Behavioral and Neurobiological Studies of Visual Learning in Honey Bees (Apis Mellifera) in Virtual Reality Alexis Buatois

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral and Neurobiological Studies of Visual Learning in Honey Bees (Apis Mellifera) in Virtual Reality Alexis Buatois Behavioral and neurobiological studies of visual learning in honey bees (Apis mellifera) in virtual reality Alexis Buatois To cite this version: Alexis Buatois. Behavioral and neurobiological studies of visual learning in honey bees (Apis mellifera) in virtual reality. Animal biology. Université Paul Sabatier - Toulouse III, 2018. English. NNT : 2018TOU30173. tel-02307339 HAL Id: tel-02307339 https://tel.archives-ouvertes.fr/tel-02307339 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Alexis BUATOIS Le 17 septembre 2018 Etudes comportementales et neurobiologiques de l’apprentissage visuel chez l’abeille (Apis mellifera) en réalité virtuelle École doctorale et discipline ou spécialité ED BSB : Neurosciences Unité de recherche Centre de Recherche sur la Cognition Animale (UMR 5169) Directrice(s) ou Directeur(s) de Thèse Pr. Martin Giurfa (UT 3 Paul Sabatier) Jury Dr. Anne-Sophie Darmaillacq (Maître de conférences, Université de Caen) Rapporteur Dr. Stéphane Viollet (DR, CNRS/ Université Aix) Rapporteur Pr. Christophe Thébaud (Pr., UT3) Examinateur Pr. Martin Giurfa (Pr. UT3) Superviseur 1 Remerciements L’expression « Chercher une aiguille dans une botte de foin » prend tout son sens lorsqu’à la sortie du M2 on doit chercher une thèse. Pour cela, mes premiers remerciements se tournent vers le Pr. Martin Giurfa qui m’a donné ma chance sur ce sujet. Grâce à lui j’ai pu continuer de travailler dans une équipe que j’affectionne sur des sujets qui me passionnent. Ses conseils et son expérience ont été précieux afin de mener à terme ces trois années. Merci pour les barbecues annuels, même si vous l’aurez compris la chanson ne fait pas partie de mes aptitudes. Je remercie également le Dr. Aurore Avarguès-Weber, qui m’a co-encadré durant ces 3 années et m’a soutenu dans nombre de mes décisions. Merci d’avoir partagé tes connaissances et ton temps au cours de nombreuses discussions qui ont permis de faire avancer le projet. Merci au Dr. Sebastien Weber pour le programme informatique qui a permis de réaliser mes expériences. Merci à Patrick Schultheiss pour son implication dans le projet et pour les nombreuses discussions scientifiques pendant mes deux premières années. Merci à Isabelle Massou (Isa pour les intimes). Sans ta participation, mes dernières expériences n’auraient pas vu le jour, je te remercie donc pour le temps que tu as consacré à ce projet tant en termes d’encadrement de stagiaire et de manips, qu’en termes de discussion. Merci aussi pour tout le reste, le thé, les mojitos, et les discussions plus personnelles. « T’assure » comme disent les jeunes de la génération Y. Merci à tous les stagiaires qui ont permis d’obtenir des données à toutes saisons. Un merci tout particulier à Cécile Pichot, Clara Flumian et Lou Laroche. Un grand merci d’avoir été en quelque sorte des cobayes dans mon expérience d’encadrement, chacun d’entre vous m’a permis de grandir et d’améliorer mes méthodes d’encadrement. Une thèse se résume aussi à rouiller dans un bureau devant un ordinateur pendant des heures. Le temps pourrait paraître long mais fort heureusement on a des camarades de jeux. Je remercie donc les autres étudiants du bureau 323. Je remercie tout particulièrement Natasha (avec un s), parce que dans le calendrier Indien de la thèse, nous sommes nés le même jour ce qui fait de nous des jumeaux de thèse. Merci pour les discussions scientifiques et non scientifiques. Merci à Paul pour sa ressemblance Jake Gyllenhaal, c’est une chance d’avoir un sosie si parfait à nos côtés. 2 Merci à Maru et Joao d’avoir apporté avec eux la culture sud-américaine dans le bureau. Votre bonne humeur (lié à votre addiction au maté certainement) était communicative. Merci à ce bureau pour les bons comme les mauvais moments. Un grand merci à tous les membres du laboratoire pour leur accueil. Je remercie particulièrement les membres de l’équipe EXPLAIN pour les nombreuses réunions d’équipe qui permette de rendre la vie scientifique dynamique. Un merci tout particulier à Mathieu Lihoreau qui m’a intégré auprès de cette équipe il y a 4 ans de ça. C’est grâce à ce stage de M2 que je suis encore au labo aujourd’hui. Merci à Cristian Pasquaretta pour sa bonne humeur, et sa passion pour les ibis royaux et les pinces de crabe. Enfin merci à Antoine Wystrach pour les nombreuses discussions scientifiques et pour les sorties snowboard. Je remercie aussi ces trois compères pour les soirées. Merci à tous les autres membres du personnel du CRCA avec qui chaque discussion a été un bol d’air. Je pense tout particulièrement à Patrick Arrufat et Geral Latil. Merci à Lucie Hotier pour son rôle d’apicultrice et nos discussions. Merci aussi à Maud Combe, pour sa patience face à mes ordinateurs possédant leur propre volonté. Merci à Alix et Christine, sans qui aucun achat ou déplacement ne serait possible. Le problème avec les remerciements c’est qu’en 3 ans on rencontre un nombre incalculable de gens, je finirais donc par remercier toutes les autres personnes du labo qui ont participé de près ou de loin à la vie de ma thèse : Amélie, Simon, Rémi, Kévin, Valentin, Manon, Maoui, Hugo, Aurélie, Mathias, Violette, Nathalie. Un merci spécial à Séverine pour son incroyable patience depuis toutes ces années. Vivre avec un étudiant en thèse qui est déjà naturellement râleur est un job à plein temps qu’elle assume avec grâce. Elle est bien sur celle qui m’a permis de m’évader lorsque le travail prenait trop de place. Mes derniers remerciements personnels vont à mes parents qui ont toujours soutenu mes choix au cours de mes études, même quand mes ambitions étaient d’embaumer des morts, c’est pour dire. Ce soutien je le retrouve encore lorsqu’ils lisent mon introduction et ma discussion. Merci à eux pour leur soutien. 3 Enfin, merci au Dr. Jean-Christophe Sandoz et le Dr. Lars Chittka pour leur participation lors de mes deux comités de thèse. Chacun de leurs conseils était précieux. Pour finir, merci au Dr. Anne-Sophie Darmaillacq et au Dr. Stéphane Viollet d’avoir accepté de juger ce manuscrit. 4 5 Sommaire Préface ............................................................................................................................................. 7 Introduction .................................................................................................................................. 11 I. Les bases de l’apprentissage ................................................................................................. 14 a. Apprentissage associatif élémentaire ........................................................................ 14 b. Apprentissage non élémentaire ................................................................................. 18 II. L’abeille : un modèle pour l’étude de la cognition visuelle ................................................. 24 a. Apprentissage et mémoire visuelle chez l’abeille .................................................... 25 b. Le cerveau de l’abeille .............................................................................................. 34 c. Le système visuel ...................................................................................................... 37 d. Comment est codée l’information visuelle ? ............................................................ 40 e. Comment sont codés les renforcements ? ................................................................. 43 f. Comment identifier les bases neurales de l’apprentissage visuel chez l’abeille ? .... 46 III. Objectifs ................................................................................................................................ 50 IV. Références ............................................................................................................................. 53 CHAPITRE 1 : Associative visual learning by tethered bees in a controlled visual environment .................................................................................................................................. 71 CHAPITRE 2 : Transfer of visual learning between a virtual and a real environment in honey bees: The role of active vision ..................................................................................... 137 CHAPITRE 3 : Non elemental visual learning of honey bees in virtual reality ................... 191 6 CHAPITRE 4 : Immediate early genes as a tool to identify the neural bases of color memory in honey bees ................................................................................................................ 227 Discussion .................................................................................................................................... 257 I. La réalité virtuelle : une bonne alternative au libre vol ? ................................................... 261 a. Les stimuli virtuels sont perçus différemment des stimuli réels ............................ 261 b. La vision active est dispensable dans certains contextes .......................................
Recommended publications
  • Do Insects Have Emotions? Some Insights from Bumble Bees David Baracchi, Mathieu Lihoreau, Martin Giurfa
    Do Insects Have Emotions? Some Insights from Bumble Bees David Baracchi, Mathieu Lihoreau, Martin Giurfa To cite this version: David Baracchi, Mathieu Lihoreau, Martin Giurfa. Do Insects Have Emotions? Some Insights from Bumble Bees. Frontiers in Behavioral Neuroscience, Frontiers, 2017, 11, 10.3389/fnbeh.2017.00157. hal-02105101 HAL Id: hal-02105101 https://hal.archives-ouvertes.fr/hal-02105101 Submitted on 20 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PERSPECTIVE published: xx August 2017 doi: 10.3389/fnbeh.2017.00157 Do Insects Have Emotions? Some Insights from Bumble Bees David Baracchi 1, 2*, Mathieu Lihoreau 1 and Martin Giurfa 1 1 Research Center on Animal Cognition, Center for Integrative Biology, Centre National de la Recherche Scientifique, University of Toulouse, Toulouse, France, 2 Laboratoire d’Ethologie Expérimentale et Comparée, Université Paris 13, Paris, France While our conceptual understanding of emotions is largely based on human subjective experiences, research in comparative cognition has shown growing interest in the existence and identification of “emotion-like” states in non-human animals. There is still ongoing debate about the nature of emotions in animals (especially invertebrates), and certainly their existence and the existence of certain expressive behaviors displaying internal emotional states raise a number of exciting and challenging questions.
    [Show full text]
  • Research Center on Animal Cognition CRCA
    Research units HCERES report on research unit: Research Center on Animal Cognition CRCA Under the supervision of the following institutions and research bodies: Université Toulouse 3 - Paul Sabatier - UPS Centre National de la Recherche Scientifique - CNRS Evaluation Campaign 2014-2015 (Group A) Research units In the name of HCERES,1 In the name of the experts committee,2 Didier HOUSSIN, president Martine HAUSBERGER, chairwoman of the committee Under the decree No.2014-1365 dated 14 november 2014, 1 The president of HCERES "countersigns the evaluation reports set up by the experts committees and signed by their chairman." (Article 8, paragraph 5) 2 The evaluation reports "are signed by the chairman of the expert committee". (Article 11, paragraph 2) Research Center on Animal Cognition, CRCA, U Toulouse 3, CNRS, Mr Martin GIURFA Evaluation report This report is the result of the evaluation by the experts committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial deliberation of the committee. Unit name: Research Center on Animal Cognition Unit acronym: CRCA Label requested: UMR Present no.: 5169 Name of Director Mr Martin GIURFA (2014-2015): Name of Project Leader (2016-2020): Mr Martin GIURFA Expert committee members Chair: Ms Martine HAUSBERGER, Université de Rennes 1 Experts: Ms Fabienne AUJARD, CNRS, Brunoy (CoNRS representative) Mr Jérôme ESTAQUIER, Université de Laval, Québec, Canada Ms Heike FELDHAAR, Bayreuth University, Germany Ms Sylvie GRANON, Centre
    [Show full text]
  • Individual Versus Collective Cognition in Social Insects
    Individual versus collective cognition in social insects Ofer Feinermanᴥ, Amos Kormanˠ ᴥ Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel. Email: [email protected] ˠ Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, 75013, Paris, France. Email: [email protected] Abstract The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony.To achieve collective cognitiona group can draw on two different sources: individual cognitionand the connectivity between individuals.Computation in neural-networks, for example,is attributedmore tosophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony.Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure.This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Introduction The individuals that make up a social insect colony are so tightly knit that they are often regarded as a single super-organism(Wilson and Hölldobler, 2009). This point of view seems to go far beyond a simple metaphor(Gillooly et al., 2010)and encompasses aspects of the colony that are analogous to cell differentiation(Emerson, 1939), metabolic rates(Hou et al., 2010; Waters et al., 2010), nutrient regulation(Behmer, 2009),thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange(King et al., 2015), and more.
    [Show full text]
  • Andy Clark and His Critics
    Andy Clark and His Critics E D I T E D BY MATTEO COLOMBO ELIZABETH IRVINE and MOG STAPLETON 1 1 Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and certain other countries. Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America. © Oxford University Press 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by license, or under terms agreed with the appropriate reproduction rights organization. Inquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this work in any other form and you must impose this same condition on any acquirer. CIP data is on file at the Library of Congress ISBN 978– 0– 19– 066281– 3 9 8 7 6 5 4 3 2 1 Printed by Sheridan Books, Inc., United States of America CONTENTS Foreword ix Daniel C. Dennett Acknowledgements xi List of Contributors xiii Introduction 1 Matteo Colombo, Liz Irvine, and Mog Stapleton PART 1 EXTENSIONS AND ALTERATIONS 1. Extended Cognition and Extended Consciousness 9 David J. Chalmers 2. The Elusive Extended Mind: Extended Information Processing Doesn’t Equal Extended Mind 21 Fred Adams 3.
    [Show full text]
  • Curriculum Vitae Fabienne Dupuy
    Curriculum Vitae Fabienne Dupuy Date of birth: January18th, 1980 Place of birth: Saint-Gaudens (31) France Professional address : University of Cambridge Department of zoology Downing Street Cambridge CB2 3EJ United Kingdom Tel : +44 (0)1223 336622 E-Mail : [email protected] Web page: http://casas-lab.irbi.univ-tours.fr/dupuy.html Research Interests Neurobiology, Neuroethology, Sensory system Expertise Behavioural Techniques (conditioning procedures) Optophysiological measurements of neuronal activity (calcium imaging recording in the insect nervous system) Intra-cellular and extra-cellular electrophysiology Computing programmation in Matlab software Informatic tools (R, Statistica, Linux) Current position Since 2009 Postdoctoral fellowship : neural basis of the steering behaviour in Gryllus bimaculatus. Department of zoology, University of Cambridge, UK. Funded by the BBRSC. Advisor : Dr. Berthold Hedwig University education 2005 - 2009 PhD thesis (PhD course Santé sciences technologies) : Coding of mechanosensory information in the sensorial system of the cricket Nemobius sylvestris. I.R.B.I. CNRS/Univ. Faculté des Sciences et Techinques, Tours, France. Supported by CILIA European project. Advisor: Prof Dr. Claudio Lazzari. 2004 - 2005 First year of PhD (PhD course CLESCO): Behavioural and neurobiological basis of the olfactive learning in the ant Camponotus spp. C.R.C.A CNRS/Univ. Paul Sabatier, Toulouse, France. Advisor: Prof Dr. Martin Giurfa. 2003 - 2004 MSc degree: Neurosciences (speciality: Neurosciences , Behavior and Cognition) obtained with honours: Olfactory learning and coding in the ants Camponotus spp. C.R.C.A CNRS-Univ. Paul Sabatier, Toulouse, France and University of Buenos Aires, Argentina Advisors: Prof. Dr. Martin Giurfa and Dr. Roxana Josens. 1999 - 2003 BSc degree: Biological Sciences, Université Paul Sabatier, Toulouse, France.
    [Show full text]
  • 2/1-Spaltig, Ohne Einrückungen
    Der Nachlass von Wilhelm Lauer im Archiv des Geographischen Instituts Bonn Findbuch bearbeitet von Sabine KROLL und Jens Peter MÜLLER 2., um Nachträge erweiterte Fassung Bonn 2019 Gefördert von der Deutschen Forschungsgemeinschaft Inhaltsverzeichnis Abkürzungsverzeichnis ............................................................................................................................. II Vorwort .................................................................................................................................................... III Zur Biographie von Wilhelm Lauer ...................................................................................................... III Hinweise zum Nachlass Lauer und zur Benutzung ............................................................................. III 1 Lebensdokumente von Wilhelm Lauer .................................................................................................. 5 1.1 Privater und gesellschaftlicher Bereich .......................................................................................... 5 1.2 Beruflicher Bereich ......................................................................................................................... 6 1.2.1 Wilhelm Lauer als Wissenschaftler ......................................................................................... 6 1.2.2. Wilhelm Lauer in Leitungsfunktionen ................................................................................... 16 1.2.3 Wilhelm Lauer als Gutachter ................................................................................................
    [Show full text]
  • Putting the Ecology Back Into Insect Cognition Research Mathieu Lihoreau, Thibaud Dubois, Tamara Gomez-Moracho, Stéphane Kraus, Coline Monchanin, Cristian Pasquaretta
    Putting the ecology back into insect cognition research Mathieu Lihoreau, Thibaud Dubois, Tamara Gomez-Moracho, Stéphane Kraus, Coline Monchanin, Cristian Pasquaretta To cite this version: Mathieu Lihoreau, Thibaud Dubois, Tamara Gomez-Moracho, Stéphane Kraus, Coline Monchanin, et al.. Putting the ecology back into insect cognition research. Advances in insect physiology, Academic Press, Inc., In press, 57, pp.1 - 25. 10.1016/bs.aiip.2019.08.002. hal-02324976 HAL Id: hal-02324976 https://hal.archives-ouvertes.fr/hal-02324976 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ecology and evolution of insect cognition 2 3 Putting the ecology back into insect cognition 4 research 5 6 Mathieu Lihoreau1†, Thibault Dubois1,2*, Tamara Gomez-Moracho1*, Stéphane Kraus1*, 7 Coline Monchanin1,2*, Cristian Pasquaretta1* 8 9 1Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); 10 CNRS, University Paul Sabatier, Toulouse, France 11 2Department of Biological Sciences, Macquarie University, NSW, Australia 12 13 * These authors contributed equally to the work 14 † Corresponding author: [email protected] 15 16 1 17 Abstract 18 Over the past decades, research on insect cognition has made considerable advances in 19 describing the ability of model species (in particular bees and fruit flies) to achieve cognitive 20 tasks once thought to be unique to vertebrates, and investigating how these may be 21 implemented in a miniature brain.
    [Show full text]
  • Optimizing Laboratory Rearing of a Key Pollinator, Bombus Impatiens
    insects Article Optimizing Laboratory Rearing of a Key Pollinator, Bombus impatiens Erin Treanore * , Katherine Barie, Nathan Derstine, Kaitlin Gadebusch, Margarita Orlova , Monique Porter, Frederick Purnell and Etya Amsalem Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; [email protected] (K.B.); [email protected] (N.D.); [email protected] (K.G.); [email protected] (M.O.); [email protected] (M.P.); [email protected] (F.P.); [email protected] (E.A.) * Correspondence: [email protected] Simple Summary: Rearing insects in captivity is critical for both research and commercial purposes. One group of insects that stands out for their ecological and scientific importance are bumble bees. However, most research studies with bumble bees rely on commercial colonies due to the challenges associated with initiating colonies in the laboratory. This limits the ability to study the early stages of the colony life cycle and the ability to control for variables such as colony age and relatedness. To overcome these challenges, we tested several aspects related to the solitary phase of the North American bumble bee species, Bombus impatiens. In this species, queens emerge by the end of the season, mate, and enter a winter diapause. They then initiate a colony the next spring. We examined the optimal age for mating and how the timing of CO2 narcosis (a technique used to bypass diapause) and social cues post-mating affect queen egg laying. We demonstrate an optimum age for mating in males and females and the importance of worker and pupa presence to egg laying in queens.
    [Show full text]
  • Convergent Cognitive Evolution: What Can Be Learnt from Comparisons with Corvids and Cephalopods?
    Convergent cognitive evolution: what can be learnt from comparisons with corvids and cephalopods? Piero Amodio Sidney Sussex College University of Cambridge February 2020 Supervisors: Nicola S. Clayton & Ljerka Ostojić This thesis is submitted for the degree of Doctor or Philosophy Preface This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as stated in the Declaration and specified in the text. This thesis is not substantially the same as any work that I have submitted before, or, is being concurrently submitted for any degree or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. This thesis does not exceed the prescribed word limit for the relevant Degree Committee. ii PhD Candidate Piero Amodio, Department of Psychology, University of Cambridge Thesis title Convergent cognitive evolution: what can be learnt from comparisons with corvids and cephalopods? Summary Emery and Clayton (2004) proposed that corvids (e.g. crows, ravens, jays) may have evolved – convergently with apes – flexible and domain general cognitive tool-kits. In a similar vein, others have suggested that coleoid cephalopods (octopus, cuttlefish, squid) may have developed complex cognition convergently with large-brained vertebrates but current evidence is not sufficient to fully evaluate these propositions.
    [Show full text]
  • Invertebrate Learning and Memory
    CHAPTER 3 Cognitive Components of Insect Behavior Martin Giurfa*,† and Randolf Menzel‡ *Universite´ de Toulouse, Centre de Recherches sur la Cognition Animale, Toulouse, France †Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Toulouse, France ‡Freie Universita¨t Berlin, Berlin, Germany INTRODUCTION foraging,6,7 and they learn the spatial relations of envi- À ronmental objects during these exploratory flights.8 10 Cognition is the integrating process that utilizes Fruit flies (Drosophila melanogaster) also respond to their many different forms of memory (innate and acquired), placement within a novel open-field arena with a high À creates internal representations of the experienced level of initial activity,11 13 followed by a reduced world, and provides a reference for expecting the future stable level of spontaneous activity. This initial elevated of the animal’s own actions.1,2 It thus allows the animal component corresponds to an active exploration because to decide between different options in reference to the it is independent of handling prior to placement within expected outcome of its potential actions. All these pro- the arena, and it is proportional to the size of the arena.14 cesses occur as intrinsic operations of the nervous sys- Furthermore, visually impaired flies are significantly tem, and they provide an implicit form of knowledge impaired in the attenuation of initial activity, thus for controlling behavior. None of these processes need suggesting that visual information is required for the to—and certainly will not—become explicit within the rapid decay from elevated initial activity to spontaneous nervous systems of many animal species (particularly activity within the novel open-field arena.14 invertebrates and lower vertebrates), but their existence Exploratory behavior facilitates learning by associat- must be assumed given the animal’s specific behavioral ing the animal’s action to the resulting outcome.
    [Show full text]
  • Ed. by C. Taddei-Ferretti, 1994 WERNER E. REICHARDT
    In: Biophysics of Photoreception(1) ed. By C. Taddei-Ferretti, 1994 WERNER E. REICHARDT (1924-1992): IN MEMORIAM Roland Hengstenberg Max-Planck-Institut für biologische Kybernetik, D-72076 Tuebingen Professor Werner E. Reichardt died on September 18, 1992 in Tuebingen. He collapsed and lost consciousness at the end of a symposium that was organized in his honor by his coworkers and friends on the occasion of his retirement. He left his wife, Barbara Reichardt, two adult children, Andrea and Cornelius, and his grandson Johannes. Werner Reichardt was the founder of the Max-Planck-Institut für biologische Kybernetik in Tuebingen, and one of its directors since 1968. He was in many ways a fascinating person and an example for many young colleagues who accompanied him on parts of his way. In matters of sciences he fought for thoroughness and top quality. He was always ready to accept a good argument even if he had to change his opinion. In dealing with persons he was friendly and absolutely loyal. With friends he was warmhearted and unfailingly sincere. 1.Youth and early experiences: Reichardt was born 1924 in Berlin. Despite the depressing economical and political atmosphere of this time, he enjoyed a protected childhood. He became interested in physics already during school time, volunteering in the private laboratory of H.E. Hollmann, a pioneer of ultra shortwave communication. Right after his high school graduation in 1941 Reichardt was called to the air force and served in a technical unit developing long distance radio communication for weather forecasts. His parents were killed in January 1943 during the first bomb attack on Berlin.
    [Show full text]
  • C the JOURNAL of PHILOSOPHY C Master Proof JOP
    . c c THE JOURNAL OF PHILOSOPHY volume 0, no. 0, 2008 . c c INSECTS AND THE PROBLEM OF SIMPLE MINDS: ARE BEES NATURAL ZOMBIES? hich animals consciously experience the world through their senses, and which are mere robots, blindly processing W the information delivered by their “sensors”? There is little agreement about where, indeed, even if, we should draw a firm line demarcating conscious awareness (that is, phenomenal awareness, subjectivity, what-it-is-like-ness) from nonconscious zombiehood (what Ned Block calls “access” consciousness).1 I will assume that the solu- tion to what Michael Tye calls the “problem of simple minds” and what Peter Carruthers calls the “distribution problem,” does not re- quire us to conceive of consciousness as a graded or “penumbral” phenomenon.2 Tye is on the right track when he writes that “[s]ome- where down the phylogenetic scale phenomenal consciousness ceases. But where?” (op. cit., p. 171). That is a tough question, though per- haps not intractable. I want to sketch an empirically driven proposal for removing some puzzlement about the distribution of conscious- ness in the animal world. Perhaps we can make progress on Tye’s question by exploiting analogues between the residual abilities found in the dissociative phenomenon of blindsight, and the visual and other sensory functions in certain animals. I want to develop the idea that we quite likely can distinguish conscious from nonconscious awareness in the animal world, and in so doing identify creatures that are naturally blindsighted.3 1 Block, “On a Confusion about a Function of Consciousness,” in Block, Owen Flanagan, and Guven Güzeldere, eds., The Nature of Consciousness: Philosophical Debates (Cambridge: MIT, 1995).
    [Show full text]