AUGUST 21- 23, 2018 • CLEVELAND, OHIO Liquid in the Rack: Liquid Cooling Your Data Center Dale Sartor, PE Norman Bourassa awrence Berkeley Lawrence Berkeley National Laboratory National Laboratory Otto Van Geet, PE National Renewable Energy Laboratory Contact Information Dale Sartor, P.E. Lawrence Berkeley National Laboratory MS 90-3111 University of California Berkeley, CA 94720
[email protected] (510) 486-5988 http://datacenters.lbl.gov/ Agenda • Introduction to Liquid Cooling • Case studies • Interactive Discussion Liquid Cooling Solution Typical liquid cooled equipment room, with external coolant distribution units (CDUs) For most locations these data centers may be operated without chillers in a water-side economizer mode Benefits of Liquid Cooling • Higher compute densities • Higher efficiency • Heat removal • Transport energy • cooling plant • Increased economizer hours • Potential use of waste heat Moving (Back) to Liquid Cooling . As heat densities rise, liquid solutions become more attractive . Volumetric heat capacity comparison (5,380 m3) (1.5 m3) ~ 190,000 cubic foot blimp = Water Air Why Liquid Cooling? . Higher compute densities . Liquids can provide cooling at higher temperatures • Improved cooling efficiency • Increased economizer hours • Potential use of waste heat . Reduced transport energy: In-Row Liquid Cooling Graphics courtesy of Rittal In-Rack Liquid Cooling Racks with integral coils and full containment: Cooling Coil Rear-Door Heat Exchanger . Passive technology: relies on server fans for airflow . Active technology: supplements server fans with external fans in door . Can use chilled or higher temperature water for cooling Photo courtesy of Vette Liquid On-Board Cooling . Clustered Systems design . Conducting heat to a cold plate containing refrigerant Liquid On-Board Cooling .