Public Version.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Public Version.Pdf Dedicated to my father 1952 – 2013 Abstract While the aetiology and pathogenesis of cancer is variable and dependent on the initial cellular and carcinogenic environment, all manifestations of the disease are unified by a gross dysfunction of normal epigenetic control. Recent technological advances have revealed epigenomic disruption of large domains that encompass multiple genes, as well as a deregulation of spatial and temporal control of DNA in the nucleus. Here I consolidate these findings by identifying large genomic domains that are epigenetically and transcriptionally activated in prostate tumourigenesis, a phenomenon we termed Long Range Epigenetic Activation (LREA). These regions contain oncogenes, miRNAs and multiple prostate cancer biomarkers, such as prostate cancer antigen 3 (PCA3) and the prostate specific antigen (PSA). LREA regions are characterised by an increase of histone modifications H3K4me3 and H3K9ac with a simultaneous depletion of H3K27me3 at gene promoters. While I found little evidence of CpG island hypomethylation causing gene activation, I identified hypermethylation of CpG-islands associated with gene activation and differential promoter usage in prostate cancer. The presence of both epigenetically activated and repressed domains in prostate cancer indicates the deregulation of superior, “long-range” acting processes such as chromatin looping or the timing of DNA replication. Using the Kallikrein gene family locus, I describe the presence of chromatin loops anchored by the CTCF protein that commonly demarcate the limits of this cancer-specific regional epigenetic modulation. To investigate how replication timing can influence the cancer epigenome I optimised and carried out the high-resolution “Repli-seq” technique, which details the time of replication for all genomic loci. I show that epigenetic gene activation and repression at both individual genes and at domains is associated with a shift in replication timing between normal and cancer cells. I identify the presence of a cancer-specific signature of replication timing, as well as a replication timing shift at the common prostate oncogene, ERG. Genome-wide hypomethylation which commonly affects cancer DNA is shown to exclusively occur at DNA that replicates late in both normal and cancer cells. Together, the work presented here provides a significant and novel contribution in understanding the nature of epigenetic regulation and the consequences of its deregulation in carcinogenesis. Acknowledgements To begin, I would like to thank my supervisor Prof Sue Clark. The entirety of the research this thesis represents, from its conception and realisation, to its documentation here, all exist due to her unfailing support and guidance. Moreover, while it may have indulged my idle temperament, her friendship and collegiality are amongst my most valued memories of the Garvan. I would also like to thank my co-supervisor Dr Clare Stirzaker, for always taking the time to care for me, even when I didn’t realise I needed it. I am grateful to the Garvan Institute for creating such a unique and welcoming research environment for young scientists, and Dr Alessandra Bray for her many efforts to mitigate the consequences of my failing to properly read guidelines. The research presented here relied on the expertise and generosity of many people at the Garvan. Specifically, I would like to thank: Dr Marcel Coolen and Dr Liz Caldon for their assistance in experimental design; Dr Mark Robinson, Dr Nicola Armstrong and Dario Strbenac for their critical bioinformatics support and analyses, as well as their patience; Jenny Song, Dr Fatima Valdes and Dr Phillippa Taberlay for all of their experimental data which contributed to this thesis. I would like to acknowledge all of the Clark lab, past and present, for creating a welcoming and stimulating environment away from home. To all my fellow PhD students, I felt grateful and elevated by your company. I would like to specifically thank Dr Warick Locke for his undying and beloved enmity, and Zena Kassir for her treasured and undeserved friendship. It would be amiss to not thank Aaron Statham, for his contributions to this thesis, which span bioinformatics support, experimental guidance and youthful mentorship, and for his valued friendship during my years at the Garvan. I am thankful to my friends, for their generous hearts and continual affections that my many and varied flaws should never have warranted. I am most grateful to Giselle and Aurélie, who honoured me with their company and whose love and understanding I will always cherish. I would like to thank my brother for his life-long rivalry and for his persisting successes that have always spurned me to higher grounds. I would like to thank my mother for her unqualified love, for giving me the audacity to never shy from myself or from life’s challenges. Finally, I would like to thank my father, for his unshakable belief in a rational universe, in spite of all the evidence that can be borne; for his grace and quiet insight; and for his unwavering support of all my studies, even when they mattered the least. Financial Support and Publications I gratefully acknowledgement the following scholarships, prizes and financial support received during my PhD: 2009 - 2012: Australian Postgraduate Award, University of New South Wales 2009 – 2012: Rising Star Award, Faculty of Medicine, University of New South Wales 2009 – 2011: Cancer Institute NSW Research Scholar Award 2009: The 19th St Vincent’s and Mater Health Sydney Research Symposium Oral Presentation Prize 2009 – 2012: The Garvan Institute Postgraduate Supplementary Scholarship Publications: Bert, S.A., Robinson, M.D., Strbenac, D., Statham, A.L., Song, J.Z., Hulf, T., Sutherland, R.L., Coolen, M.W., Stirzaker, C., and Clark, S.J. (2013). Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23, 9-22 Conference Publications Bert, S.A., Robinson, M.D., Strbenac, D., Statham, A.L., Song, J.Z., Coolen, M.W., Stirzaker, C., and Clark, S.J. Gene Activation Occurs In Epigenetically Controlled Domains In Cancer, presented at: 19th St Vincent’s and Mater Health Sydney Research Symposium, Sydney, Australia 2009. Oral presentation. 4th Asian Epigenomics Meeting, Genome Institute Singapore, Singapore 2009. Poster presentation. Lorne Genome Conference, Lorne, Australia 2010. Poster presentation. 5th PACRIM Breast and Prostate Cancer Meeting, Gold Coast, Australia 2011. Poster presentation. CONTENTS CONTENTS CHAPTER 1: Introduction 1 1.1 The regulated genome ............................................................................................ 2 1.2 The epigenetic code ................................................................................................ 3 1.2.1 Histone modifications ...................................................................................... 3 1.2.2 DNA methylation .............................................................................................. 6 1.2.2.1 CpG Island Methylation ............................................................................ 7 1.2.2.2 Low CpG Density Methylation .................................................................. 8 1.3 Domains of regulation ............................................................................................. 8 1.3.1 Domains of sequence composition ................................................................ 10 1.3.2 Histone modification domains ....................................................................... 11 1.3.3 CpG methylation domains.............................................................................. 11 1.3.4 Nuclear domains ............................................................................................ 12 1.3.4.1 Lamina associated domains .................................................................... 12 1.3.4.2 Active domains........................................................................................ 13 1.3.4.3 Globular structure of the genome .......................................................... 14 1.3.5 DNA replication domains ............................................................................... 15 1.4 Cancer, the diseased genome ............................................................................... 17 1.4.1 DNA methylation in tumourigenesis .............................................................. 18 1.4.2 Chromatin remodelling in tumourigenesis .................................................... 20 1.4.2.1 Histone methylation and cancer............................................................. 20 1.4.2.2 Histone acetylation and cancer .............................................................. 21 CONTENTS 1.4.3 Domain level epigenomic remodelling in cancer ........................................... 22 1.5 Justification & Aims ............................................................................................... 24 CHAPTER 2: Methods 26 2.1 Cell lines and culture ............................................................................................. 27 2.1.1 LNCaP cell line: Lymph Node Cancer of the Prostate .................................... 27 2.1.2 PrEC cell line: Prostate Epithelial Cells ........................................................... 27 2.2 Nucleic acid extraction .......................................................................................... 28 2.2.1 DNA extraction ..............................................................................................
Recommended publications
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • AN SSX4 KNOCK-IN CELL LINE MODEL and in Silico ANALYSIS of GENE EXPRESSION DATA AS TWO APPROACHES for INVESTIGATING MECHANISMS of CANCER/TESTIS GENE EXPRESSION
    AN SSX4 KNOCK-IN CELL LINE MODEL AND in silico ANALYSIS OF GENE EXPRESSION DATA AS TWO APPROACHES FOR INVESTIGATING MECHANISMS OF CANCER/TESTIS GENE EXPRESSION A THESIS SUBMITTED TO THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS AND THE INSTITUTE OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE BY DUYGU AKBAŞ AVCI AUGUST 2009 Sevgili eşim Ender’e ve aileme… ii I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assist. Prof. Dr. Ali Güre I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assoc. Prof. Dr. Hilal Özdağ I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assist.Prof. Dr.Özlen Konu Approved for the Institute of Engineering and Science ____________________ Prof. Dr. Mehmet Baray Director of the Institute of Engineering and Science iii ABSTRACT AN SSX4 KNOCK-IN CELL LINE MODEL AND in silico ANALYSIS OF GENE EXPRESSION DATA AS TWO APPROACHES FOR INVESTIGATING MECHANISMS OF CANCER/TESTIS GENE EXPRESSION Duygu Akbaş Avcı M.Sc. in Molecular Biology and Genetics Supervisor: Assist. Prof. Ali O. Güre August 2009, 104 pages Cancer/testis (CT) genes mapping to the X chromosome (CT-X) are normally expressed in male germ cells but not in adult somatic tissues, with rare exception of oogonia and trophoblast cells; whereas they are aberrantly expressed in various types of cancer.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability
    G C A T T A C G G C A T genes Article Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability Nekane Ibarluzea 1,2 , Ana Belén de la Hoz 1,2, Olatz Villate 1,2,3, Isabel Llano 1,2,3 , Intzane Ocio 4, Itxaso Martí 5, Miriam Guitart 6, Elisabeth Gabau 6, Fernando Andrade 1,2, Blanca Gener 1,2,3 and María-Isabel Tejada 1,2,3,* 1 Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; [email protected] (N.I.); [email protected] (A.B.d.l.H.); [email protected] (O.V.); [email protected] (I.L.); [email protected] (F.A.); [email protected] (B.G.) 2 Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain 3 Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain 4 Department of Paediatric Neurology, Araba University Hospital, Osakidetza Basque Health Service, 01009 Gasteiz, Spain; [email protected] 5 Department of Paediatric Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 Donostia, Spain; [email protected] 6 Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; [email protected] (M.G.); [email protected] (E.G.) * Correspondence: [email protected] Received: 3 December 2019; Accepted: 30 December 2019; Published: 2 January 2020 Abstract: X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Mini-Haplotypes As Lineage Informative Snps and Ancestry Inference Snps
    European Journal of Human Genetics (2012) 20, 1148–1154 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Mini-haplotypes as lineage informative SNPs and ancestry inference SNPs Andrew J Pakstis1, Rixun Fang2, Manohar R Furtado2, Judith R Kidd1 and Kenneth K Kidd*,1 We propose that haplotyped loci with high heterozygosity can be useful in human identification, especially within families, if recombination is very low among the sites. Three or more SNPs extending over small molecular intervals (o10 KB) can be identified in the human genome to define miniature haplotypes with moderate levels of linkage disequilibrium. Properly selected, these mini-haplotypes (or minihaps) consist of multiple haplotype lineages (alleles) that have evolved from the ancestral human haplotype but show no evidence of recurring recombination, allowing each distinct haplotype to be equated with an allele, all copies of which are essentially identical by descent. Historic recombinants, representing rare events that have drifted to common frequencies over many generations, can be identified in some cases, they do not equate to frequently recurring recombination. We have identified examples in our data collected on various projects and present eight such mini- haplotypes comprised of informative SNPs. We also discuss the ideal characteristics and advantages of minihaps for human familial identification and ancestry inference, and compare them to other types of forensic markers in use and/or that have been proposed. We expect that it is possible to carry out a systematic search and identify a useful panel of mini-haplotypes, with even better properties than the examples presented here.
    [Show full text]
  • SUPPLEMENTARY DATA Supplementary Table 1. Characteristics of the Organ Donors and Human Islet Preparations Used for RNA-Seq
    SUPPLEMENTARY DATA Supplementary Table 1. Characteristics of the organ donors and human islet preparations used for RNA-seq and independent confirmation and mechanistic studies. Gender Age BMI Cause of death Purity (years) (kg/m2) (%) F 77 23.8 Trauma 45 M 36 26.3 CVD 51 M 77 25.2 CVD 62 F 46 22.5 CVD 60 M 40 26.2 Trauma 34 M 59 26.7 NA 58 M 51 26.2 Trauma 54 F 79 29.7 CH 21 M 68 27.5 CH 42 F 76 25.4 CH 30 F 75 29.4 CVD 24 F 73 30.0 CVD 16 M 63 NA NA 46 F 64 23.4 CH 76 M 69 25.1 CH 68 F 23 19.7 Trauma 70 M 47 27.7 CVD 48 F 65 24.6 CH 58 F 87 21.5 Trauma 61 F 72 23.9 CH 62 M 69 25 CVD 85 M 85 25.5 CH 39 M 59 27.7 Trauma 56 F 76 19.5 CH 35 F 50 20.2 CH 70 F 42 23 CVD 48 M 52 24.5 CH 60 F 79 27.5 CH 89 M 56 24.7 Cerebral ischemia 47 M 69 24.2 CVD 57 F 79 28.1 Trauma 61 M 79 23.7 NA 13 M 82 23 CH 61 M 32 NA NA 75 F 23 22.5 Cardiac arrest 46 M 51 NA Trauma 37 Abbreviations: F: Female; M: Male; BMI: Body mass index; CVD: Cardiovascular disease; CH: Cerebral hemorrhage.
    [Show full text]
  • Med1 Regulates Meiotic Progression During Spermatogenesis in Mice
    REPRODUCTIONRESEARCH Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome Xin Huang, Cuifang Hao, Xiaofang Shen, Xiaoyan Liu, Yinghua Shan, Yuhua Zhang and Lili Chen Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao Medical University, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People’s Republic of China Correspondence should be addressed to C Hao; Email: [email protected] Abstract Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss. In this microenvironment, the cross talk between an oocyte and the surrounding cumulus cells (CCs) is critical for achieving oocyte competence. The aim of our study was to investigate the gene expression profiles of CCs obtained from PCOS patients undergoing IVF cycles in terms of oocyte maturation by using human Genome U133 Plus 2.0 microarrays. A total of 59 genes were differentially expressed in two CC groups. Most of these genes were identified to be involved in one or more of the following pathways: receptor interactions, calcium signaling, metabolism and biosynthesis, focal adhesion, melanogenesis, leukocyte transendothelial migration, Wnt signaling, and type 2 diabetes mellitus. According to the different expression levels in the microarrays and their putative functions, six differentially expressed genes (LHCGR, ANGPTL1, TNIK, GRIN2A, SFRP4, and SOCS3) were selected and analyzed by quantitative RT-PCR (qRT-PCR).
    [Show full text]
  • Hepatocyte Differentiation and Hepatocellular Carcinoma
    HEPATOCYTE DIFFERENTIATION AND HEPATOCELLULAR CARCINOMA: RATIONALE FOR P53 INDEPENDENT THERAPY by FRANCIS O ENANE Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy Dissertation Advisor Yogen Saunthararajah, MD Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine CASE WESTERN RESERVE UNIVERSITY May 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Francis O Enane Candindate for Doctor of Philosophy Degree*. Committee Chair: Peter Scacheri, PhD Committee member: Angela Ting PhD Committee member: Xiaoxia Li, PhD Committee member: Alok Khorana, MD Committee member: Yogen Saunthararajah, MD Date of defense: December 19th 2016 *We also certify that written approval has been obtained for any proprietary material contained therein Dedication I dedicate this work to approximately 17.5 million global cancer patient population as of the year 2016. I strongly believe that the scientific and medical communities will continue to work coherently to identify mechanisms to provide better cure rates of cancer, to reduce the economic burden to families affected, and to define psychological and emotional challenges experienced by patients and their families. The work performed in this dissertation is a small contribution to that objective and paves the way to understand new therapeutic mechanisms in hepatocellular carcinoma. In the modern technical and highly skilled society - and with sufficient financial and political support - there will
    [Show full text]
  • A Genome-Wide Association Study of Serum Proteins Reveals Shared Loci with Common Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450858; this version posted July 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A genome-wide association study of serum proteins reveals shared loci with common 2 diseases 3 Alexander Gudjonsson*,1, Valborg Gudmundsdottir*,1,2, Gisli T Axelsson1,2, Elias F 4 Gudmundsson1, Brynjolfur G Jonsson1, Lenore J Launer3, John R Lamb4, Lori L Jennings5, Thor 5 Aspelund1,2, Valur Emilsson#,1,2 & Vilmundur Gudnason#,1,2 6 7 8 9 1Icelandic Heart Association, Holtasmari 1, 201 Kopavogur, Iceland. 10 2Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland. 11 3Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National 12 Institute on Aging, Bethesda, MD 20892-9205, USA. 13 4GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. 14 5Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA. 15 16 17 18 19 *These authors contributed equally as joint-first authors 20 #These authors contributed equally as joint-senior authors 21 22 23 24 25 26 27 28 Correspondence: [email protected] 29 Keywords: Proteomics, pQTLs, genomics, systems genetics, serum 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450858; this version posted July 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Convergent Evolution of Chicken Z and Human X Chromosomes by Expansion and Gene Acquisition
    Convergent Evolution of Chicken Z and Human X Chromosomes by Expansion and Gene Acquisition Daniel W. Bellott1, Helen Skaletsky1, Tatyana Pyntikova1, Elaine R. Mardis2, Tina Graves2, Colin Kremitzki2, Laura G. Brown1, Steve Rozen1, Wesley C. Warren2, Richard K. Wilson2 & David C Page1 1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA 2. The Genome Center, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis Missouri 63108, USA 2 In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex – the W and Y chromosomes1-5. By contrast, the sex chromosomes found in both sexes – the Z and X chromosomes – are assumed to have diverged little from their autosomal progenitors2. Here we report findings that overturn this assumption for both the chicken Z and human X chromosomes. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome to the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, as well as a low gene density resulting from an expansion of intergenic regions.
    [Show full text]