Introduction to Homological Algebra in Schreiber
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Character formulas for 2-Lie algebras Permalink https://escholarship.org/uc/item/9362r8h5 Author Denomme, Robert Arthur Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Character Formulas for 2-Lie Algebras A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Robert Arthur Denomme 2015 c Copyright by Robert Arthur Denomme 2015 Abstract of the Dissertation Character Formulas for 2-Lie Algebras by Robert Arthur Denomme Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Rapha¨elRouquier, Chair Part I of this thesis lays the foundations of categorical Demazure operators following the work of Anthony Joseph. In Joseph's work, the Demazure character formula is given a categorification by idempotent functors that also satisfy the braid relations. This thesis defines 2-functors on a category of modules over a half 2-Lie algebra and shows that they indeed categorify Joseph's functors. These categorical Demazure operators are shown to also be idempotent and are conjectured to satisfy the braid relations as well as give a further categorification of the Demazure character formula. Part II of this thesis gives a presentation of localized affine and degenerate affine Hecke algebras of arbitrary type in terms of weights of the polynomial subalgebra and varied Demazure-BGG type operators. The definition of a graded algebra is given whose cate- gory of finite-dimensional ungraded nilpotent modules is equivalent to the category of finite- dimensional modules over an associated degenerate affine Hecke algebra. -
MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE WEDNESDAY, NOVEMBER 17, 2004 Section 2.2 (From Hatcher's Textbook): 1, 2 (Omi
MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE WEDNESDAY, NOVEMBER 17, 2004 SASHA VORONOV Section 2.2 (from Hatcher’s textbook): 1, 2 (omit the question about odd dimen- sional projective spaces) Problem 1. Apply the method of acyclic models to show that the barycentric subdivision operator is homotopic to identity. Reminder: we used that method to prove that singular homology satisfies the homotopy axiom. It consisted in constructing a natural chain homotopy inductively for all spaces at once by using the acyclicity of the singular simplex, i.e., the vanishing of its higher homology. You may read more about this method in Selick’s text, pp. 35–37. Problem 2. Compute the simplicial homology of the Klein bottle. Problem 3. Prove the boundary formula for cellular 1-chains: CW 1 d (eα) = [1α] − [−1α], 1 where eα is a 1-cell of a CW complex and [1α] and [−1α] are its endpoints, identified with 0-cells of the CW complex via the attaching maps. Problem 4. Using cell decompositions of Sn and Dn, compute their cellular ho- mology groups. Problem 5. Calculate the integral homology groups of the sphere Mg with g handles (i.e., a compact orientable surface of genus g) using a cell decomposition of it. Problem 6. Give a simple proof that uses homology theory for the following fact: Rm is not homeomorphic to Rn for m 6= n. f g Problem 7. Let 0 → π −→ ρ −→ σ → 0 be an exact sequence of abelian groups and C a chain complex of flat (i.e., torsion free) abelian groups. -
Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category. -
Homological Algebra
Homological Algebra Department of Mathematics The University of Auckland Acknowledgements 2 Contents 1 Introduction 4 2 Rings and Modules 5 2.1 Rings . 5 2.2 Modules . 6 3 Homology and Cohomology 16 3.1 Exact Sequences . 16 3.2 Exact Functors . 19 3.3 Projective and Injective Modules . 21 3.4 Chain Complexes and Homologies . 21 3.5 Cochains and Cohomology . 24 3.6 Recap of Chain Complexes and Maps . 24 3.7 Homotopy of Chain Complexes . 25 3.8 Resolutions . 26 3.9 Double complexes, and the Ext and Tor functors . 27 3.10 The K¨unneth Formula . 34 3.11 Group cohomology . 38 3.12 Simplicial cohomology . 38 4 Abelian Categories and Derived Functors 39 4.1 Categories and functors . 39 4.2 Abelian categories . 39 4.3 Derived functors . 41 4.4 Sheaf cohomology . 41 4.5 Derived categories . 41 5 Spectral Sequences 42 5.1 Motivation . 42 5.2 Serre spectral sequence . 42 5.3 Grothendieck spectral sequence . 42 3 Chapter 1 Introduction Bo's take This is a short exact sequence (SES): 0 ! A ! B ! C ! 0 : To see why this plays a central role in algebra, suppose that A and C are subspaces of B, then, by going through the definitions of a SES in 3.1, one can notice that this line arrows encodes information about the decomposition of B into A its orthogonal compliment C. If B is a module and A and C are now submodules of B, we would like to be able to describe how A and C can \span" B in a similar way. -
Notes on Spectral Sequence
Notes on spectral sequence He Wang Long exact sequence coming from short exact sequence of (co)chain com- plex in (co)homology is a fundamental tool for computing (co)homology. Instead of considering short exact sequence coming from pair (X; A), one can consider filtered chain complexes coming from a increasing of subspaces X0 ⊂ X1 ⊂ · · · ⊂ X. We can see it as many pairs (Xp; Xp+1): There is a natural generalization of a long exact sequence, called spectral sequence, which is more complicated and powerful algebraic tool in computation in the (co)homology of the chain complex. Nothing is original in this notes. Contents 1 Homological Algebra 1 1.1 Definition of spectral sequence . 1 1.2 Construction of spectral sequence . 6 2 Spectral sequence in Topology 12 2.1 General method . 12 2.2 Leray-Serre spectral sequence . 15 2.3 Application of Leray-Serre spectral sequence . 18 1 Homological Algebra 1.1 Definition of spectral sequence Definition 1.1. A differential bigraded module over a ring R, is a collec- tion of R-modules, fEp;qg, where p, q 2 Z, together with a R-linear mapping, 1 H.Wang Notes on spectral Sequence 2 d : E∗;∗ ! E∗+s;∗+t, satisfying d◦d = 0: d is called the differential of bidegree (s; t). Definition 1.2. A spectral sequence is a collection of differential bigraded p;q R-modules fEr ; drg, where r = 1; 2; ··· and p;q ∼ p;q ∗;∗ ∼ p;q ∗;∗ ∗;∗ p;q Er+1 = H (Er ) = ker(dr : Er ! Er )=im(dr : Er ! Er ): In practice, we have the differential dr of bidegree (r; 1 − r) (for a spec- tral sequence of cohomology type) or (−r; r − 1) (for a spectral sequence of homology type). -
Math 99R - Representations and Cohomology of Groups
Math 99r - Representations and Cohomology of Groups Taught by Meng Geuo Notes by Dongryul Kim Spring 2017 This course was taught by Meng Guo, a graduate student. The lectures were given at TF 4:30-6 in Science Center 232. There were no textbooks, and there were 7 undergraduates enrolled in our section. The grading was solely based on the final presentation, with no course assistants. Contents 1 February 1, 2017 3 1.1 Chain complexes . .3 1.2 Projective resolution . .4 2 February 8, 2017 6 2.1 Left derived functors . .6 2.2 Injective resolutions and right derived functors . .8 3 February 14, 2017 10 3.1 Long exact sequence . 10 4 February 17, 2017 13 4.1 Ext as extensions . 13 4.2 Low-dimensional group cohomology . 14 5 February 21, 2017 15 5.1 Computing the first cohomology and homology . 15 6 February 24, 2017 17 6.1 Bar resolution . 17 6.2 Computing cohomology using the bar resolution . 18 7 February 28, 2017 19 7.1 Computing the second cohomology . 19 1 Last Update: August 27, 2018 8 March 3, 2017 21 8.1 Group action on a CW-complex . 21 9 March 7, 2017 22 9.1 Induction and restriction . 22 10 March 21, 2017 24 10.1 Double coset formula . 24 10.2 Transfer maps . 25 11 March 24, 2017 27 11.1 Another way of defining transfer maps . 27 12 March 28, 2017 29 12.1 Spectral sequence from a filtration . 29 13 March 31, 2017 31 13.1 Spectral sequence from an exact couple . -
Homological Algebra
HOMOLOGICAL ALGEBRA BRIAN TYRRELL Abstract. In this report we will assemble the pieces of homological algebra needed to explore derived functors from their base in exact se- quences of abelian categories to their realisation as a type of δ-functor, first introduced in 1957 by Grothendieck. We also speak briefly on the typical example of a derived functor, the Ext functor, and note some of its properties. Contents 1. Introduction2 2. Background & Opening Definitions3 2.1. Categories3 2.2. Functors5 2.3. Sequences6 3. Leading to Derived Functors7 4. Chain Homotopies 10 5. Derived Functors 14 5.1. Applications: the Ext functor 20 6. Closing remarks 21 References 22 Date: December 16, 2016. 2 BRIAN TYRRELL 1. Introduction We will begin by defining the notion of a category; Definition 1.1. A category is a triple C = (Ob C; Hom C; ◦) where • Ob C is the class of objects of C. • Hom C is the class of morphisms of C. Furthermore, 8X; Y 2 Ob C we associate a set HomC(X; Y ) - the set of morphisms from X to Y - such that (X; Y ) 6= (Z; U) ) HomC(X; Y ) \ HomC(Z; U) = ;. Finally, we require 8X; Y; Z 2 Ob C the operation ◦ : HomC(Y; Z) × HomC(X; Y ) ! HomC(X; Z)(g; f) 7! g ◦ f to be defined, associative and for all objects the identity morphism must ex- ist, that is, 8X 2 Ob C 91X 2 HomC(X; X) such that 8f 2 HomC(X; Y ); g 2 HomC(Z; X), f ◦ 1X = f and 1X ◦ g = g. -
Lecture Notes in Mathematics 1081
Lecture Notes in Mathematics 1081 Editors: J.-M. Morel, Cachan F. Takens, Groningen B. Teissier, Paris David J. Benson Modular Representation Theory New Trends and Methods Second printing Sprin ger Author David J. Benson Department of Mathematical Sciences University of Aberdeen Meston Building King's College Aberdeen AB24 SUE Scotland UK Modular Representation Theory Library of Congress Cataloging in Publication Data. Benson, David, 1955-. Modular representation theory. (Lecture notes in mathematics; 1081) Bibliography: p. Includes index. 1. Modular representations of groups. 2. Rings (Algebra) I. Title. II. Series: Lecture notes in mathematics (Springer-Verlag); 1081. QA3.L28 no. 1081 [QA171] 510s [512'.2] 84-20207 ISBN 0-387-13389-5 (U.S.) Mathematics Subject Classification (1980): 20C20 Second printing 2006 ISSN 0075-8434 ISBN-10 3-540-13389-5 Springer-Verlag Berlin Heidelberg New York ISBN-13 978-3-540-13389-6 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science-i-Business Media springer.com © Springer-Verlag Berlin Heidelberg 1984 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. -
CONSTRUCTING DE RHAM-WITT COMPLEXES on a BUDGET (DRAFT VERSION) Contents 1. Introduction 3 1.1. the De Rham-Witt Complex 3 1.2
CONSTRUCTING DE RHAM-WITT COMPLEXES ON A BUDGET (DRAFT VERSION) BHARGAV BHATT, JACOB LURIE, AND AKHIL MATHEW Contents 1. Introduction 3 1.1. The de Rham-Witt complex 3 1.2. Overview 4 1.3. Notations 6 1.4. Acknowledgments 6 2. Dieudonn´eComplexes 7 2.1. The Category KD 7 2.2. Saturated Dieudonn´eComplexes 7 2.3. Saturation of Dieudonn´eComplexes 9 2.4. The Cartier Criterion 10 2.5. Quotients of Saturated Dieudonn´eComplexes 12 2.6. The Completion of a Saturated Dieudonn´eComplex 13 2.7. Strict Dieudonn´eComplexes 17 2.8. Comparison of M ∗ and W(M)∗ 19 2.9. Examples 20 3. Dieudonn´eAlgebras 22 3.1. Definitions 22 3.2. Example: de Rham Complexes 23 3.3. The Cartier Isomorphism 27 3.4. Saturation of Dieudonn´eAlgebras 29 3.5. Completions of Dieudonn´eAlgebras 30 3.6. Comparison with Witt Vectors 32 4. The de Rham-Witt Complex 36 4.1. Construction 36 4.2. Comparison with a Smooth Lift 37 4.3. Comparison with the de Rham Complex 39 4.4. Comparison with Illusie 40 5. Globalization 46 5.1. Localizations of Dieudonn´eAlgebras 46 5.2. The de Rham-Witt Complex of an Fp-Scheme 49 5.3. Etale´ localization 51 1 2 BHARGAV BHATT, JACOB LURIE, AND AKHIL MATHEW 6. The Nygaard filtration 57 6.1. Constructing the Nygaard filtration 57 6.2. The Nygaard filtration and Lηp via filtered derived categories 60 7. Relation to seminormality 62 7.1. The example of a cusp 62 7.2. Realizing the seminormalization via the de Rham-Witt complex 65 8. -
On the Construction of the Bockstein Spectral Sequence
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 210, 1975 ON THE CONSTRUCTIONOF THE BOCKSTEINSPECTRAL SEQUENCE BY JERROLD SIEGEL ABSTRACT. The Bockstein spectral sequence is developed from a direct limit construction. This is shown to clarify its relation to certain associated struc- tures, in particular the divided power operations. Finally, the direct limit construc- tion is used to study the problem of enumerating the Bockstein spectral sequences over a given simple J?-module. The Bockstein homomorphism can be defined as follows: Let (717,d) be a free chain complex of abelian groups. Let (C*(717,Z ),d*) be the associated co- chain complex with Zp-coefficients and let x G H"(M, Zp). Finally let c G C"(M, Z) be a cochain whose mod p reduction represents x. One checks that the above implies d*c —p • e for some cocycle e G C"+X(M, Z). Define ßxx = [e] G Hn+X(M, Zp). Checking that ß] = 0 define E*(M) to be the homology of the complex 77*(717,Zp) with respect to the differential |3,. In general x G E*(M) can be represented by chains c G C"(M, Z) with d*c = pre. Define a differential on E*(M) by ßrx = [e] and E*+X(M) to be homol- ogy with respect to ßr. The sequence of graded complexes E*(M) is the Bockstein spectral sequence with respect to p. More efficiently [1] this spectral sequence can be derived from the coefficient sequence 0—>Z—*Z—+Z—>0by considering the associated short exact sequence of cochain complexes, 0 -* C*(M,Z) -* C*(M,Z) -* C*(M,Zp) -* 0 and forming the exact couple H*(M,Z)-*H*(M,Z) \ / H*(M, Zp) The spectral sequence of this exact couple is the Bockstein spectral sequence. -
→Cn−1(X,A; G) Becomes the Map ∂ ⊗ 11 : Cn(X, A)⊗G→Cn−1(X, A)⊗G Where ∂ : Cn(X, A)→Cn−1(X, A) Is the Usual Boundary Map for Z Coefficients
Universal Coefficients for Homology Section 3.A 261 The main goal in this section is an algebraic formula for computing homology with arbitrary coefficients in terms of homology with Z coefficients. The theory parallels rather closely the universal coefficient theorem for cohomology in §3.1. The first step is to formulate the definition of homology with coefficients in terms of tensor products. The chain group Cn(X; G) as defined in §2.2 consists of the finite n formal sums i giσi with gi ∈ G and σi : →X . This means that Cn(X; G) is a P direct sum of copies of G, with one copy for∆ each singular n simplex in X . More gen- erally, the relative chain group Cn(X,A; G) = Cn(X; G)/Cn(A; G) is also a direct sum of copies of G, one for each singular n simplex in X not contained in A. From the basic properties of tensor products listed in the discussion of the Kunneth¨ formula in §3.2 it follows that Cn(X,A; G) is naturally isomorphic to Cn(X, A)⊗G, via the correspondence i giσi ֏ i σi ⊗ gi . Under this isomorphism the boundary map P P Cn(X,A; G)→Cn−1(X,A; G) becomes the map ∂ ⊗ 11 : Cn(X, A)⊗G→Cn−1(X, A)⊗G where ∂ : Cn(X, A)→Cn−1(X, A) is the usual boundary map for Z coefficients. Thus we have the following algebraic problem: ∂n Given a chain complex ··· →- Cn -----→Cn−1 →- ··· of free abelian groups Cn , is it possible to compute the homology groups Hn(C; G) of the associated ∂n ⊗11 chain complex ··· -----→Cn ⊗G ----------------------------→ Cn−1 ⊗G -----→··· just in terms of G and the homology groups Hn(C) of the original complex? To approach this problem, the idea will be to compare the chain complex C with two simpler subcomplexes, the subcomplexes consisting of the cycles and the boundaries in C , and see what happens upon tensoring all three complexes with G.