Definición Y Análisis De Los Modos De Marcha De Un Robot Hexápodo Para Tareas De
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation
2007 IEEE International Conference on WeB9.1 Robotics and Automation Roma, Italy, 10-14 April 2007 Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation Brandon L. Rutter, Member, IEEE, William A. Lewinger, Member, IEEE, Marcus Blümel, Ansgar Büschges, Roger D. Quinn Abstract— Robotic control systems inspired by animals are such systems can exhibit, and a corresponding limit to the enticing to the robot designer due to their promises of complexity of locomotion tasks they can solve. simplicity, elegance and robustness. While there has been Coordination between legs to produce gaits has been success in applying general and behaviorally-based knowledge successfully implemented [6, 7, 8, 11] using rules based on of biological systems to control, we are investigating the use of animal behavior [12]. Though these methods produce control based on known and hypothesized neural pathways in specific model animals. Neural motor systems in animals are coordination between legs, subsystems must coordinate the only meaningful in the context of their mechanical body, and motion within each leg. This has typically been done using the behavior of the system can be highly dependent on inverse kinematics [6, 11]. While this is conceptually nonlinear and dynamic properties of the mechanical part of the straightforward, dealing with dynamic environments and system. It is therefore reasonable to believe that to reproduce perturbations can be a matter of considerable effort. In behavior, the physical characteristics of the biological system addition, these methods require trigonometric and other must also be modeled or accounted for. In this paper we examine the performance of a robotic system with three types computations which are often beyond the capability of of muscle model: null, piecewise-constant, and linear. -
Decentralised Compliant Control for Hexapod Robots: a Stick Insect Based Walking Model
Decentralised Compliant Control for Hexapod Robots: A Stick Insect Based Walking Model Hugo Leonardo Rosano-Matchain I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Institute of Perception, Action and Behaviour School of Informatics University of Edinburgh 2007 Abstract This thesis aims to transfer knowledge from insect biology into a hexapod walking robot. The similarity of the robot model to the biological target allows the testing of hypotheses regarding control and behavioural strategies in the insect. Therefore, this thesis supports biorobotic research by demonstrating that robotic implementations are improved by using biological strategies and these models can be used to understand biological systems. Specifically, this thesis addresses two central problems in hexapod walking control: the single leg control mechanism and its control variables; and the different roles of the front, middle and hind legs that allow a decentralised architecture to co-ordinate complex behavioural tasks. To investigate these problems, behavioural studies on insect curve walking were combined with quantitative simulations. Behavioural experiments were designed to explore the control of turns of freely walking stick insects, Carausius morosus, toward a visual target. A program for insect tracking and kinematic analysis of observed motion was developed. The re- sults demonstrate that the front legs are responsible for most of the body trajectory. Nonetheless, to replicate insect walking behaviour it is necessary for all legs to con- tribute with specific roles. Additionally, statistics on leg stepping show that middle and hind legs continuously influence each other. -
A Small 3D-Printed Six-Legged Walking Robot Designed for Desert Ant-Like
Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks Julien Dupeyroux, Grégoire Passault, Franck Ruffier, Stéphane Viollet, Julien Serres To cite this version: Julien Dupeyroux, Grégoire Passault, Franck Ruffier, Stéphane Viollet, Julien Serres. Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks. IFAC Word Congress 2017, Jul 2017, Toulouse, France. hal-01643176 HAL Id: hal-01643176 https://hal-amu.archives-ouvertes.fr/hal-01643176 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks ? Julien Dupeyroux ∗ Gr´egoirePassault ∗∗ Franck Ruffier ∗ St´ephaneViollet ∗ Julien Serres ∗ ∗ Aix-Marseille University, CNRS, ISM, Inst Movement Sci, Marseille, France (e-mail: [email protected]). ∗∗ Rhoban Team, LaBRI, University of Bordeaux, Bordeaux, France (e-mail: [email protected]) Abstract: Over the last five decades, legged robots, and especially six-legged walking robots, have aroused great interest among the robotic community. Legged robots provide a higher level of mobility through their kinematic structure over wheeled robots, because legged robots can walk over uneven terrains without non-holonomic constraint. -
Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School March 2019 Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain John Rippetoe University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Computer Sciences Commons, and the Robotics Commons Scholar Commons Citation Rippetoe, John, "Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain" (2019). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8407 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain by John Rippetoe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science and Engineering College of Engineering University of South Florida Co-Major Professor: Luther Palmer III, Ph.D. Co-Major Professor: Yu Sun, Ph.D. Kyle Reed, Ph.D. Rajiv Dubey, Ph.D. Stephen Deban, Ph.D. Date of Approval: March 25, 2019 Keywords: Bioinspired Robotics, Motion Planning, Terrain Classification Copyright c 2019, John Rippetoe DEDICATION This dissertation and all of the accumulated experience that went into its creation are dedicated first and foremost to God. Only through His strength, courage, and wisdom was I able to complete this work. And to my wife, best friend, and love of my life Kristen: only with your unwaivering support and love was I able to keep going through the toughest of times. -
Libro De Actas De Las Jornadas Nacionales De Robótica 2017
Libro de actas de las Jornadas Nacionales de Robótica 2017 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 Valencia Organizado por: Universitat Politècnica de València Instituto Universitario de Automática e Informática Industrial Comité Español de Automática Grupo Temático de Robótica Título: Libro de actas de las Jornadas Nacionales de Robótica 2017 Editores: Martin Mellado Arteche, Antonio Sánchez Salmerón, Enrique J Bernabeu Soler Editorial CEA-IFAC ISBN: 978-84-697-3742-2 Este documento está regulado por la licencia Creative Commons Libro de actas de las Jornadas Nacionales de http://jnr2017.ai2.upv.es Robótica 2017 [email protected] Tel. 963 879 550 ISBN: 978-84-697-3742-2 1 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 ÍNDICE PRÓLOGO ..................................................................................................................................................... 3 BIENVENIDA ................................................................................................................................................. 4 PRESENTACIÓN ............................................................................................................................................ 5 COMITÉS ....................................................................................................................................................... 6 I. Comité Organizador ............................................................................................................................. -
Ricardo Daniel Costa Campos Hexapod Locomotion
Universidade do Minho Escola de Engenharia Ricardo Daniel Costa Campos Hexapod Locomotion: a Nonlinear Dynamical Systems Approach Hexapod Locomotion: Hexapod a Nonlinear Dynamical Systems Approach Ricardo Daniel Costa Campos Setembro de 2010 UMinho | 2010 Universidade do Minho Escola de Engenharia Ricardo Daniel Costa Campos Hexapod Locomotion: a Nonlinear Dynamical Systems Approach Tese de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Engenharia Electrónica Industrial e Computadores Trabalho efectuado sob a orientação da Professora Doutora Cristina Santos Setembro de 2010 Abstract Over recent years the technological progress has been growing interest in the study of legged robots, taking a leading role in the development and improvement of these type of machines. Walking machines have distinct advantages over wheeled robots, mainly, uneven terrains navigation, capacity to overcome obstacles as well as better balance and stability on unstructured or inclined terrains. However, the generation of robust locomotion on these articulated robots, is still a difficult problem to solve, in particular due to high number of degrees of freedom that compose a legged robot and have to be controlled. In this work we focus our research on hexapod machines using their inherent capacity of walking in a wide variety of terrains which is one of their most important features. The aims of this work are design and implement a bio-inspired controller architecture able to generate a stable and robust locomotion in hexapod robots functionally divided in three layers. The proposed architecture is able to generate different hexapodal gaits, switch between the most common gaits and correct the posture of the robot in several different situations where the robot balance is affected. -
Cockroach-Inspired Hexapod Robots
International Journal of Trend in Research and Development, Volume 4(3), ISSN: 2394-9333 www.ijtrd.com Cockroach-Inspired Hexapod Robots ¹Varsha K, ²Simran B Godhani, ³Rachel Mathias 1,2,3Department of Computer Science and Engineering, St.Joseph Engineering College, Mangalore, Karnataka, India Abstract— This paper emphasises the need for developing the legged robots rather than wheeled robots. Among these legged robots mentioned in this paper, we will particularly study about the cockroach-like hexapod robot and it’s importance. Over the undulated surfaces, robot movement with wheels becomes difficult. For working and exploring in unknown and rough terrain the use of legged robots is advantageous because their movement is less constrained by the shape of the surface on which they have to travel. The anti-personnel mines of over 100 million is injuring or killing more than 2000 people a month. Under this ultimate environment, a walking robot may be an effective and efficient means of detecting and removing mines Figure 1: ATHLETE during experimental tests while ensuring the safety of local residents and people engaged III. WORKING MECHANISM in the removal work. Hence, insect movement with legs is considered most stable. The present paper proposes an A substantial portion of the Earth is inaccessible to wheeled improved six-legged walking robot. mechanisms natural obstacles like large rocks, loose soil, deep ravines, and steep slopes conspire to render rolling locomotion Initially, the scientists were particularly interested in the stick ineffective. The sea floor, moon, and planets are similarly insect as models since the leg movement is based on a challenging.