Role of Chemotherapy, VEGFR Inhibitors and Mtor Inhibitors in Advanced Perivascular Epithelioid Cell Tumours (Pecomas)

Total Page:16

File Type:pdf, Size:1020Kb

Role of Chemotherapy, VEGFR Inhibitors and Mtor Inhibitors in Advanced Perivascular Epithelioid Cell Tumours (Pecomas) Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Research article Role of chemotherapy, VEGFR inhibitors and mTOR Inhibitors in advanced Perivascular Epithelioid Cell Tumours (PEComas). Running title: Systemic treatment in advanced PEComas. Author list: 1Roberta Sanfilippo, 2Robin L. Jones, 3Jean-Yves Blay, 4Axel LeCesne, 1Salvatore Provenzano, 2Georgios Antoniou, 4Olivier Mir, 1Giovanni Fucà, 1Elena Fumagalli, 1Rossella Bertulli, 1Silvia Stacchiotti, 3Mehdi Brahmi, 5Federica Grosso, 3Armelle Dufresne, 6,7Nadia Hindi, 8Marta Sbaraglia, 9Alessandro Gronchi, 10Paola Collini, 8,11Angelo P. Dei Tos, 1,12Paolo G. Casali. Authors’ affiliation: 1. Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; 2. Sarcoma Unit, Royal Marsden Hospital, London, United Kingdom; 3. Department of Medical Oncology, Centre Léon Bérard, Lyon, France; 4. Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France; 5. Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy; 6. Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain; 7. Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; 8. Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy; 9. Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy; 10. Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; 11. Department of Medicine, University of Padova School of Medicine, Padova, Italy; 1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 12. Oncology and Haemato-Oncology Department, University of Milan, Milan, Italy. Keywords: advanced PEComa; systemic treatment; chemotherapy; mTOR inhibitors; TKIs ADDITIONAL INFORMATION Financial support: none. Corresponding author: Dr Roberta Sanfilippo, Medical Oncology Unit 2, Medical Oncology Department Fondazione IRCCS Istituto Nazionale dei Tumori Via G. Venezian, 1 - 20133 Milan, Italy Telephone: +39 02 2390 2638 Fax: +39 02 2390 2804 Email: [email protected] Conflict of interest disclosure statement: Dr. Sanfilippo reported research support from Eli Lilly and PharmaMar outside the present work. Dr. Jones reported consulting for Adaptimmune, Blueprint, Clinigen, Eisai, Epizyme, Daichii, Deciphera, Immunedesign, Lilly, Merck, Pharmamar. Dr. Blay reported research support from Novartis and GSK outside the present work. Dr. Mir reported consulting for Amgen, Astra-Zeneca, Bayer, Blueprint Medicines, Bristol Myers-Squibb, Eli-Lilly, Incyte, Ipsen, Lundbeck, MSD, Novartis, Pfizer, Roche, Servier, Vifor Pharma; board membership for Amgen, Astra-Zeneca, Bayer, Blueprint Medicines, Bristol Myers-Squibb, Eli-Lilly, Lundbeck, MSD, Novartis, Pfizer, Roche, Servier, Vifor Pharma; receiving speaking fees from Eli- Lilly, Roche, Servier as well as stock ownership for Amplitude surgical and Transgene. Dr. Dei Tos reported research support from Eli Lilly and PharmaMar outside the present work. Dr. Casali 2 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. reported consulting for Eisai, Eli Lilly, Deciphera Pharmaceuticals and Nektar Therapeutics; receiving honoraria from Eisai, Eli Lilly, Pfizer and PharmaMar as well as research support outside the present work from Amgen Dompé, Arog Pharmaceuticals, Bayer, Blueprint Medicines, Eli Lilly, Daiichi Sankyo Pharma, Deciphera Pharmaceuticals, Epizyme Inc., Novartis, Pfizer, PharmaMar. The other authors declare no potential conflicts of interest. Word count: 2166 Total number of figures and tables: 4 3 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. STATEMENT OF TRANSLATIONAL RELEVANCE Perivascular epitheliod cell tumours (PEComas) are rare mesenchymal neoplasms for which a standard strategy for systemic treatment in the advanced setting is not established as there are no published prospective clinical trials or sufficiently large retrospective case series. The activity of mTOR inhibitors in PEComas was reported, but data regarding response rate and progression-free survival (PFS) are still unclear. This is the first multicenter, international effort that aims to clarify the role of chemotherapy, VEGFR inhibitors and mTOR Inhibitors in advanced PEComas. The present study provides the rationale for the selection of systemic therapy in patients with advanced/metastatic PEComas and represents a benchmark in terms of tumor response, PFS and overall survival (OS) for future prospective trials. 4 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Purpose. Perivascular epitheliod cell tumours (PEComas) are rare mesenchymal neoplasms for which the role systemic treatments is not established as there are no published prospective clinical trials or sufficiently large retrospective case series. The aim of the present study is to clarify the activity of conventional chemotherapy and biological agents in advanced/metastatic PEComas. Methods. This was an observational, retrospective, international study including patients with advanced/metastatic PEComa treated with systemic therapy at 5 European sarcoma reference centres and within the Italian Rare Cancer Network. Survival analyses were performed using the Kaplan-Meier method and the Cox hazards regression models. Results. A total of 53 patients were included. Cytotoxic chemotherapy regimens were active only in a small proportion of PEComas. Gemcitabine-based regimens (objective response rate [ORR]: 20%, median PFS: 3.4 months) seemed to have the same activity of anthracycline-based regimens (ORR: 13%, median PFS: 3.2 months). Anti-angiogenic agents resulted in disease stabilization in some patients, with a number having density changes/ tissue response on imaging, with an ORR of 8.3% and a median PFS of 5.4 months. mTOR inhibitors were the most active agents, with an ORR of 41% and a median PFS of 9 months. Conclusions. Our study provides data for the selection of systemic therapy in patients with advanced/ metastatic PEComa: mTOR inhibitors are the most active agents. Anti-angiogenics and chemotherapy with gemcitabine-based regimens or anthracycline- based regimens, are options in further line, but with a lower response rate and progression free survival. 5 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2019; DOI: 10.1158/1078-0432.CCR-19-0288 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. INTRODUCTION Perivascular epitheliod cell tumours (PEComas) are rare mesenchymal neoplasms characterized by epitheliod, sometimes pleomorphic cells with a perivascular distribution (1). Within the group of soft tissue sarcomas, the family of PEComas has only relatively recently been recognized as a distinct subtype with specific morphological and immunohistochemical characteristics (2). PEComas include angiomyolipoma (AML), clear cell sugar tumour of the lung and lymphangioleiomyomatosis (LAM), which are often characterized by a benign clinical course. In contrast, other entities such as epithelioid angiomyolipoma and malignant PEComa can have an aggressive clinical course and develop distant metastases. The latter are typically large in size, with mitosis, necrosis and nuclear pleomorphism (1), although standard pathological criteria to discriminate a benign or malignant variant are not established (3). The activity of mTOR inhibitors both in LAM and in malignant PEComas was reported (4-7). Indeed, these tumours harbour mutations and loss of heterozygosity of TSC2 gene or more rarely of TSC1 gene and can be associated with tuberous–sclerosis complex or be sporadic. TSC1 and TSC2 gene products contribute to a molecular complex which negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). As a consequence of TSC1 or TSC2 alterations, the mTOR pathway is constitutively activated. This gave the rationale to use mTOR inhibitors (e.g. sirolimus) in the clinical setting. However, given the rarity of these tumours and the few available data, a precise estimation of response rate and median progression-free survival (PFS)
Recommended publications
  • The Application of a Characterized Pre-Clinical
    THE APPLICATION OF A CHARACTERIZED PRE-CLINICAL GLIOBLASTOMA ONCOSPHERE MODEL TO IN VITRO AND IN VIVO THERAPEUTIC TESTING by Kelli M. Wilson A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2014 ABSTRACT Glioblastoma multiforme (GBM) is a lethal brain cancer with a median survival time (MST) of approximately 15 months following treatment. A serious challenge facing the development of new drugs for the treatment of GBM is that preclinical models fail to replicate the human GBM phenotype. Here we report the Johns Hopkins Oncosphere Panel (JHOP), a panel of GBM oncosphere cell lines. These cell lines were validated by their ability to form tumors intracranially with histological features of human GBM and GBM variant tumors. We then completed whole exome sequencing on JHOP and found that they contain genetic alterations in GBM driver genes such as PTEN, TP53 and CDKN2A. Two JHOP cell lines were utilized in a high throughput drug screen of 466 compounds that were selected to represent late stage clinical development and a wide range of mechanisms. Drugs that were inhibitory in both cell lines were EGFR inhibitors, NF-kB inhibitors and apoptosis activators. We also examined drugs that were inhibitory in a single cell line. Effective drugs in the PTEN null and NF1 wild type cell line showed a limited number of drug targets with EGFR inhibitors being the largest group of cytotoxic compounds. However, in the PTEN mutant, NF1 null cell line, VEGFR/PDGFR inhibitors and dual PIK3/mTOR inhibitors were the most common effective compounds.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    Confidential Clinical study protocol number: J1228 Page 1 Version Date: May 7, 2018 IRB study Number: NA_00067315 A Trial of maintenance Rituximab with mTor inhibition after High-dose Consolidative Therapy in CD20+, B-cell Lymphomas, Gray Zone Lymphoma, and Hodgkin’s Lymphoma Principal Investigator: Douglas E. Gladstone, MD The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins 1650 Orleans Street, CRBI-287 Baltimore, MD 21287 Phone: 410-955-8781 Fax: 410-614-1005 Email: [email protected] IRB Protocol Number: NA_00067315 Study Number: J1228 IND Number: EXEMPT Novartis Protocol Number: CRAD001NUS157T Version: May 7, 2018 Co-Investigators: Jonathan Powell 1650 Orleans Street, CRBI-443 Phone: 410-502-7887 Fax: 443-287-4653 Email: [email protected] Richard Jones 1650 Orleans Street, CRBI-244 Phone: 410-955-2006 Fax: 410-614-7279 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 2 Version Date: May 7, 2018 IRB study Number: NA_00067315 Satish Shanbhag Johns Hopkins Bayview Medical Center 301 Building, Suite 4500 4940 Eastern Ave Phone: 410-550-4061 Fax: 410-550-5445 Email: [email protected] Statisticians: Gary Rosner Phone: 410-955-4884 Email: [email protected] Marianna Zahurak Phone: 410-955-4219 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 3 Version Date: May 7, 2018 IRB study Number: NA_00067315 Table of contents Table of contents ......................................................................................................................... 3 List of abbreviations
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and Ci5-Diamminedichloroplatinum(II)1
    (CANCER RESEARCH 49, 2844-2850. June 1, 1989] In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and ci5-Diamminedichloroplatinum(II)1 James M. Onoda,2 Kevin K. Nelson, John D. Taylor, and Kenneth V. Honn Departments of Radiation Oncology [J. M. O., K. K. N., J. D. T., K. V. H.], Biological Sciences [J. D. T.], and Chemistry ¡K.V. H.], Wayne State University, Detroit, Michigan 48202; and the Cershenson Radiation Oncology Center [J. M. O., K. K. N., J. D. T., K. V. H.], Harper/Grace Hospitals, Detroit, Michigan 4820I ABSTRACT dulin antagonists to enhance the antitumor actions of the more We have examined nifedipine, a dihydropyridine class calcium channel commonly prescribed organic or natural product chemothera blocker, for ability to overcome m-diamminedichloroplatinum(II) (cis- peutic agents (3, 4). The ability of verapamil to reverse multi- platin) resistance in a murine tumor line variant, B16a-Pt, which we drug resistance or pleiotropic drug resistance correlates with developed for resistance to cisplatin. Nifedipine significantly enhanced the expression of a M, 170,000 glycoprotein in drug-resistant the antitumor actions of cisplatin against primary subcutaneous B16a-Pt tumor cell plasma membranes (5, 6). This glycoprotein is now tumors and their spontaneous pulmonary métastases.We have charac commonly referred to as the P-glycoprotein (7, 8) and is re terized, in vivo, the pharmacokinetics and dose-response interactions sponsible for the active efflux of many organic/natural product between nifedipine and cisplatin. We now report our studies designed to cytotoxic chemotherapeutic agents (9-11). The current hypoth compare, in vivo, the efficacy of nifedipine and other calcium active esis suggests that verapamil interacts with the P-glycoprotein compounds including: (a) structurally similar calcium channel blockers to block drug efflux (12, 13); and that its actions are independ (nimodipine, nicardipine) from the dihydropyridine class, (b) structurally ent of the classical slow-inward Ca2+ channel (14, 15).
    [Show full text]
  • The Immunosuppressive Effects of Long-Term Combination Chemotherapy in Children with Acute Leukemia Inremission1
    [CANCER RESEARCH 31, 420-426, April 1971] The Immunosuppressive Effects of Long-Term Combination Chemotherapy in Children with Acute Leukemia in Remission1 Luis Borella and Robert G. Webster Laboratories of Virology and Immunology, St. Jude Children 'sResearch Hospital, Memphis, Tennessee 38101 SUMMARY effects of prolonged maintained combination chemotherapy upon immunocompetence have not been investigated. The immunosuppressive effects of maintenance Knowledge of the immunosuppressive effects of long-term combination chemotherapy given for periods ranging from 8 combination chemotherapy is now urgently needed because of to 28 months to 20 children with acute lymphocytic leukemia the increasing number of prolonged remissions and potential in remission were investigated. There was depression of both 5-year cures among children with acute lymphocytic leukemia the primary antibody production to the hemagglutinin antigen receiving this form of treatment (19). of the Hong Kong influenza virus and the anamnestic response This study was aimed at determining the to the neuraminidase of the same virus. The primary response immunosuppressive effects of long-term combination (hemagglutination inhibition) was affected to a greater extent chemotherapy in children with acute lymphocytic leukemia. than the secondary (neuraminidase inhibition) response. A Several unique features of this investigation were as follows. preferential depression of 2-mercaptoethanol-resistant (a) All patients were in remission and received the same hemagglutination inhibition antibodies (IgG) was also combination chemotherapy continuously for periods ranging observed. One-fourth of all acute lymphocytic leukemia from 8 to 28 months, (b) Patients and controls were patients had low serum IgG levels. In vitro transformation of immunized with the Hong Kong influenza virus vaccine prior lymphocytes was a poor index of immunocompetence.
    [Show full text]
  • Recent Topics on the Mechanisms of Immunosuppressive Therapy-Related Neurotoxicities
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2019 doi:10.20944/preprints201905.0358.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 3210; doi:10.3390/ijms20133210 1 of 39 1 Review 2 Recent topics on the mechanisms of 3 immunosuppressive therapy-related neurotoxicities 4 Wei Zhang 1, Nobuaki Egashira 1,2,* and Satohiro Masuda 1,2 5 1 Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, 6 Kyushu University, Fukuoka 812-8582, Japan 7 2 Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan 8 * Correspondence: [email protected], Tel.: 81-92-642-5920 9 Abstract: Although transplantation procedures have been developed for patients with end-stagec 10 hepatic insufficiency or other diseases, allograft rejection still threatens patient health and lifespan. 11 Over the last few decades, the emergence of immunosuppressive agents, such as calcineurin 12 inhibitors (CNIs) and mammalian target of rapamycin (mTOR) inhibitors, have strikingly 13 increased graft survival. Unfortunately, immunosuppressive agent-related neurotoxicity is 14 commonly occurred in clinical situations, with the majority of neurotoxicity cases caused by CNIs. 15 The possible mechanisms whereby CNIs cause neurotoxicity include: increasing the permeability 16 or injury of the blood-brain barrier, alterations of mitochondrial function, and alterations in 17 electrophysiological state. Other immunosuppressants can also induce neuropsychiatric 18 complications. For example, mTOR inhibitors induce seizures; mycophenolate mofetil induces 19 depression and headache; methotrexate affects the central nervous system; mouse monoclonal 20 immunoglobulin G2 antibody against cluster of differentiation 3 also induces headache; and 21 patients using corticosteroids usually experience cognitive alteration.
    [Show full text]
  • Mtorc1/2 Inhibition Preserves Ovarian Function and Fertility During Genotoxic Chemotherapy
    mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy Kara N. Goldmana, Devon Chenetteb, Rezina Arjub, Francesca E. Duncanc, David L. Keefea, Jamie A. Grifoa, and Robert J. Schneiderb,d,1 aDivision of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, New York University School of Medicine, New York,NY 10016; bDepartment of Microbiology, New York University School of Medicine, New York, NY 10016; cDepartment of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and dPerlmutter Cancer Center, New York University School of Medicine, New York, NY 10016 Edited by Nahum Sonenberg, McGill University, Montreal, QC, Canada, and approved February 8, 2017 (received for review October 17, 2016) The ovary contains oocytes within immature (primordial) follicles pathway, leading to primordial follicle activation and follicular that are fixed in number at birth. Activation of follicles within this “burnout” (6, 7). fixed pool causes an irreversible decline in reproductive capacity, Ovarian folliculogenesis initiates from the primordial follicle known as the ovarian reserve, until menopause. Premenopausal stage, where an oocyte arrested in prophase of meiosis I and women undergoing commonly used genotoxic (DNA-damaging) surrounded by a single layer of squamous granulosa cells is ac- chemotherapy experience an accelerated loss of the ovarian tivated to grow and transition to a primary follicle, secondary reserve, leading to subfertility and infertility. Therefore, there is follicle, and then ultimately a preovulatory antral follicle (Fig. considerable interest but little effective progress in preserving S1). Most oocytes within the ovary exist in a quiescent state ovarian function during chemotherapy. Here we show that block- within primordial follicles, relatively resistant to antimitotic and ing the kinase mammalian/mechanistic target of rapamycin genotoxic agents (8, 9).
    [Show full text]
  • Introduction to Chemotherapy
    2/21/2017 Principles of Chemotherapy EUGENE R. PRZESPOLEWSKI, PHARM.D. BCOP THE JONAH CENTER FOR ONCOLOGY AND HEMATOLOGY ERIE COUNTY MEDICAL CENTER Biology 101 2 Cancer is a complex disease caused by genetic and epigenetic mutations Simply, it is only unregulated cell division “Traditional” chemotherapy highjacks mechanisms of mitosis Understanding chemotherapy needs understanding of Biology 101* * Of course it gets complicated Chemotherapy 3 Merriam-Webster: Chemotherapy: noun: che・mo・ther・a・py Medical: The use of chemical agents in the treatment or control of disease (such as cancer) or mental illness Word originated around 1910 by Paul Ehrlich Developed the first treatment for syphilis, antiserum for diphtheria (Nobel prize in 1908) He also developed the concept of “magic bullet” In the world of pharmacology chemotherapy can be used to treat: Infectious disease Cancer 1 2/21/2017 History of Chemotherapy Begins… 4 World War II 5 Nitrogen Mustards were taboo and not used in battle, however Ready to be used (feared Hitler would use when he was pushed) Bomb raid on Bari, Italy on December 2nd, 1943 Sailors exposed had depletion of bone marrow stores and lymph nodes Goodman and Gilman at Yale discovered murine models with lymphomas responded to nitrogen mustard therapy Convinced a surgeon to treat a single NHL patient with a nitrogen mustard Original trial done in 1943, but data kept secret until 1946 The Lesson of the 1940s 6 Nitrogen Mustards: Alkylation of guanine nucleotides in DNA causing inhibition of cell division
    [Show full text]
  • Double Autophagy Stimulation Using Chemotherapy and Mtor Inhibition Combined with Hydroxychloroquine for Autophagy Modulation In
    LETTERS TO THE EDITOR AKT- mTOR signaling pathway both serves as a potential Double autophagy stimulation using chemotherapy resistance mechanism to cytotoxic chemotherapy in and mTOR inhibition combined with myeloma10 and when inhibited, induces autophagy,11 we hydroxychloroquine for autophagy modulation in hypothesized that adding rapamycin to standard alkylat- patients with relapsed or refractory multiple ing agent cyclophosphamide would ‘doubly’ induce myeloma autophagy, providing an improved platform for the addi- tion of an autophagy inhibitor. We conducted a safety pilot and phase I study with the primary objective to Multiple myeloma is an incurable plasma cell neoplasm determine the maximum tolerated dose (MTD) of for which novel agents have improved outcomes but hydroxychloroquine and safety of the 4-drug combina- therapeutic resistance is inevitable. Infusional cytotoxic tion. chemotherapy is an effective cytoreductive strategy for Adults with relapsed or refractory multiple myeloma aggressive relapse but is not curative.1 The autophagy were eligible for the study if they had received prior pathway is a lysosome-dependent degradative pathway lenalidomide, bortezomib (Table 1). Full eligibility criteria frequently activated in tumor cells treated with are provided in the Online Supplementary Appendix. This chemotherapy or radiation that mediates therapeutic was a 2-stage study: the 1st stage was an open label single resistance2 (Online Supplementary Figure S1) as it is a center pilot study (July 2011-June 2012; Abramson reversible adaptive response that allows cancer cells to Cancer Center, clinicaltrials.gov identifier: 01396200) to survive therapy-induced apoptosis.3 Autophagy inhibi- establish the safety of adding rapamycin and hydroxy- tion with hydroxychloroquine, which blocks the clear- chloroquine individually to backbone chemotherapy ance of autophagic vesicles,4 can augment the cytotoxici- (n=6).
    [Show full text]
  • Mtor Inhibition Sensitizes Gastric Cancer to Alkylating Chemotherapy in Vivo
    ANTICANCER RESEARCH 28 : 3801-3808 (2008) mTOR Inhibition Sensitizes Gastric Cancer to Alkylating Chemotherapy In Vivo DANIEL CEJKA 1, MATTHIAS PREUSSER 2, THORSTEN FUEREDER 1, WOLFGANG SIEGHART 1, JOHANNES WERZOWA 1, SABINE STROMMER 1 and VOLKER WACHECK 1 1Section of Experimental Oncology/Molecular Pharmacology, Department of Clinical Pharmacology, and 2Department of Internal Medicine I, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria Abstract. Background: Gastric cancer is a highly high dose of cyclophosphamide shows synergistic antitumor chemoresistant tumor. Previous studies suggest that cancer activity against gastric cancer in vivo. In potential future cells can be sensitized to standard chemotherapy, and clinical trials, the toxicity of cyclophosphamide in combination especially alkylating agents, by inhibition of mammalian target regimens with everolimus deserves careful evaluation. of rapamycin (mTOR) signaling. The work presented here shows that the mTOR inhibitor everolimus, in combination The mammalian target of rapamycin (mTOR) pathway has with cyclophosphamide, exhibit s synergistic antitumor activity become a major focus of preclinical and clinical cancer in gastric cancer xenografts. Materials and Methods: research (1). Rapamycin inhibits the kinase activity of mTOR, Treatment with everolimus at the minimal effective dose was which has been shown to result in G1 arrest, apoptosis or studied in combination with cyclophosphamide at maximum autophagy, depending on cell type studied (2-4). In gastric tolerated dose in a human gastric cancer severe combined cancer, mTOR activity and components of the mTOR immunodeficient (SCID) mouse xenograft model. Besides signaling network including PTEN, 4E-BP1 and eIF-4 are tumor size, biomarker expression for proliferation (Ki-67), deregulated and correlate with progression of disease, hypoxia (HIF-1α), apoptosis (activated caspase 3), metastasis, and inferior survival (5-9).
    [Show full text]
  • Oral Chemotherapy Drug List
    Oral Chemotherapy Drug List (Lista de medicinas para quimioterapia oral) Current (corriente) 10/1/21 Brand versions may not be covered when generics are available, Please check your medication guide (Es posible que las versiones de marca no estén cubiertas cuando hay genéricos disponibles. Consulte su guía de medicamentos) Afinitor imatinib Soltamox Afinitor Disperz Imbruvica Sprycel Alecensa Inlyta Stivarga Alkeran (melphalan) Inqovi Sutent Alunbrig Inrebic Tabloid (thioguanine) anastrozole Iressa Tabrecta Ayvakit Jakafi Tafinlar Balversa Kisqali Tagrisso Bosulif Koselugo Talzenna Braftovi Lenvima tamoxifen Brukinsa leucovorin calcium Tarceva Cabometyx Leukeran Targretin (bexarotene) Calquence Lonsurf Tasigna capecitabine Lorbrena Tazverik Caprelsa Lumakras Temodar (temozolomide) Casodex (bicalutamide) Lynparza Tepmetko CEENU (lomustine) Lysodren Thalomid Cometriq Matulane Tibsovo Copiktra Megace (megesterol) Tretinoin Cotellic Mekinist Trexall Cytoxan (cyclophosphamide) Mektovi Truseltiq Daurismo mercaptopurine Tukysa Droxia (hydroxyurea) methotrexate oral Turalio Emcyt Myleran Tykerb Erivedge Nerlynx Ukoniq Erleada Nexavar Venclexta exemestane Nilandron (nilutamide) Verzenio Eulexin (flutamide) Ninlaro Vitrakvi Evista (raloxifene) Nubeqa Vizimpro Fareston Odomzo Votrient Farydak Onureg Xalkori Femara (letrozole) Orgovyx Xospata Fotivda Pemazyre Xpovio Gavreto Piqray Xtandi Gilotrif Pomalyst Yonsa Gleostine Purixan Zejula Hexalen Qinlock Zelboraf Hycamtin Retevmo Zolinza Hydrea (hydroxyurea) Revlimid Zortress Ibrance Rozlytrek Zydelig Iclusig Rubraca Zykadia Idhifa Rydapt Zytiga Generics = lower case Brands = CAPITAL LETTERS (Genéricos = letras minúscula Marca = LETRAS MAYÚSCULA) Florida Blue is an Independent Licensee of the Blue Cross and Blue Shield Association Page 1 of 1 .
    [Show full text]
  • Mammalian Target of Rapamycin Inhibitors and Clinical Outcomes in Adult Kidney Transplant Recipients
    Article Mammalian Target of Rapamycin Inhibitors and Clinical Outcomes in Adult Kidney Transplant Recipients | Sunil V. Badve,*†‡ Elaine M. Pascoe,* Michael Burke,§ Philip A. Clayton, ¶ Scott B. Campbell,§ Carmel M. Hawley,*§ | Wai H. Lim,** Stephen P. McDonald, ¶ Germaine Wong,†† and David W. Johnson*§ Abstract Background and objectives Emerging evidence from recently published observational studies and an individual – *Australasian Kidney patient data meta analysis shows that mammalian target of rapamycin inhibitor use in kidney transplantation Trials Network, School is associated with increased mortality. Therefore, all-cause mortality and allograft loss were compared of Medicine, between use and nonuse of mammalian target of rapamycin inhibitors in patients from Australia and New University of Zealand, where mammalian target of rapamycin inhibitor use has been greater because of heightened skin Queensland, cancer risk. Brisbane, Australia; †Department of Nephrology, Design, setting, participants, & measurements Our longitudinal cohort study included 9353 adult patients who St. George Hospital, underwent 9558 kidney transplants between January 1, 1996 and December 31, 2012 and had allograft survival Sydney, Australia; ‡ $1 year. Risk factors for all-cause death and all–cause and death–censored allograft loss were analyzed by Renal and Metabolic Division, The George multivariable Cox regression using mammalian target of rapamycin inhibitor as a time-varying covariate. fi Institute for Global Additional analyses evaluated mammalian target of rapamycin inhibitor use at xed time points of baseline and Health, Sydney, 1year. Australia; §Department of Results Patients using mammalian target of rapamycin inhibitors were more likely to be white and have a history Nephrology, Princess Alexandra Hospital, of pretransplant cancer. Over a median follow-up of 7 years, 1416 (15%) patients died, and 2268 (24%) allografts Brisbane, Australia; | were lost.
    [Show full text]