ, USA; 4Oncology, Novartis, Origgio, VA, Italy; 5Division of Hematology/ Oncology, Department of Medicine, Center of Biomedical Informatics, Mount Sinai School of Medicine, New York, NY, USA; 6Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 7The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA and 8Oncology, Merck Research Laboratories, North Wales, PA, USA Polycythemia vera (PV), essential thrombocythemia and by a recurrent mutation, JAK2V617F, which is present in B95% primary myelofibrosis, are myeloproliferative neoplasms of patients with PV, B65% with PMF and B55% with ET.2 JAK2 (MPNs) with distinct clinical features and are associated with is one member of the Janus family of non-receptor tyrosine the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled kinases that transduces signals downstream of type I and II 87 MPN patients using Affymetrix 250K single-nucleotide cytokine receptors via signal transducer and activators of polymorphism (SNP) arrays. -
MRTF: Basic Biology and Role in Kidney Disease
International Journal of Molecular Sciences Review MRTF: Basic Biology and Role in Kidney Disease Maria Zena Miranda 1, Zsuzsanna Lichner 1, Katalin Szászi 1,2 and András Kapus 1,2,3,* 1 Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; [email protected] (M.Z.M.); [email protected] (Z.L.); [email protected] (K.S.) 2 Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada 3 Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up- to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. -
Directed Midbrain and Spinal Cord Neurogenesis from Pluripotent Stem Cells to Model Development and Diseaseinadish
REVIEW ARTICLE published: 20 May 2014 doi: 10.3389/fnins.2014.00109 Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and diseaseinadish Ilary Allodi and Eva Hedlund* Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden Edited by: Induction of specific neuronal fates is restricted in time and space in the developing Antoine De Chevigny, Aix-Marseille CNS through integration of extrinsic morphogen signals and intrinsic determinants. University, France Morphogens impose regional characteristics on neural progenitors and establish distinct Reviewed by: progenitor domains. Such domains are defined by unique expression patterns of fate Harold Cremer, Centre National de la Recherche Scientifique, France determining transcription factors. These processes of neuronal fate specification can Stefania Corti, University of Milan, be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the Italy generation of dopamine neurons and motor neurons, which are induced at ventral *Correspondence: positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at Eva Hedlund, Department of anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). Neuroscience, Karolinska Institutet, Retzius v. 8, 17177 Stockholm, In vitro utilization of these morphogenic signals typically results in the generation of Sweden multiple neuronal cell types, which are defined at the intersection of these signals. If e-mail: [email protected] the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. -
Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response
Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14.