Definición Y Análisis De Los Modos De Marcha De Un Robot Hexápodo Para Tareas De

Total Page:16

File Type:pdf, Size:1020Kb

Definición Y Análisis De Los Modos De Marcha De Un Robot Hexápodo Para Tareas De DEFINICIÓN Y ANÁLISIS DE LOS MODOS DE MARCHA DE UN ROBOT HEXÁPODO PARA TAREAS DE BÚSQUEDA Y RESCATE Jorge Rivas De León SEPTIEMBRE 2015 TRABAJO FIN DE MASTER Jorge De León Rivas PARA LA OBTENCIÓN DEL TÍTULO DE MASTER EN DIRECTOR DEL TRABAJO FIN DE MASTER: AUTOMÁTICA Y ROBÓTICA Dr. Antonio Barrientos Cruz ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES MÁSTER EN AUTOMÁTICA Y ROBÓTICA Trabajo fin de máster Definición y análisis de los modos de marcha de un robot hexápodo para tareas de búsqueda y rescate Tutor: Dr. Antonio Barrientos Cruz Alumno: Jorge De León Rivas M13165 Curso 2014/2015 Página dejada intencionadamente en blanco Dedicado a mi abuela Antonia, que siempre que la volví a visitar se acordaba y cuidaba de “su niño”. Página dejada intencionadamente en blanco Índice general Lista de figuras II Lista de tablas VI Agradecimientos IX Resumen XI 1. Introducción 1 1.1. Marco y objetivos . 1 1.2. Motivación . 1 1.3. Logros y aportaciones . 2 1.4. Estructura de la memoria . 2 2. Estado del arte 5 2.1. Tareas de los robots de rescate . 7 2.1.1. AAAI Mobile Robot Competition . 9 2.1.2. RoboCup . 9 2.2. Tipos de robots de rescate . 11 2.3. Características de los desastres y su impacto en el diseño de los robots . 12 2.3.1. Categorias y fases de los desastres . 13 2.4. Robots empleados en desastres . 17 2.4.1. Robots de rescate en las Torres Gemelas . 20 2.4.2. Deslizamiento de tierra en La Conchita . 23 2.4.3. Huracán Katrina . 25 2.4.4. Mina Sago . 27 2.4.5. Huracán Ike . 29 2.5. Bioinspiración . 31 2.5.1. Bioinspiración en hexápodos . 32 2.6. Interacción Humano-Robot, HRI . 40 2.6.1. Categoría ecológica . 40 2.6.2. Categoría social . 41 2.7. Consideraciones en el diseño de robots . 41 2.7.1. Movilidad . 41 2.7.2. Comunicaciones . 42 ÍNDICE GENERAL 2.7.3. Control . 42 2.7.4. Sensores . 43 2.7.5. Energía . 43 3. Modelado de las “C-Legs” 45 3.1. Cinemática de las “C-legs” . 45 3.1.1. Consideraciones del modelo . 46 3.1.2. Modelo cinemático . 47 3.2. Dinámica de las “C-Legs” . 56 3.2.1. Sistemas dinámicos híbridos . 57 3.2.2. El modelo SLIP . 57 3.2.3. Ecuaciones del movimiento . 60 4. Definición y evaluación de modos de marcha 63 4.1. Patrones de locomoción . 64 4.2. Superación de obstáculos y escalada . 64 4.3. Nuevos modos de marcha: . 65 4.4. Medida de estabilidad estática en robots caminantes . 67 4.5. Ecuaciones del movimiento . 69 4.5.1. Trípode alterno . 73 4.5.2. Tetrápoda . 75 4.5.3. Onda . 77 4.5.4. Nuevo modo 1 . 78 4.5.5. Nuevo modo 2 . 80 4.6. Pruebas realizadas . 81 4.6.1. Pruebas realizadas en ROS y Gazebo . 81 4.6.2. Pruebas realizadas con una maqueta . 88 5. Diseño del robot 93 5.1. Diseño mecánico . 93 5.1.1. Diseño del cuerpo . 93 5.1.2. Ensamblaje de los motores . 96 5.2. Selección de los motores . 96 5.3. Sistemas eléctricos . 100 5.3.1. Controladora principal . 100 5.3.2. Drivers de los motores . 101 5.3.3. Baterías . 102 5.3.4. Diseño de las patas . 104 5.3.5. Diseño de las “Compass leg” ......................105 5.3.6. Diseño de las “C-legs” .........................106 6. Planificación temporal y presupuesto 107 6.1. Planificación temporal . 107 6.2. Presupuesto . 109 IV Escuela Técnica Superior de Ingenieros Industriales. UPM Definición y análisis de los modos de marcha de un robot hexápodo para tareas de búsqueda y rescate. 7. Conclusiones y líneas futuras 111 7.1. Conclusiones . 111 7.2. Líneas futuras . 112 Bibliografía 113 Jorge De León Rivas. M13165 i Página dejada intencionadamente en blanco Índice de figuras 2.1. Áreas de trabajo en una catástrofe. 7 2.2. Logo de la AAAI Mobile Robot Competition. 9 2.3. Logo de la RoboCup 2015 en alemania. 10 2.4. Clasificación de los robots según el medio en el que se desenvuelven. 11 2.5. Clasificación de los robots según su tamaño. 12 2.6. Catástrofes naturales acontecidas en 2011 . 14 2.7. Conflictos activos en todo el mundo. 16 2.8. Logo de CRASAR e IRSU. 20 2.9. Diagrama del ataque realizado a las Torres Gemelas. 21 2.10. Primeros robots desplegados en el WTC. a) Microtracs. b) Inuktun micro- VGTV. c) F-M Solem. 22 2.11. Zona afectada en La Conchita. 23 2.12. VGTV Xtreme desplegado. 24 2.13. Zonas afectadas por el Huracán Katrina. 25 2.14. a) UAV de ala fija. b) UAV de ala rotatoria iSENSYS IP3 . 25 2.15. Vuelos de inspección realizados tras el huracán Katrina. 26 2.16. Localización de la mina Sago. 27 2.17. Robot Remotec ANDROS Wolverine. 29 2.18. Zonas afectadas por el Huracán Ike. 29 2.19. USV SeaRAI inspeccionando cerca del puente Rollover Pass. 30 2.20. Esquema de desplazamiento de trípode alterno. 32 2.21. Esquema de arquitecturas de control. 33 2.22. Robot DIGbot. 33 2.23. Robot LAURON I. 34 2.24. Robot LAURON IV. 35 2.25. Robot Stiquito y su desplazamiento. 36 2.26. Robot PROLERO. 37 2.27. Robot WHEGS I. 37 2.28. Robot MINI WHEGS superando un obstáculo. 38 2.29. Distintas versiones del RHex, ordenadas de izquierda a derecha y de arriba a abajo. 40 3.1. Posición en el suelo . 46 3.2. Posición de espera de órdenes . 46 ÍNDICE DE FIGURAS 3.3. Diagrama de la pata . 48 3.4. Diagrama planar del hexápodo. 50 3.5. Modelo de entradas y salidas del sistema. 52 3.6. Nueva posición del robot. 55 3.7. Detalle para el cálculo de la distancia entre el robot y el suelo. 56 3.8. Diagrama de comprobación que debe realizar el sistema para el cambio de fase. ....................................... 58 3.9. Diagrama del artículo de P. Holmes et al. 59 3.10. Diagrama de la pata y las variables para el sistema. 61 3.11. Diagrama de la pata y las variables para las ecuaciones del movimiento. 62 4.1. Clasificación de los hexápodos según sus patas. 63 4.2. Esquema de nuestro hexápodo. 64 4.3. Modelos de marcha. (De arriba a abajo: Trípode, tetrápoda y onda) . 65 4.4. Nuevos modelos de marcha. 66 4.5. Margen de estabilidad para el robot en posición de espera de órdenes. 68 4.6. Margen de estabilidad para el robot en marcha de trípode alterna. 69 4.7. Margen de estabilidad para el robot en marcha de tetrápoda con dos patas exteriores en el aire. 70 4.8. Margen de estabilidad para el robot en marcha de tetrápoda con una pata intermedia en el aire. 71 4.9. Margen de estabilidad para el robot en la nueva marcha de cuatro patas diseñada. ..
Recommended publications
  • Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation
    2007 IEEE International Conference on WeB9.1 Robotics and Automation Roma, Italy, 10-14 April 2007 Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation Brandon L. Rutter, Member, IEEE, William A. Lewinger, Member, IEEE, Marcus Blümel, Ansgar Büschges, Roger D. Quinn Abstract— Robotic control systems inspired by animals are such systems can exhibit, and a corresponding limit to the enticing to the robot designer due to their promises of complexity of locomotion tasks they can solve. simplicity, elegance and robustness. While there has been Coordination between legs to produce gaits has been success in applying general and behaviorally-based knowledge successfully implemented [6, 7, 8, 11] using rules based on of biological systems to control, we are investigating the use of animal behavior [12]. Though these methods produce control based on known and hypothesized neural pathways in specific model animals. Neural motor systems in animals are coordination between legs, subsystems must coordinate the only meaningful in the context of their mechanical body, and motion within each leg. This has typically been done using the behavior of the system can be highly dependent on inverse kinematics [6, 11]. While this is conceptually nonlinear and dynamic properties of the mechanical part of the straightforward, dealing with dynamic environments and system. It is therefore reasonable to believe that to reproduce perturbations can be a matter of considerable effort. In behavior, the physical characteristics of the biological system addition, these methods require trigonometric and other must also be modeled or accounted for. In this paper we examine the performance of a robotic system with three types computations which are often beyond the capability of of muscle model: null, piecewise-constant, and linear.
    [Show full text]
  • Decentralised Compliant Control for Hexapod Robots: a Stick Insect Based Walking Model
    Decentralised Compliant Control for Hexapod Robots: A Stick Insect Based Walking Model Hugo Leonardo Rosano-Matchain I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Institute of Perception, Action and Behaviour School of Informatics University of Edinburgh 2007 Abstract This thesis aims to transfer knowledge from insect biology into a hexapod walking robot. The similarity of the robot model to the biological target allows the testing of hypotheses regarding control and behavioural strategies in the insect. Therefore, this thesis supports biorobotic research by demonstrating that robotic implementations are improved by using biological strategies and these models can be used to understand biological systems. Specifically, this thesis addresses two central problems in hexapod walking control: the single leg control mechanism and its control variables; and the different roles of the front, middle and hind legs that allow a decentralised architecture to co-ordinate complex behavioural tasks. To investigate these problems, behavioural studies on insect curve walking were combined with quantitative simulations. Behavioural experiments were designed to explore the control of turns of freely walking stick insects, Carausius morosus, toward a visual target. A program for insect tracking and kinematic analysis of observed motion was developed. The re- sults demonstrate that the front legs are responsible for most of the body trajectory. Nonetheless, to replicate insect walking behaviour it is necessary for all legs to con- tribute with specific roles. Additionally, statistics on leg stepping show that middle and hind legs continuously influence each other.
    [Show full text]
  • A Small 3D-Printed Six-Legged Walking Robot Designed for Desert Ant-Like
    Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks Julien Dupeyroux, Grégoire Passault, Franck Ruffier, Stéphane Viollet, Julien Serres To cite this version: Julien Dupeyroux, Grégoire Passault, Franck Ruffier, Stéphane Viollet, Julien Serres. Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks. IFAC Word Congress 2017, Jul 2017, Toulouse, France. hal-01643176 HAL Id: hal-01643176 https://hal-amu.archives-ouvertes.fr/hal-01643176 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks ? Julien Dupeyroux ∗ Gr´egoirePassault ∗∗ Franck Ruffier ∗ St´ephaneViollet ∗ Julien Serres ∗ ∗ Aix-Marseille University, CNRS, ISM, Inst Movement Sci, Marseille, France (e-mail: [email protected]). ∗∗ Rhoban Team, LaBRI, University of Bordeaux, Bordeaux, France (e-mail: [email protected]) Abstract: Over the last five decades, legged robots, and especially six-legged walking robots, have aroused great interest among the robotic community. Legged robots provide a higher level of mobility through their kinematic structure over wheeled robots, because legged robots can walk over uneven terrains without non-holonomic constraint.
    [Show full text]
  • Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School March 2019 Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain John Rippetoe University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Computer Sciences Commons, and the Robotics Commons Scholar Commons Citation Rippetoe, John, "Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain" (2019). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8407 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Force Feedback and Intelligent Workspace Selection for Legged Locomotion Over Uneven Terrain by John Rippetoe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science and Engineering College of Engineering University of South Florida Co-Major Professor: Luther Palmer III, Ph.D. Co-Major Professor: Yu Sun, Ph.D. Kyle Reed, Ph.D. Rajiv Dubey, Ph.D. Stephen Deban, Ph.D. Date of Approval: March 25, 2019 Keywords: Bioinspired Robotics, Motion Planning, Terrain Classification Copyright c 2019, John Rippetoe DEDICATION This dissertation and all of the accumulated experience that went into its creation are dedicated first and foremost to God. Only through His strength, courage, and wisdom was I able to complete this work. And to my wife, best friend, and love of my life Kristen: only with your unwaivering support and love was I able to keep going through the toughest of times.
    [Show full text]
  • Libro De Actas De Las Jornadas Nacionales De Robótica 2017
    Libro de actas de las Jornadas Nacionales de Robótica 2017 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 Valencia Organizado por: Universitat Politècnica de València Instituto Universitario de Automática e Informática Industrial Comité Español de Automática Grupo Temático de Robótica Título: Libro de actas de las Jornadas Nacionales de Robótica 2017 Editores: Martin Mellado Arteche, Antonio Sánchez Salmerón, Enrique J Bernabeu Soler Editorial CEA-IFAC ISBN: 978-84-697-3742-2 Este documento está regulado por la licencia Creative Commons Libro de actas de las Jornadas Nacionales de http://jnr2017.ai2.upv.es Robótica 2017 [email protected] Tel. 963 879 550 ISBN: 978-84-697-3742-2 1 Jornadas Nacionales de Robótica Spanish Robotics Conference 8-9 Junio 2017 ÍNDICE PRÓLOGO ..................................................................................................................................................... 3 BIENVENIDA ................................................................................................................................................. 4 PRESENTACIÓN ............................................................................................................................................ 5 COMITÉS ....................................................................................................................................................... 6 I. Comité Organizador .............................................................................................................................
    [Show full text]
  • Ricardo Daniel Costa Campos Hexapod Locomotion
    Universidade do Minho Escola de Engenharia Ricardo Daniel Costa Campos Hexapod Locomotion: a Nonlinear Dynamical Systems Approach Hexapod Locomotion: Hexapod a Nonlinear Dynamical Systems Approach Ricardo Daniel Costa Campos Setembro de 2010 UMinho | 2010 Universidade do Minho Escola de Engenharia Ricardo Daniel Costa Campos Hexapod Locomotion: a Nonlinear Dynamical Systems Approach Tese de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Engenharia Electrónica Industrial e Computadores Trabalho efectuado sob a orientação da Professora Doutora Cristina Santos Setembro de 2010 Abstract Over recent years the technological progress has been growing interest in the study of legged robots, taking a leading role in the development and improvement of these type of machines. Walking machines have distinct advantages over wheeled robots, mainly, uneven terrains navigation, capacity to overcome obstacles as well as better balance and stability on unstructured or inclined terrains. However, the generation of robust locomotion on these articulated robots, is still a difficult problem to solve, in particular due to high number of degrees of freedom that compose a legged robot and have to be controlled. In this work we focus our research on hexapod machines using their inherent capacity of walking in a wide variety of terrains which is one of their most important features. The aims of this work are design and implement a bio-inspired controller architecture able to generate a stable and robust locomotion in hexapod robots functionally divided in three layers. The proposed architecture is able to generate different hexapodal gaits, switch between the most common gaits and correct the posture of the robot in several different situations where the robot balance is affected.
    [Show full text]
  • Cockroach-Inspired Hexapod Robots
    International Journal of Trend in Research and Development, Volume 4(3), ISSN: 2394-9333 www.ijtrd.com Cockroach-Inspired Hexapod Robots ¹Varsha K, ²Simran B Godhani, ³Rachel Mathias 1,2,3Department of Computer Science and Engineering, St.Joseph Engineering College, Mangalore, Karnataka, India Abstract— This paper emphasises the need for developing the legged robots rather than wheeled robots. Among these legged robots mentioned in this paper, we will particularly study about the cockroach-like hexapod robot and it’s importance. Over the undulated surfaces, robot movement with wheels becomes difficult. For working and exploring in unknown and rough terrain the use of legged robots is advantageous because their movement is less constrained by the shape of the surface on which they have to travel. The anti-personnel mines of over 100 million is injuring or killing more than 2000 people a month. Under this ultimate environment, a walking robot may be an effective and efficient means of detecting and removing mines Figure 1: ATHLETE during experimental tests while ensuring the safety of local residents and people engaged III. WORKING MECHANISM in the removal work. Hence, insect movement with legs is considered most stable. The present paper proposes an A substantial portion of the Earth is inaccessible to wheeled improved six-legged walking robot. mechanisms natural obstacles like large rocks, loose soil, deep ravines, and steep slopes conspire to render rolling locomotion Initially, the scientists were particularly interested in the stick ineffective. The sea floor, moon, and planets are similarly insect as models since the leg movement is based on a challenging.
    [Show full text]