Implications of Ocean Acidification for Microbial Life and for Microbial Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Implications of Ocean Acidification for Microbial Life and for Microbial Interactions Implications of ocean acidification for microbial life and for microbial interactions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich 2 Biologie/Chemie der Universität Bremen vorgelegt von Christiane Hassenrück Bremen, April 2016 Die vorliegende Arbeit wurde in der Zeit von Februar 2013 bis April 2016 am Max- Planck-Institut für Marine Mikrobiologie angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Michael Friedrich Tag des Promotionskolloquiums: 13. Juni 2016 “The more clearly we can focus our attention on the wonders and realities of the universe around us, the less taste we shall have for destruction.” – Rachel Carson Summary Ocean acidification (OA) is a major threat to marine systems impacting many aspects of marine life. Microbial communities are a crucial component of marine systems, and are involved in several important processes necessary to support ecosystem functioning. Despite their importance, very little is known about how OA will affect microbial communities and the services they provide to the ecosystem. In particular the long-term impact of OA on microbial life in natural systems is poorly understood. Previous studies were largely based on laboratory or short-term experiments, and often reported inconsistent results regarding the response of microbial communities and processes to OA. To go beyond the limited scope of such experiments, study sites that are naturally exposed to elevated CO2 concentration are increasingly being studied as analogues for future OA. Here, shallow-water hydrothermal CO2 vents in a tropical coral reef were investigated as model system to provide an ecosystem perspective on OA effects on reef microbial communities. The diversity and function of microbial communities, as well as interactions with other reef organisms were characterized in different reef environments at the CO2 vents to estimate potential OA effects and to assess the suitability of this model system for OA research. In chapter 1, a detailed environmental characterization of the study sites was conducted. The results showed that sediments at the CO2 vents can be affected by factors other than CO2 such as temperature, organic matter content or alterations in pore water element concentrations. Hence, a comprehensive description of the environment is necessary when using hydrothermal CO2 vents as OA analogues. Indeed, the investigation of microbial communities in the sediment (chapter 2) showed that pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. Therefore, changes in OA-related variables may often not be the primary cause of microbial changes in a complex environment such as hydrothermal CO2 vents. Furthermore, changes in microbial taxa were identified, which may alter biogeochemical cycling in the sediment at the CO2 vents. In chapter 3, sediment microbial processes related to carbon, nitrogen and sulfur cycling at the CO2 vents were further explored. Whereas some processes, such as photosynthesis and carbohydrate degradation, did not appear to be strongly affected, sulfate reduction and nitrogen cycling seemed to be impacted at the CO2 vents. This indicates that some remineralization functions in reef sediments may be influenced by CO2 venting. Microbial communities on seagrass leaves (chapter 4) showed pronounced differences at the CO2 vents compared to reference sites, with a higher prevalence of bacteria associated with coral diseases. This suggests a potential role of seagrasses as vectors for coral pathogens, thus supporting predictions about decreased reef health under increased CO2 conditions. A settlement experiment, described in chapter 5, revealed only a minor effect of pH on the development of bacterial communities, with other factors, such as light exposure or close interactions with other organisms, potentially being more important in shaping bacterial communities. In conclusion, microbial communities, functions and interactions with other reef organisms were fundamentally altered at the CO2 vents. However, the strength of the influence of the CO2 vents seemed to depend on the investigated reef environment. The changes in microbial communities and processes may contribute to a general decline of the reef ecosystem at hydrothermal CO2 vents. This thesis offers new insights into microbial life at shallow-water hydrothermal CO2 vents, as well as predictions about potential OA impacts. Yet, it also emphasizes the challenge of estimating future OA effects based on observation at OA analogues that exhibit such high environmental complexity as shallow-water hydrothermal CO2 vents. Zusammenfassung Ozeanversauerung stellt eine große Bedrohung für marine Systeme dar, die viele Aspekte des Lebens im Meer beeinflusst. Mikrobielle Gemeinschaften sind ein bedeutender Bestandteil mariner Systeme und tragen zu vielen Prozessen bei, die notwendig sind, um das Ökosystem zu erhalten. Trotz ihrer Bedeutung ist wenig darüber bekannt, wie Ozeanversauerung mikrobielle Gemeinschaften und ihre Funktion im Ökosystem beeinflusst. Insbesondere Langzeiteffekte von Ozeanversauerung auf mikrobielles Leben in natürlichen Systemen sind kaum erforscht. Vorherige Studien basierten größtenteils auf Labor- oder Kurzzeitexperimenten und berichteten oft widersprüchliche Ergebnisse bezüglich der Reaktion von mikrobiellen Gemeinschaften und Prozessen auf Ozeanversauerung. Um den begrenzten Umfang solcher Experimente zu erweitern, werden vermehrt Standorte untersucht, die natürlich erhöhten CO2- Konzentrationen ausgesetzt sind, und somit als Modell für zukünftige Ozeanversauerung dienen. In dieser Arbeit wurden hydrothermale CO2-Quellen im Flachwasser eines tropischen Korallenriffs als Modellsystem erforscht, um die Auswirkungen von Ozeanversauerung auf mikrobielle Gemeinschaften in einem ökosystemweiten Zusammenhang zu untersuchen. Die Diversität und Funktion von mikrobiellen Gemeinschaften auf dem Riff und ihre Interaktionen mit anderen Rifforganismen wurden in verschiedenen Lebensräumen an den CO2-Quellen charakterisiert, um auf mögliche Auswirkungen von Ozeanversauerung zu schließen und die Tauglichkeit dieses Modellsystems für die Forschung über Ozeanversauerung zu bewerten. In Kapitel 1 wurden die Umweltbedingungen in dem Untersuchungsgebiet detailliert charakterisiert. Die Ergebnisse zeigten, dass Sedimente an den CO2-Quellen auch von anderen Faktoren als CO2 beeinflusst werden können, wie z.B. Temperatur, dem Gehalt organischen Materials oder Veränderungen in der Elementzusammensetzung des Porenwassers. Deswegen ist eine umfangreiche Beschreibung der Umweltbedingungen notwendig, wenn hydrothermale CO2-Quellen als Modell für Ozeanversauerung benutzt werden. Tatsächlich zeigte die Untersuchung der mikrobiellen Gemeinschaften im Sediment (Kapitel 2), dass der pH-Wert zwar zu den Faktoren gehörte, die Veränderungen in der Zusammensetzung mikrobieller Gemeinschaften erklären konnten, aber nicht die größte Bedeutung hatte. Deshalb sind Änderungen von Faktoren, die mit Ozeanversauerung in Verbindung stehen, möglicherweise nicht die vorwiegende Ursache von mikrobiellen Veränderungen in der komplexen Umgebung der hydrothermalen CO2-Quellen. Weiterhin wurden Veränderungen mikrobieller Taxa festgestellt, die Auswirkungen auf biogeochemische Kreisläufe im Sediment an den CO2- Quellen haben könnten. In Kapitel 3 wurden mikrobielle Prozesse im Sediment näher untersucht, die an Kohlenstoff-, Stickstoff- und Schwefelkreisläufen an den CO2-Quellen beteiligt sind. Während einige Prozesse wie z.B. Photosynthese und Kohlenhydratabbau nicht stark betroffen waren, schienen die CO2-Quellen Auswirkungen auf Sulfatreduktion und Stickstoffkreislauf zu haben. Dies lässt vermuten, dass einige Remineralisierungsprozesse in Riffsedimenten von den CO2-Quellen beeinflusst werden. Mikrobielle Gemeinschaften auf Seegrasblättern, die in Kapitel 4 untersucht wurden, zeigten deutliche Unterschiede an den CO2-Quellen im Vergleich zu Referenzstandorten mit einer vermehrten Häufigkeit von Bakterien, die mit Korallenkrankheiten in Verbindung gebracht wurden. Dieses Ergebnis deutet auf eine potenzielle Rolle von Seegräsern als Überträger von Korallenpathogenen hin und unterstützt Hypothesen zu einem verschlechterten Zustand von Riffen unter erhöhten CO2-Bedingungen. Ein Besiedlungsexperiment (Kapitel 5) zeigte, dass der pH-Wert nur einen vernachlässigbaren Einfluss auf die Entwicklung bakterieller Gemeinschaften hatte, während andere Faktoren wie z.B. Lichteinwirkung oder Wechselwirkungen mit anderen Organismen potenziell einen größeren Effekt hatten. Diese Arbeit zeigte, dass mikrobielle Gemeinschaften, Funktionen und Interaktionen mit anderen Rifforganismen grundlegende Unterschiede an den CO2- Quellen aufweisen. Die Intensität des Einflusses der CO2-Quellen schien jedoch von dem untersuchten Lebensraum abhängig zu sein. Die Veränderungen an mikrobiellen Gemeinschaften und Prozessen tragen möglicherweise zu einer allgemeinen Verarmung des Riffökosystems an den CO2-Quellen bei. Weiterhin bietet diese Arbeit neue Einblicke in mikrobielles Leben an hydrothermalen CO2-Quellen im Flachwasser und mögliche Prognosen über potentielle Auswirkungen von Ozeanversauerung. Dennoch bleibt es eine Herausforderung, von den Beobachtungen an Modellsystemen, die eine so komplexe Umwelt aufweisen wie hydrothermale CO2-Quellen, auf Effekte zukünftiger Ozeanversauerung zu schließen. Contents Abbreviations ....................................................................................................................
Recommended publications
  • Advance View Proofs
    Microbes Environ. Vol. XX, No. X, XXX–XXX, XXXX https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME12193 Isolation and Characterization of a Thermophilic, Obligately Anaerobic and Heterotrophic Marine Chloroflexi Bacterium from a Chloroflexi-dominated Microbial Community Associated with a Japanese Shallow Hydrothermal System, and Proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. TAKURO NUNOURA1*, MIHO HIRAI1, MASAYUKI MIYAZAKI1, HIROMI KAZAMA1, HIROKO MAKITA1, HISAKO HIRAYAMA1, YASUO FURUSHIMA2, HIROYUKI YAMAMOTO2, HIROYUKI IMACHI1, and KEN TAKAI1 1Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan; and 2Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan (Received October 23, 2012—Accepted January 6, 2013—Published online May 11, 2013) A novel marine thermophilic and heterotrophic Anaerolineae bacterium in the phylum Chloroflexi, strain SW7T, was isolated from an in situ colonization system deployed in the main hydrothermal vent of the Taketomi submarine hot spring field located on the southern part of Yaeyama Archipelago, Japan. The microbial community associated with the hydrothermal vent was predominated by thermophilic heterotrophs such as Thermococcaceae and Anaerolineae, and the next dominant population was thermophilic sulfur oxidizers. Both aerobic and anaerobic hydrogenotrophs including methanogens were detected as minor populations. During the culture-dependent viable count analysis in this study, an Anaerolineae strain SW7T was isolated from an enrichment culture at a high dilution rate. Strain SW7T was an obligately anaerobic heterotroph that grew with fermentation and had non-motileProofs thin rods 3.5–16.5 µm in length and 0.2 µm in width constituting multicellular filaments.
    [Show full text]
  • Midas 4: a Global Catalogue of Full-Length 16S Rrna Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. MiDAS ‌ 4: ‌ A ‌ global ‌ catalogue‌ of ‌ full-length ‌ 16S ‌ rRNA‌ gene ‌ sequences ‌ and‌ ‌ taxonomy for‌ studies ‌ of‌ bacterial‌ communities‌ in‌ wastewater‌ treatment‌ plants‌ Authors: Morten Simonsen Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke ‌ Rudkjøbing, Simon Knutsson, the MiDAS Global Consortium, Mads Albertsen, and Per ‌ Halkjær Nielsen* Affiliation: Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. *Correspondence to: Per Halkjær Nielsen, Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, ‌ 9220 Aalborg, Denmark; Phone: +45 9940 8503; Fax: Not available; E-mail: [email protected] Running title: Global microbiota of wastewater treatment plants ‌ 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Biological wastewater treatment and an increased focus on resource recovery is ‌ fundamental for environmental protection, human health, and sustainable development. Microbial communities are responsible for these processes, but our knowledge of their diversity and function is still poor, partly due to the ‌lack of ‌good reference databases and comprehensive global studies.
    [Show full text]
  • Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for filamentous Bulking in Danish Municipal Wastewater Treatment Plants
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Nierychlo, Marta, McIlroy, Simon J, Kucheryavskiy, Sergey, Jiang, Chen- jing, Ziegler, Anja S, Kondrotaite, Zivile, Stokholm-Bjerregaard, Mikkel, & Nielsen, Per Halkjær (2020) Candidatus Amarolinea and Candidatus Microthrix are mainly responsible for filamentous bulking in Danish municipal wastewater treatment plants. Frontiers in Microbiology, 11, Article number: 1214. This file was downloaded from: https://eprints.qut.edu.au/205774/ c The Author(s) 2020 This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.3389/fmicb.2020.01214 fmicb-11-01214 June 5, 2020 Time: 19:43 # 1 ORIGINAL RESEARCH published: 09 June 2020 doi: 10.3389/fmicb.2020.01214 Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants Marta Nierychlo1, Simon J.
    [Show full text]
  • An Integrated Study on Microbial Community in Anaerobic Digestion Systems
    An Integrated Study on Microbial Community in Anaerobic Digestion Systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yueh-Fen Li Graduate Program in Environmental Science The Ohio State University 2013 Dissertation Committee: Dr. Zhongtang Yu, Advisor Dr. Brian Ahmer Dr. Richard Dick Dr. Olli Tuovinen Copyrighted by Yueh-Fen Li 2013 Abstract Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Microorganisms are the driving force for the whole transformation process in anaerobic digesters. However, the microbial community underpinning the AD process remains poorly understood, especially with respect to community composition and dynamics in response to variations in feedstocks and operations. The overall objective was to better understand the microbiology driving anaerobic digestion processes by systematically investigating the diversity, composition and succession of microbial communities, both bacterial and archaeal, in anaerobic digesters of different designs, fed different feedstocks, and operated under different conditions. The first two studies focused on propionate-degrading bacteria with an emphasis on syntrophic propionate-oxidizing bacteria. Propionate is one of the most important intermediates and has great influence on AD stability in AD systems because it is inhibitory to methanogens and it can only be metabolized through syntrophic propionate- oxidizing acetogenesis under methanogenic conditions. In the first study (chapter 3), primers specific to the propionate-CoA transferase gene (pct) were designed and used to construct clone libraries, which were sequenced and analyzed to investigate the diversity and distribution of propionate-utilizing bacteria present in the granular and the liquid portions of samples collected from four digesters of different designs, fed different ii feedstocks, and operated at different temperatures.
    [Show full text]
  • Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
    Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.
    [Show full text]
  • 1 Succession Within the Prokaryotic Communities
    Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon U. Pfreundt1, F. Van Wambeke2, M. Caffin2, S. Bonnet2, 3 and W. R. Hess1 5 [1]{University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany} [2]{Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille, France} [3] {Institut de Recherche pour le Développement, AMU/CNRS/INSU, Université de Toulon, 10 Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille-Nouméa, France- New Caledonia} 15 Correspondence to: W. R. Hess ([email protected]) Submission to Biogeosciences as a research article for the special issue “Biogeochemical and biological response to a diazotroph bloom in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosms experiment”. 20 1 Abstract N2 fixation fuels ~50 % of new primary production in the oligotrophic South Pacific Ocean. 25 The VAHINE experiment has been designed to track the fate of diazotroph derived nitrogen (DDN) and carbon within a coastal lagoon ecosystem in a comprehensive way. For this, large- volume (~50 m3) mesocosms were deployed in the New Caledonia lagoon and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. This study examined the temporal dynamics of the prokaryotic community together with the 30 evolution of biogeochemical parameters for 23 consecutive days in one of these mesocosms (M1) and in the Nouméa lagoon using MiSeq 16S rRNA gene sequencing and flow cytometry. Combining these methods allowed for inference of absolute cell numbers from 16S data. We observed clear successions within M1, some of which were not mirrored in the lagoon.
    [Show full text]
  • The Ecology of the Chloroflexi in Full-Scale Activated Sludge 2 Wastewater Treatment Plants
    bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The ecology of the Chloroflexi in full-scale activated sludge 2 wastewater treatment plants 3 Marta Nierychlo1, Aleksandra Miłobędzka2,3, Francesca Petriglieri1, Bianca 4 McIlroy1, Per Halkjær Nielsen1, and Simon Jon McIlroy1§* 5 1Center for Microbial Communities, Department of Chemistry and Bioscience, 6 Aalborg University, Aalborg, Denmark 7 2Microbial Ecology and Environmental Biotechnology Department, Institute of 8 Botany, Faculty of Biology, University of Warsaw; Biological and Chemical 9 Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland 10 3Department of Biology, Faculty of Building Services, Hydro and Environmental 11 Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland 12 * Corresponding author: Simon Jon McIlroy, Center for Microbial Communities, 13 Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 14 DK-9220 Aalborg, Denmark; Tel.: +45 9940 3573; Fax: +45 9814 1808; Email: 15 [email protected] 16 § Present address: Australian Centre for Ecogenomics, University of Queensland, 17 Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Succession Within the Prokaryotic Communities During the VAHINE Mesocosms
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 12, 20179–20222, 2015 www.biogeosciences-discuss.net/12/20179/2015/ doi:10.5194/bgd-12-20179-2015 BGD © Author(s) 2015. CC Attribution 3.0 License. 12, 20179–20222, 2015 This discussion paper is/has been under review for the journal Biogeosciences (BG). Succession within Please refer to the corresponding final paper in BG if available. the prokaryotic communities during Succession within the prokaryotic the VAHINE communities during the VAHINE mesocosms U. Pfreundt et al. mesocosms experiment in the New Caledonia lagoon Title Page Abstract Introduction U. Pfreundt1, F. Van Wambeke2, S. Bonnet2,3, and W. R. Hess1 Conclusions References 1University of Freiburg, Faculty of Biology, Schaenzlestr. 1, 79104 Freiburg, Germany Tables Figures 2Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille, France 3Institut de Recherche pour le Développement, AMU/CNRS/INSU, Université de Toulon, J I Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille-Noumea, France-New Caledonia J I Back Close Received: 4 December 2015 – Accepted: 6 December 2015 – Published: 18 December 2015 Correspondence to: W. R. Hess ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 20179 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD N2 fixation fuels ∼ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE experiment has been designed to track the fate of diazotroph 12, 20179–20222, 2015 derived nitrogen (DDN) and carbon within a coastal lagoon ecosystem in a compre- 3 5 hensive way.
    [Show full text]
  • Taxonomic Precision of Different Hypervariable Regions of 16S Rrna Gene and Annotation Methods for Functional Bacterial Groups in Biological Wastewater Treatment
    Taxonomic Precision of Different Hypervariable Regions of 16S rRNA Gene and Annotation Methods for Functional Bacterial Groups in Biological Wastewater Treatment Feng Guo, Feng Ju, Lin Cai, Tong Zhang* Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China Abstract High throughput sequencing of 16S rRNA gene leads us into a deeper understanding on bacterial diversity for complex environmental samples, but introduces blurring due to the relatively low taxonomic capability of short read. For wastewater treatment plant, only those functional bacterial genera categorized as nutrient remediators, bulk/foaming species, and potential pathogens are significant to biological wastewater treatment and environmental impacts. Precise taxonomic assignment of these bacteria at least at genus level is important for microbial ecological research and routine wastewater treatment monitoring. Therefore, the focus of this study was to evaluate the taxonomic precisions of different ribosomal RNA (rRNA) gene hypervariable regions generated from a mix activated sludge sample. In addition, three commonly used classification methods including RDP Classifier, BLAST-based best-hit annotation, and the lowest common ancestor annotation by MEGAN were evaluated by comparing their consistency. Under an unsupervised way, analysis of consistency among different classification methods suggests there are no hypervariable regions with good taxonomic coverage for all genera. Taxonomic assignment based on certain regions of the 16S rRNA genes, e.g. the V1&V2 regions – provide fairly consistent taxonomic assignment for a relatively wide range of genera. Hence, it is recommended to use these regions for studying functional groups in activated sludge. Moreover, the inconsistency among methods also demonstrated that a specific method might not be suitable for identification of some bacterial genera using certain 16S rRNA gene regions.
    [Show full text]
  • Phototrophic Methane Oxidation in a Member of the Chloroflexi Phylum
    bioRxiv preprint doi: https://doi.org/10.1101/531582; this version posted January 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phototrophic Methane Oxidation in a Member of the Chloroflexi Phylum Lewis M. Ward1,2, Patrick M. Shih3,4, James Hemp5, Takeshi Kakegawa6, Woodward W. Fischer7, Shawn E. McGlynn2,8,9 1. Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA USA. 2. Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan. 3. Department of Plant Biology, University of California, Davis, Davis, CA USA. 4. Department of Energy, Joint BioEnergy Institute, Emeryville, CA USA. 5. School of Medicine, University of Utah, Salt Lake City, UT USA. 6. Department of Geosciences, Tohoku University, Sendai City, Japan 7. Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA USA. 8. Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi Japan 9. Blue Marble Space Institute of Science, Seattle, WA, USA Abstract: Biological methane cycling plays an important role in Earth’s climate and the global carbon cycle, with biological methane oxidation (methanotrophy) modulating methane release from numerous environments including soils, sediments, and water columns. Methanotrophy is typically coupled to aerobic respiration or anaerobically via the reduction of sulfate, nitrate, or metal oxides, and while the possibility of coupling methane oxidation to phototrophy (photomethanotrophy) has been proposed, no organism has ever been described that is capable of this metabolism.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi Inoculation Mediated Changes in Rhizosphere Bacterial Community Structure While Promoting Revegetation in a Semiarid Ecosystem
    STOTEN-21841; No of Pages 11 Science of the Total Environment xxx (2017) xxx–xxx Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem G. Rodríguez-Caballero a,⁎,F.Caravacaa, A.J. Fernández-González b, M.M. Alguacil a, M. Fernández-López b, A. Roldán a a CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100 Murcia,Spain b CSIC - Estación Experimental del Zaidín, Soil Microbiology and Symbiotic Systems Department, Profesor Albareda, 1, 18008 Granada, Spain HIGHLIGHTS GRAPHICAL ABSTRACT • An AMF improved plant performance in the revegetation of a semiarid ecosys- tem. • AMF and plant species altered the rhi- zosphere bacterial community struc- ture. • AMF-mediated bacterial community shifts were related to plant perfor- mance. • Anaerolineaceae family was an indicator of AMF-inoculated rhizospheres. article info abstract Article history: The main goal of this study was to assess the effect of the inoculation of four autochthonous shrub species with Received 20 October 2016 the arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices on the rhizosphere bacterial community and to Received in revised form 18 January 2017 ascertain whether such an effect is dependent on the host plant species. Additionally, analysis of rhizosphere soil Accepted 19 January 2017 chemical and biochemical properties was performed to find relationships between them and the rhizosphere Available online xxxx bacterial communities. Non-metric multidimensional scaling analysis and subsequent permutational multivari- Editor: D.
    [Show full text]
  • Developing a Fundamental Understanding of the Microbiological Treatment of Winery Wastewater
    Developing a fundamental understanding of the microbiological treatment of winery wastewater FINAL REPORT to AUSTRALIAN GRAPE AND WINE AUTHORITY Project Number: UA 1301 Principal Investigator: Paul R Grbin Research Organisation: The University of Adelaide Date: 16 December 2016 Developing a fundamental understanding of the microbiological treatment of winery wastewater Kathryn L Eales and Paul R Grbin 16 December 2016 University of Adelaide School of Agriculture, Food and Wine PMB #1, Glen Osmond South Australia 5064 Copyright statement: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the University of Adelaide. Disclaimer: This publication may be of assistance to you but the authors and their employers do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaim all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Table of Contents Contents Abbreviations: ......................................................................................................................................... 4 1. Abstract ........................................................................................................................................... 5 2. Executive summary ........................................................................................................................
    [Show full text]