KINS/RR-103

&A^S||7|#^|7|^7Ha

yaasss 9\

VANDAL ss yy

User Guide for VANDAL : A Probabilistic Safety Assessment Code for Radioactive Waste Repository

2002. 2.

Kins

et *; y! Xp-ivaxi yi v< n= rp Kb o •lohl Kf opl cH 50 U KO do Sr Khi oO otl * KlO <0 ¥1 sr to oN 'M v< K1 Lj" g£Mp. S f g KD KD KD DU 5r ir

: : \ 2 c\j ofj B° t-

ajoix^ oJ

w I o ’ 4X11

SD “ c|jJi|xl|2Hoix^

All

Klo □hJ K r4 L) 'KHU dIU T iSn i ^

W iio nH TF = ? iSJ M kO oJ iH 5P 5iu <|w 2 R" r\ <" Kh W oT oJ mini o W ? dU K" n 5iu oP m BjJ *1 ioJ r\ O Ot 1,1

0| 2EA1# # AjgfjmA^3||7|@^eA|^0|| CH@ #*EM 22@@7l3H3

VANDAL# #5933 3 @3# B332 gx!3 23# A1SSM. VANDAL (Variability ANalysis of Disposal ALternatives)2 3M0||X1 3-X1I3SS2S 7fJ22 32SA1 1997-2001 713 § KINSOllAi 2592 2Xl3227H2A12(2Al@Sl|7|#g-Xl|7|^7||2)# mm mm #@oii 9i7ii 2@33°m 333 *3 3M3 §33 g@oii ms sl-i oi 2233M.

0132 2@3 #2A|@A15A-1 M@332Dl, KINS0||A-| #Al232Al@37|#xlSA|S 3@@@7[2| 90S AIMS 2 3 OJS171 3SA-1W21 #232 77X113#@ Vis £23

MM3 Atssq. 321 gg KINSKI #?Al7l VANDAL# 0|#S Ald|22Ll as 32

* 259@011 301 01 A|@0||A1 xi|A| 5ibr #33 22# M32 301 222M. 01 Aig # MM3 £fog s# cqi @2# S#@°3 259 Si 2 3#2 #E #593 §3 S|| @o|| SJB@S #a|So ^mi 6H@ 3xi| 3#3 S232 S#o| agi 2 3# 30|M.

S3, 0| x |@3 xi |41 as## Ai§xig°i 223 A|E2i @3# #@H #332 7||§

22# #fi2 SB. 0| 23A13 £22 19992 32011 3@ till 33 01 323 A|@ @23 @7?i| ¥3333 223333 3332 2271 #a@lM. 332 KINS #23# 3 #0|M. 32133 01 A|@0|| cc|M VANDAL# ###13 IBS B@@01| 33 #2x|

#2 # 2B M2 3# 32 dl 2#S 71X101 SIM AH3S 33# xi |A|§12 fll 2A13 0| 3301 S 30IM. 32J3 32M M2 322 #32 A|m## 233 @#2MS 71x1 o| x|@o|| 2330101 @M.

1 -II-

(hnto fe5te) SUMMARY

This report describes the procedures and methods to carry out the VANDAL (Variability ANalysis of Disposal ALternatives) code, which is a probabilistic safety assessment computer program for low- and intermediate-level radioactive waste disposal facilities, and to analyze the outputs. Originally, the VANDAL was developed in the United Kingdom for the regulatory evaluation of disposal safety. Through its research project "Development of Regulatory Technology for Radioactive Waste" (1998-2001), the KINS has made some efforts to adapt this code to the Korean circumstances. This report also includes the corresponding results in terms of input and output management.

This report was prepared as a practical guidance which is applicable to case studies and independent regulatory evaluations related to safety assessment of the low- and intermediate-level radioactive waste repository. Therefore, it is desirable that in performing the related activities, the KINS staff follow the procedures and methods presented here. This guidance may provide a consistency in the VANDAL run and the corresponding output interpretation and contribute to the overall reliability and the quality assurance of the safety evaluations.

- in - (£J£*1 OM)

IV OOJ o. j

SUMMARY ...... iii

1. AHg - X|@<>| x||71|2t ®S gg ...... 1-1

2. TIME4/VANDAL 7||o 2-1

2.1. 231 Eg ...... 2- 1 2.1.1. 711 o ...... 2-1

2.1.2. YISE @7IS gm SWS ...... 2-2

2.1.3. VANDAL ...... 2-2 2.1.4. A| £2}°| Sag ...... 2-2

2.1.5. XISlESSm gAlgffijg 015 ...... 2-3 2.1.6. X|S Eg Eag ...... 2-4 2.1.7. Foodchain Transfer Eagg g5£jg-g7f ...... 2-4 2.1.8. Chemical Transport Eag A|-g ...... 2-4 2.1.9. S3tE^j ...... 2-5 2.1.10. as (Bias) ...... 2-6 2.2. B4M2J mans! Eag ...... 2-6

2.3. Geosphere Eag ...... 2-10 2.4. yxigsHg 0|5 Sag ...... 2-17 2.5. saix-j Mg#o| BBJB4 ...... 2-19

2.6. 5E||71| sag ...... 2-27 2.7. Xiasaz] Cl|0|Eim|0|E ...... 2-32

2.8. VANDAL gg ...... 2-35

2.9. VANDAL #g ...... 2-36 2.10. VANDAL MIOIIAl°l Timestepping ...... 2-36

v 2.11. 2-38 2.12. TIME4 - VANDAL £!Ef*DO|^ 2-39

3. VANDAL 3-1

3.1. 7H2. 3-1

3.2. moiei am mm ...... 3-3

3.3. Xl|...... 3-4 3.4. til0|EH mil g 74 3-5

3.4.1. Fixed Data File ...... 3-5 3.4.2. Sampled Data File ...... 3-6 3.4.3. Keyword Data File ...... 3-10 3.5. 51 I4lg5f og ...... 3-12

3.5.1. Cotrol data ...... 3-12 3.5.1.1. INPCTL.DAT - Fixed data ...... 3-12 3.5.2. FLOW data ...... 3-16 3.5.2.1. INPFLO.DAT - Fixed Flow data...... 3-17 3.5.2.2. SAMFLO.DAT - Sampled Flow data...... 3-21 3.5.3. VAULT data ...... 3-22 3.5.3.1. 1NPVAU.DAT - Fixed Vault data ...... 3-24 3.5.3.2. SAMVAU.DAT - Sampled Vault data...... 3-26 3.5.4. GEOSPHERE data ...... 3-29 3.5.4.1. INPGEO.DAT - Fixed Geosphere data.... 3-29 3.5.4.2. SAMGEO.DAT - Sampled Geosphere data . . . 3-33 3.5.4.3. TRANS.DAT - Fixed transverse diff. data . . . 3-35 3.5.5. BIOSPHERE data ...... 3-36 3.5.5.1. INPCOM.DAT - Keyword compartment data . . . 3-37 3.5.5.2. INPDOS.DAT - Keyword dose data ...... 3-39 3.5.5.3. 1NPC0R.DAT - Keyword correspond data . . . 3-41 3.5.5.4. INPFLG.DAT - Debug data flags ...... 3-43

V] 3.5.5.5. SAMBfO.DAT - Sampled Biosphere data .... 3-46 3.5.6. Sea Picture data - SEAPIC.DAT ...... 3-47 3.5.7. TIME4 data - T4KEY.DAT (Keyword TIME4 data) . . . 3-48 3.5.8. Intermediate output data - INPINT.DAT ...... 3-50 3.5.9. EXECUTIVE data ...... 3-51 3.5.9.1. VANDAL.CTRL - EXECUTIVE command file . . 3-52 3.5.9.2. DEFMODEL.DAT - Model Definition File .... 3-53 3.5.9.3. INPLIM.DAT - Input Limits File ...... 3-53 3.5.9.4. EXEC_ERRORS.DAT % VANDAL.MSG...... 3-54 3.5.9.5. ERROR.DAT...... 3-54 3.6. D1SB5J jog ...... 3-54

4. VANDAL WS ...... 4-1

5. VANDAL SB ...... 5-1

5.1. mm *13 5-1 5.2. 21gJ A-IS ...... 5-1 5.2.1. TNPSUM.DAT : 2j6j5}gl2] got ...... 5- 3

5.2.2. SAMSUM.DAT : sampled data 2.B ...... 5-5 5.2.3. OUTPATH.DAT : 85 U|0|Ei ...... 5-6 5.2.4. OUTJUNC.DAT : 3W3 (junction) Oil B 2] U|0|E1 . . 5-7

5.2.5. OUTFLOW.DAT : flow mm U|0|Ej ...... 5-8 5.2.6. OUTFLUX.DAT : 39S 9 tl90 ||A-|°| mm ... . 5-9 5.2.7. OUTPEAK.DAT : 2|3 38 mm fl|0|Ej ...... 5-10 5.2.8. OUTDOSES.DAT : SEtiS fiBIHI0|E] ...... 5-11 5.2.9. CONDOSES.DAT : 2B SB ...... 5-12 5.2.10. OUTMOLES.DAT : (compartment) BE G|0|E-| . . . 5-14 5.2.11. RESTRT.DAT : restart U|0|E-) 5-15 5.2.12. OUTTOTAL.DAT : @0(totals) Cj|0|E| ...... 5-15

- vii - 5.2.13. MASS.OUT : 8838 (mass balance) #8 U|0|Ei ... 5-16 5.2.14. TIME.OUT : timestep U|0|E-| ...... 5-18 5.2.15. OUTCOM.DAT. OUTDOS.DAT, OUTCOR.DAT, OUTFLG.DAT, OUTSEA.DAT ...... 5-19 5.2.16. OUTDBG.DAT : 8 EM debug Ej|0|Ei ...... 5-19 5.2.17. FLOGEO.DBG : flow/geosphere debug U|0|E4 5-19 5.2.18. XFLOW.IOP, XVAULT.IOP, XGEOSP.IOP, XBIOSP.IOP . . 5-20 5.3. ^ 88 01|BH D)|A|A| ...... 5-20

6. VANDAL #7118 88 6-1

6.1. A^g ...... 6- 1 6.2. VANT4 7112. 6-1 6.3. VANSTAK : VANDAL te4Sj g8S 910 KINS 22 6-6 6.3.1. 7H2 6-6 6.3.2. VANSTAK 6-8 6.3.3. VANSTAK Mm ...... 6-9 6.3.4. VANSTAK 88 882} §H8 6-11 6.3.4.1. 7H2 6-11 6.3.4.2. 388 9132 6-13 6.3.4.3. M888 #8 6-15 6.3.4.4. EJ8E E8 ...... 6-18 6.3.4.5. J. *#2] VANSTAK 88 888 SH8 ...... 6-20

7. 8238 ...... 7-1

3# 1 : VANDAL 2238 28 ...... Al-1 3# 2 : VANSTAK 3338 ...... A2-1

- viii - s # ^

5 2-1. DECOS-MG Version 2.02] ^2...... 2-31 S. 3-1. VANDAL E||0|E] ...... 3-3 fi 3-2. 'gmn ##2] Keyword ...... 3-41 S 3-3. INPFLG.DATOIlAi Keyword# ...... 3-45 a 3-4. ma*jej ss s]gj siei ...... 3-55 a 5-1. VANDAL #&! 3t^2] ## 5-3 a 6-1. VANSTAKOIIA-| Al@Xp] gje^ojof # 3]B|n|Elg ...... 6-9 a 6-2. VANSTAKOII A^ E||0|E-|2} 3EH a 6-12 a Al-1. Alias VAULT ¥ EH Oil me oiEimoia ...... Al-6

IX I £! Af

nS 1-1. VANDAL EEAIES gg xlMI ...... 1-3 nS 2-1. TIME4 A|gM|0|ti# dl ...... 2-7 nS 2-2. WOLFNET# MIES SS...... 2-11 ns 2-3. Aim4^ °B MIES# Sfi ...... 2-12 ns 2-4. mgAig eh sdi mm m\^ si mie# ...... 2-21 nS 2-5. Near-field/Far-field S71IS# E#S...... 2-22 nS 2-6. Near-Field El Oil Mim SEE ...... 2-23 nS 2-7. DECOS-MG 2.0011 Aj ^2. [i|0|El gam# @7j|...... 2-28 nS 2-8. TIME4/VANDAL PRA A|EB x||A| 2-32 ns 3-i. vandal mss #m ss §aai MioiEi#g## a#...... 3- 2 ns 3-2. Fixed Data File# @4 ...... 3- 6 ns 3-3. Sampled Data File# SS ...... 3-10 nS 3-4. Keyword Data File# SS ...... 3-11 nS 6-1. Main IDL Window# ESW SS ...... 6-11 nS 6-2. VANSTAK SS convergence .bmp ...... 6-15 nS 6-3. VANSTAK @S confidence.bmp ...... 6-17 nS 6-4. VANSTAK ftS percentile.bmp ...... 6-22 nS 6-5. VANSTAK *S allplots.bmp...... 6-23 nS 6-6. VANSTAK ftS surface.bmp...... 6-23 nS 6-7. VANSTAK #S frequency.bmp ...... 6-24 nS 6-8. VANSTAK #S pdf .bmp ...... 6-24 nS 6-9. VANSTAK *S hpdf.bmp ...... 6-25 nS 6-10. VANSTAK #S cdf.bmp ...... 6-25

x 1. MB - *|§jo| xll/ll 9\

VANDAL (Variability ANalysis of Disposal ALternatives)S 8 g HMIPCHer Majesty ’s Inspectorate of Pollution : ‘96tdO)| Environment AgencyOII #m@)7| 1980timoi| 7||S m, xim*igAim viavise m\m mm ssgm ^seea-i. eamm A|gei| 0|Ejoj TIME421 STIimoi M. 0| 2Efe gg S BIS Em Nirex y^AI soil mm a§i V|8H 199im 5# RMC(Risk Management Consultants)71 SSEE ms iseife ms vmmm oim xiiTiimm mss 74#mm 21m 01 see mAHm#

§7|oii m#ea, smam gAiiAiy@imw@7|oii sgmg mnm m mm, #8i meum massie 7ia eb^w a mm mee @7imji mm. TiME4fe AimmsAi±#m 7i^m men 5711m aes aamE, vandals time4 ai men01 m# mmEE mgAimm Agjam am ^ maa emmmm sms eamm.

TIME4/VANDAL8 Olgmg fll 7|g g 0|Bjgg 0| SEAIE^OI C|E aSSMI Eg mm mmg aoim. oiae men memegEE 711 mm01 wiam mem mmoie g 01 mmm msmssEE ammaAi #mmiAi7i Aiasimm m aa011 mm mm mm 71am mmm svi ggmg msoiiAj ogi 7|ai 7igoi #7|@ mieoi oiU7i mm. mm, ee xixiim a mam mm mm soiia-ie oiejs got mm. 01 seoiiais m ga Ws(submodel)am smEE fcom men Mm sim ails oism m S(calibration) 7|Sg xH@|m7l| E|mm(OI|g ftO|, A|8ig S§, A|Stmm 0|§ #). E m, 01 ee7| as a Eg smas see 7hw@ yoi oimm mma#oimg earn mas mmol 7Hm@ amoii Aigxi amoii mm EBj7i g#oim. smas aaa g.

Em Afoim mam &mmn spi man see eb-ihai mg mmm mag eehs mm ois-mE-m mm mm. oig «ssve se xiaAjy 7ixigg sm-ma-smg a g ssm mam a#m7i oimmg yoi mm, mogi mg ¥smm mxiim ms

011 e msjmoi me asm SAimm.

01 Aimm gas vandaloii mmmxi yg KiNsm sax^iM vandalsi m@m a m sum on ogmg mm mm mgxias *iism:i mgxioiim smm @m mm 011 am

1 - 1 e xilSSE %oiM. mgais Moil BBS, vandals asm MSB MSB emilb

6(BM B @MES. 7|M bthoj ojMMOIE c||MEE KINS0||A-| 0|g 7|

ES|X| SMOIM. HMHM. 0| X|gg 7|mxho5 VANDAL MS 2.OS) AjsHstgJ

(vandal.exe) M SSO]| 2BME ti|0|M MBSBOI 0|g 7|#S)ME 3# SxilM S|0), chioieh* bmme ass Mm ss emu zl sms g^ sfj= 0ie 7|esb Ais# 8 A)SBM.

TIME4/VANDALM MxllSei #SM BBS §5)1 011 C||8|0)E 0| X|S01| o>M ^9 M JLAi (KINS/GR-136 5! KINS/AR-547)0||Ai feME HI BM. EB. 0| MBA)0||Ai BBS

A|5)IBEM BMM zgnife BEM MBEA) 018 7|#8|M. 0| X|§jM CHMOI 0|# X|g

68 SB SMB VANDAL# MM MS 0|@# E B# 30|M.

#MM¥e) # E B#o|, 0| XIbe x|x)|m ESSIES BSMBM. w|# sms 301 7IE SIM VANDALM Sg0|| #os| ME 30| 0| X|@0|| E#M0| SJpl Btt E B

M. MB, TIME40II BSOiE 0|30| B7I1M BE0|B VANDALOII MB7|b MIS# IS

SUL BE MMOII BMS B7HM VANDALM SM2||0|E ME ¥SB MEMO) B# ¥ x|A)|«| m§E ZWMM BM %M.

MB 1-1E 0| X| Oil AH 7|¥S°S EBSE VANDAL EE X|^M E§X||A||* MO)

EM. EE Oil A) gH SSM gJSBEM SEE VANDAL# SEME BM6S MMMM.

H BESS B7)im ES SMM D||0|MM §§§ 7|B|BM. 0| x||7||b MM SEOII M m X|S|E II MIMMM MS (calibration) M KINS X|x|| EEPJ VANSTAKOII MS 14 §HS VMS ESSIE BE 30| #S0|D). "simple biosphere"0|| M5|0) TIME4M “SEA

P1CTURES”0|| SMS a|S# upHSIE #M ¥ BE# MM BM. 0| x||7||E0|| M£S

MBM §A|ftE 0| xigjCHIAi ojpg x|A)|S| M

0| X|SE MEM S0| ¥SMM BM.

- TIME4/VANDAL 7H2. (M2B) - VANDAL BM (X||3S)

1 - 2 - VANDAL SS (7HI4S-) - VANDAL ## (X||5S) - VANDAL ### @71|# ¥# (X1I6S)

- SJLge (X1I7S) - VANDAL (¥# 1) - VANSTAK (¥# 2)

0| X|$jg- #@#011 %(# BX-1 Qx1|#oS oj. y o101 M yg a##. OltMl oi xi## gxiisie B@@ ### ¥ 901m ¥oim A^ie## ### s#¥ # #S #£!#S CHI A|@#o# ¥ #!S #0|#. @S|, VANDAL @711# @#oii mmoi nai##.

X1I2SS TIME4/VANDAL SEA]### Sx||#oi egg £###. A^g0|| VANDAL# xii7ii# mgoii #mm xf#oi#e m&m e##E# ## an# ¥ses %oi s##e m #01#.

VANDAL e# SSS 0| X|#°] &j#0|DL @0|# X^|Q¥E ##01 VANDAL C1|0|E1 siiiii ¥§### # #ioiife xii3#s gni#e # #oi#. xii 3son@ e#on mm # e#oi Afmg^e oimbi xigxpi s# s#7ii #b m£#e ## smmoii m#oi

## see its 3.6#oiiai e##i ##.

X1I4SS VANDALS S?S#b 2g§ &###.

X1I5SS VANDAL SS# SS#fe ###S E7Hm#. A^@x^@ ## xz|Qjgoj s#s pi# ##sii§o S# #@#7ii e#s ssm # %s #01# ssseee ¥01 m Aime¥* M# ms#7ii sss ¥ %@ # 01#.

VANDAL e#2| ¥#(X1|6S)E g2S ¥#0| @#. 0| X|#0||A1@ VANDAL ### S 7ii¥#s ##oi kinsoiia i xixii 7ii#m a## EEmse vanstakb mgsi# ##. ¥9 1011 fe VANDALOII ifll@ Submodel## 9# ^95 Hl*ll §919 5gn||i ¥9 m CH 55190101 t? AfS#0| S999 Si 9. dl¥¥9 Algxib 0| ¥010|| eym y 019 S¥ 9 Ml xisyxio, ysi#o|| 99x1b O|7|o|| 99 g 7ix|7l| I! ¥5 SiS 90| 9.

0| X|Q°| 0fX|e| u tioi os 20)|fe #7ll¥9 SSHHei VANSTAK9 gjg0| ¥#9 a| Si9. 0|yg #7j|#xi0j, o^.£]-= ^ogXl A1SX171 99 goiot §lfe Cl|0|99 £

9# 0|B| Si°111 ¥ Si711 812 #2A| 0| 555^g AlgXl?! £J8|fe “Jgog ¥9#

¥ Si711 §171 ?m0|q.

oi xmoiixi y&jjii eqoii g ei Liig#g vandaloii esi @9 rmc9 oii#@ #@ 995 mol 999Si9. 5B1E5 o| x|gg o|g§ib 7igci| o|# ¥bo||Ai S9

9El Al##0| 1-19999 8H9 gjgg S55H M 9g 9599. 959 RMC n||#@# 9 9#S All79 S5geoi| @71901 Si9.

1 - 4 MODFLOW

calibration ^ r IMP***.DAT <3> *FLO.DAT T4KEY.DAT SEAPIC.DAT SAM * **. DAT INPUT TRANS.DAT simple biosphere : h M full biosphere :

<4> VANDAL til! VANDAL

.OUTPUT OUTFl_OW.DAT CONDOSES.DAT

Convergence Test VANSTAK Uncertainty Analysis

Sensitivity Analysis e.g., SAS

<7> Graphics Presentation presentation

IL& 1-1. VANDAL SEAlEtU °§. xl|7l|.

5 0}til)

1 - 6 2. TIME4/VANDAL 7||o

0| ES VANDALOII 14153 7113321 @x|ME e#o|| gg MISS

0171X1 ¥7fl£|S mss 01 SEE 7||yxigl RMC2) 3# (HI ttlg 3E5A1 KINS2) earn me ¥M§£ he eeejoi 51m. vandals #ss oishes as 01 ees

0ISSF01 gois arises t9S0H 5101 ygm HJS§ ¥3371 El 33 HI0|E1 Alls

S ntsti rru g ES0| gEl. oi as ETii s ggog £ioi 51 a. a ¥S(2.m)oiixig vandals gxiia°s 3 esi seigcl. E|D1X| ¥¥(2.2H 0|5l)0||X1g 2.1@01|X1 fiotg A1|}§§ E1A| gag

5 EE1 X1A1ISI gWgEb

2.1. 3x11 oof

2.1.1. 711 o

VANDALS E1SS| go| ySE| 01 51 El. Version 1.1S Network flow, Multiple vaults, Dynamic compartmental biosphereOII 7IS6151ED1, Version 1.2S 151 ti 7| 30|| 33 35x1S EH5X1 7|gysi EH3 TIME221 2171|£JS1E, Version 1.3S &7|3, E|§- 33716 EH1S.1 tiSx1SEH0|El. 0| X|a011X1 xlWlE 51S Version 2.OS S3 SellafieldSI DounreaySI ES3S X|ggX|°1 a US @7|# SI ©H 7HHS S3 ¥X|(Marine model)21 A|3 #¥ 3g(TIME4), 33 ES S3 #011 K1E X|g ## S71153, free-surface 371153 (X13E321 HS}E gxi|SEE HAD #S EE1# ¥ 5ism, EE2| ESSIE X|#5101 ¥EH#3 Ex|| ES S#0| 71S51E# £101 51 El. 01EH01I X1#5|S LUSS SHE 3S0I &E S S¥ VANDAL 2.021 TIME401I gg 3 0|E1.

2 - 1 2.1.2. 3vjE(Risk)®7lE 3 0 03

TIME4/VANDAL A)3#S 3 0|@3 00) S 7||3 Monte Carlo A|@21|0)3# x|)g0 13. TIME4S X100@A)3@)3 7l#@ 0|eH Evolution^ 0#@ 00 03, VANDALS a 1000 00 ^ 00s ^0003 S3® 1003. 01 xi3tys 7hss mt pra s SS 3004 0A)| Eb Research E@S3E3 000 Ef$flcafi SE0b 3 #0 @ 333.

2.1.3. VANDAL

VANDALS Flow submodel, Vault submodel, Transport submodel, Biosphere submodel# 71X|3 33. 0| SUSS pathways) networks S§§Kh S.A1S1P4, 3§ 03S3E33 o)iA42) a§ yeas 32=1# s 33. xims sss darcy flow equations AlgSlPl 000 74)00) 71S03. Vault submodels S00 0SS3 #30 000 @0# SM3 #Aia@)#3 yen @@03. 0#oi#as FDMS A1§0O4 S3@3@3 1x13033 53. z| relevant junctionO)|A43 #E7l 0 time steps) #0)| XHS0S3. #0 @3#0) 03 ES 0)24 7))S) 00 g yoiBO) te 5!S3 §2)1 3 33. 0|@g 330 3I7IM ## 3 3§ vaults) A|#B)|O)0@ 3S07)| 03. Biosphere modelS 3%, 30S, X|5E0)|A43 3Alg 3 S>0gg 30 33 A)0O5 0)04X)S S0i 0*112) 7IS7) £|fe g0O)|A40 0X10 SEE X|00 033 @003.

2.1.4. A|(time-dependent) S3#S) 33'!0

X)0 #300 $33 ED0011 30 X10S 303 @3. (033 SS) 1,000-106ti 00O)| 00 303 001 3240b @o| @S03.

- 33A)| 33 03 (nature) - 33A4I371 0g0b 3E(rate) - 33All33 0S3 000 A)30

2-2 - #y By A}y (discrete event)2} - #yey Amoi swi# 5iie

TIME2# SBxlES SHEA} VANDAL Version 1.22} Q^ISP. @yo| L}g EEO|| A}gE|7|tiPfe ^SS A}gX}0||?}| Oj|#Z} @7}0|| %0}A^ X}A-||y §Mf X}|S8}#

5jO| B5jO|L}. TIME4# ti#x-fggoSA1 VANDAL 1.3 3! 2.02} y#@y. 9}# E7I|

2| U||X|7} ye}7|2| regular pattern# SB BE Sijtiyx}e}# 7}@0|| 7|SS stochastic

climate sequencing modelEA-} y y2} eBES} 2}7y 7|e°ll 5°} 7|B(750,000ti £]•¥• E} 2}) -g- yySic}, Climate-driven processEAi y## E#S}y.

- BE X|5E e@2} X|recharge #2} gs - ice sheets} g§J} ojgg 8H^S SS} - ice sheets} xiysj @5} QJ 7|##s} g§

- XISS} E## AltS River process

zf TIME4 submodel# MC} ##$} PJ EBBE-EEi #■£# process interaction #2}

ye set# E}E}t«y. TIME4E VANDALuH flow network modelOJI S71I5QB AUSSIE recharge %! eHES C}|0|E}g x||§Eiy.

2.1.5. AlA}eEC'2} yA}Aia|g OIS

ys} ff-fi (Regional scale)5 lit U}E}U}}7| f}8M 8}y2j EcSO| xHa}yy. g y ss ai^s sbs} yyyy sy# bsshe ew @yy Ey xwiy yes yyy stiiesoi #e£|ee sy. VANDAL network How models} #E2} ESS VANDAL W}2} WOLFNET2}

PLOTWOLF EE 7| yy X|8}E5E# A}@8}0} ESS E 21 y. networks} #E# X|

8}E SB ys| 2J @{B#@2} sty 2} y#0} Aiyyy, TIME40|| SIS MS (Calibration) # yxfiy yxnyoj njEj}5g # y* ax}y# y issiy.

Detailed flow modellingO} ESS BE ESSIS yAlgsHg 0|# mm ys}0}E #A} B ye# e#yy. B, decay, retardation, dispersion, coupled chemistry/flow

2-3 modelling §§ _E.B1Bd. YIB.E. *7 Id *BB dispersion^ retardations] “effective data”0|| dEl BBSA*! SByoin], §>A|d no| yyoi S¥@Ei.

2.1.6. X|S *E| SISS

Hydrological Cycle fil!0||* * 7|X| B5BB0I dd. 5H-1* deterministic,

distributed, physically-based systemO | tt|, Elg 51M* deterministic, lumped, quasi-empirical approachO IEl. #A|7| BfidEM, lumped parameter models! A1 HYDRO?| VANDAL01I USB BeSAld H|0|EH tl|§SC|.

2.1.7. Foodchain Transferal filial Z|#B# ®7|

DECOS-MG* 5H-ld Dynamic models! A] marine model# mist! BSDi geospheres!* El mgg pgnf ynf.

- 7HPJ3] S 90 j| m si 0|| BB B (Committed effective dose equivalent) XIB - 2fafn|E| ty$|oil afg BBSd BBS 3&ai

- equilibrium activity-to-dose conversion factor XIB

2.1.8. Chemical Transport 5lHd XI#

CHEMTARDfe DIB" Lawrence Berkeleyd CHEMTRAN* MBS Chemical transport aHE-SlAi 1-D advection-diffusion equationOll mass action expression^ full coupling* XHSSfCN Phase B interfaced Bg£]E|. 0|Bg PRA BBg moilAi Be SB Hiy#d operation* SB51* HI Level 2 SHCBAll A|^@2^)S M B* dS8 El El.

- ME] BBBB H^oiixi B*BB 7|g#o| *xi|BPj7l @7|E1B.

- *B8| BBE1 Sim siEin|El* 0|| dSD BS@ B*(0||, BB ggo||A-| §h #0|| c}|El SBB)0| dSBd tieBB ¥0181*71* *SE1E|.

2-4 - ogg^e 9 at 2S9S x |9oi |a | 89 9 goH£ chioiej oj $9# #904 PRA £ 9 # Mamet.

£H 711 you £7t©t0t, aam Ct|0|E-)H||0|£(iiQijS| C1|0|E| + ## E1|0|E4) £#0|| £

9# 7|#99. 999 CHI 01 EH CHEMTARD9 9711 904 At#9a4, #990|E4# VANDALOII £9 999££ A|#97| 9 5IO|et. PRA §§§ 9904, £# SAf| a 9 fisf £ M *11 £ H (competitive complexation, ion-exchange, physical £ES specific adsorption, precipitation-dissolution #)# # #90| 999 £ti||71|£ Kd 21£M 9SS9. 99A4 solid/solution process#4 aqueous speciation9 597t £j#S| £24# £ 9 etc #9# All90 1 99. CHEMTARDL||0||A-| #9# ion-exchange9 surface complexation £# # et# A|gg| 04 omget.

2.1.9. #929

VANDAL A|E54|0|92| £9(Convergence)# 9994= 9# 9# A4I 7|A| 9901 A|# Set.

- Stopping Rule A : Skewness9 £•#x|0|| 7|S5t 99 - Stopping Rule B : Skewness9 kurtosis# ££ £249 99 - Stopping Rule C : non-parametric rule

9# £ 99c LjSS5E9 non-normality9 S97t 95% confidence limit# 5% 0| of £ 9 9 (distort) 9£# Sfe 9 2£9# #19(Run)9 5!£S 9999. SIS, 9*19 99c #99 #S# £Sslfe yo| 9S£ £39# 5% 0|# SSA|7|A| 549# 99% #S|9S CHI 2£9# ## 9t£S 99519.

VANT4S menu-driven analysis toolMA-) #7119 S9 7|## A||g99 9#9 £ £ £9£ 99# Lie# £ 99.

2 - 5 - risk vs time sample size - cumulative risk vs dose parameter value - tiW2! EB S (cumulative probability) - dose vs parameter value 5= time - radionuclide flux vs time - parameter value vs time

2.1.10. KSS'EU'f mm (Bias)

MSKytiS AlgAiy-gm EHAi|y°! MESS t;|S0!| mg 3HH, BBPIB 21011X1°) MSS SB = HA1|yo!| BBS 3* BUSB. DoECDepartment of Environment)2! BISffe @7! SB 7HBBBE BSB @B.

- bus niloiei eg ^ axis! - @ a (consequence) 711^0)1 Q>X1 S® EE SB §£« 7!MB S HS - s§7! aes! a§£i sbbs as exist - BEB BBS BBS2! 31 TUB - HE x!IS S7IS3B SeAilSftOI H21B%(88 B#

2.2. Sxnsfoi n|e||sj HWW

TIME4 SHE @SB5!B EEliye H@o|B. TIME42! EH 7IEE SB 7|g°! SB (sequence)8 SSSH 0|0|| BE SSBB2! SBS X|gy|0|BS!E %0|B. BE1B B BE BHEEEHB @0| Geosphere2!

TIME4* 7HBS on SB2! X|ggE)|egEl BBS S@ X|#e||0|S0| e@@ e BEE BE SSHBSOI HSU e BBE 7!@o| BX|ggg SBBBB. 0|B1S X|go| 0|

2-6 B9PJ EMU S44 S 9S40101 go a^oim. 04&+A-J TIME4fe 8 i^^IPe 7|#0|| S)S|| #E5)c SEE f)ggc). xHBjEJB *117)1# esys) o| mS7H0| flAhe X)|g6ib #7)14°^ 8*9 E|# 894 7|# sequenced *9S

4. §)M2| HE-ie 7|# sequence# Ml 7|)4 7|# 9MI(Bti, Ml Ml, #E9, ys|7|)» A IS 401 ##@4. 4 7|#9E)|# 4 ##8#0| S@4# #1421 time step# M)#S 4. PH 2-1S TIME4 AlgEllOIBfij g 0)|0|t4.

1 -

TIME4 Single-Run History

Time (xlO* years)

49 2-1. TIME4 A|#B)|0|yo) 0)|.

TIME40)|AH ^fllfS) #9# 9S4#A)94 ^^S) X|4 8 #E))7)10)|A)°) yx|9@)9 0| #0)| 7|g S#e ms 4°E 0174X1# 484 SB 8 4 (Factors), 49 (Processes), A|-y(Events) 8 4@4.

- 7|# y#

2-7 - sues esi - #*ms| M - AISESSj sst

- *Sai SS - dim §J SS BSAIIE

TIME4CHIE 77H°| ¥£^S0| %io[t|, 2j2>g SB SIB gE||E SgA|StyS| y S7H* A-isem.

1) 7|# - m- ?! foil ms eessm.

2) S§1 ¥S^ - *EaHim7|-EEe}S| 7|® SB# SEE ‘Glacier picture’* SSSm.

- cJ SKice sheet)71 yBS (River basin) S| A| zjggsjS @ A1 (isostatic tilting)(HI Dlxlfe SS, y@l SSS| $|x|, ice sheet SiKHI %1B SH^ #@ TUSSm.

3) dllES ¥£1 - @S7if %! s^7i#oii me sms* esimm.

- be Eli si s ©i71 oil msioi y@i BBEoii s\m Tii ea shbss ses.

4) ss S3i ¥si - ice sheets* ss smm gaj t ss#*msi soi# Tiissm. - ice sheets! 7|S g8H5 2JS A|@1B Sf§ THSSm.

5) AlS^e ¥E® - ¥M7ie Alieie 7|*SE at subcatchment (SB SBA|)OI| me wilting point SI weighted average root constant* TflSSm.

- esi @eii7i a^oii pise ssiB seism. - SAHms s^e# Tiissm.

2-8 -By subcatchment recharge, interflow, overland flow# Tlieem. - recharge# base flowS f&SU BB A|S U||E2f B#@ 711 Sem.

6) SB SB (Denudation) EE'S - 8H°lAj2j 9|x|, #0191 #0|# ISSU AHSS- THSem. - S TIME4 reference pointOllA-| S mm SS2| THSem.

7) M ¥fil - SHEBOII 7IS8101 “sea picture”# SB SB SIEB 0|@M TIME4 reference pointOllA4 AH#@#(re-suspension rate)m 5HS* 51*1011 M SMI E401*am. - El# B#m sea pictured 5#(tidal) B9101I ## ### Algyol SH42| 2#

aioison sm ysismoiiA^sj g §f* seaem. - #0|91 oilA^ mm# SS#m ahe ##S 711 eem.

esfflsi# y Ai#2tioi## 7i# mmmmsci ye emaEeEEEm ameeeoii 216H tiS@C})21 SH4°1 SeSES 0| ##011 21 mm, g£, ##(71# SS BE me pdf A1S), @#71# ey 7|#01|A^2j SH#m, 7|##E|| 7|y, 7|#SEH Q ois># son me ysoi eEam. y aisbhoib #a, 01 saeoii me 71# eeoi is€Smm Tiieem. 95is oib Ai#soiB2i see smsa erne @Eee m Aisam.

TIME40IIA# 0|gSEE S# E mm SSSMM S^# E %!# 2 Af0|01| s|f e si# maoi B7i#(ee oim)m smiytaaoiiAi sea)# eyeoii 21mm ee am. B7i ym S7iy 2i see #e smsoim a erne# B7is ema i^ismm semy S7is ame ssem seam.

TIME4 7|# am (sequence) A|g 5j|0|E-ie i!f7i21 7|#BSf £HB0| BS 7|yot| es 741 Emm me 7 is on 7iseoi E#mm am. s 7|#seh2| erne Markov si s a is sioi stfgsMM esam. es esi aisshoiboh see 7i#sm am* esema see 7|#seh 71 y# sea moi issim. time4oiia-i 01 71 ye ais

2-9 MM 7|l=o^i=iEH B«r|SS 77 IBM SEEMM yig tijeson 0(8(1 ^SBM.

TIME4 post-processorS T4_VAN_KEYS VANDALOII A(B SM* H,l8ffe §| MM 7| °1H MS* X1ISM7I MM01 7IISMSM. 0) ?|MS MSS B 7|^ time step

on chmoi aaia AioisaM as ai* oioisoii mimoi vandaloii smsm ssms

as time4 Maim ei son me mioieib ssMa sm. sxhms ej mi o i ^ miojeh Alias OHS 7)Ai, 407HM X|*SM x|B01| MIM01, 80 time stepM BB01I M1M01 EM

a iooo AiBaioitioii cHMM e)|0|e-)7| yis* a sm. aaiaa seioioib mum a 7|* SOIB @121*01 BaMSM. SB (recharge), Sa#SMI go|, BM* Ea #

VANDALOII 2|8H £*MS M|0|e| 7|SMI B*l 21*M * ¥SBSBO| ag time step

oiia-i bsm. eiEioioia mu* ssmoi boims mioieim ss aaisa 21*01 * BM7II SMS time stepOM 21** #(writing)Oil M8HA1B BE# a SM. 0|BS

B M Mn I El oil Mis SMM BE* a|®m* Ml A|gEjS §MS BB7|*o| A|*x| 0||

msh gysis 7ime m^7i# aissioi bmsm.

TIME4 A|OISaM #711 MS SMS ‘VANT4 analysis tool ’* A|g§|01 a#SM. 0|# 0| SAIMSOI 0| aas VANDALM TIME4 S *BM gM* ESSM. 0| 5H7|X|S

oils SMSSA1 rs/1 4I7IXI* X|@MM a#MSM. 01 aas VAX Moiiai S#Mm,

ss SM ciioiEi* fi#Ma 2-d son aims a sas shsm. aisxis vant4*

AfSMM TIME4 ASKS a# SM* SMS Ml* mss s, aois, Maaay s* s»oi M7iM e a siM.

2.3. Geosphere

yois sthsbm aai*son mimoi xima ss ass hais smoii ms sssm BBM @#4101* OIBSM. A|sias#s B7| Mis^on sais sssa Ml SMS a B0|| MM01 VANDALOII A1 fiA|BM. S@BSSO| J2MMS 50||A1 node ES junctionOI @A|Ma 0| MM0||A1 *#0| MSB MS B* MS M SM. SB 2-2 M 2-3S VANDALOII A1 X|g|y @# Ml MM* MS MS BBS M01SM.

2-10 Water Divide

Water Table

Material 1

Material 2

Material 3

A Head boundary node • Node Nodes 1,2,3 and 4 are surface nodes, Node volume element nodes 8 and 9 etc. are internal nodes. -E5- Resistance of leg

ZLS 2-2. W0LFNET2J U||E*j ^*jBB

2 -11 Free Surface Free Surface for node 1 tor node z

Surface

ii

♦=----- Y

V ---- H mi

NOTES

Rn Resistance of leg n Y, Physical position of centre of node 1 volume element above datum HL(1| Physical position of base of surface node 1 volume element above datum H Physical position of topographical surface relative to datum in the vicinity of node 1 AXt Dimension of node 1 in x direction (eqivaient to AX in this example). Similarly for AX and AZ.

zls 2-3. mi SS MIESjoj CLS 2-2 §2).

2-12 El-Z

kB k msiy toEkk sk to## in @k t-vitoteaih to

kBBIolieEk kkto lloS Sly *k# teHi kilo 5: B8E O 1 Z £3 0 —1 mgk otek EB (A/ui) (uoipBJ)sqB ‘Ho)

quxs =135 aojnos |sg° SB -L- M kmS?,=S kilo: i3? BSE = %

(A/m) 33g^ beef temu 5gS@ (s™) teFaBtel BEEF SEFE to#© kllolok ™ muv (ui) kk kinkllogr tokllo™ a3! mq (tu) kk klakliok tokllou 5k uq

(A/eUi) kl§E tolok UI gru 3k klzlo

Q=U o = so + MUd TkT

““ if . mu y Q = “if — l“lj 7

kBBE kkkkk#© to# grSk SSs ItiSBS ‘Skte 'tafiSl teloE ft© Bk ESE5# HoS© Ellokg jz SEE to kikB tokBB gskkBkk tekk B EBB sS tetife SEE#© k

kBSB kkkSk# SEklnkk sS toktb llo S SB gsloEkg Is^oSS teEimk BE SB loBk gskk kkS grEirak k EE IkS SElo kBSk sgfg B k lloteEB telgE tekklh SElo kBk m kkteBB tDoffi SEE kkteBE gskk bkS telok 5k SB llo# teEU EIOE EES© Sklloteklh Stelkk kB k ESkly kklokkg sms kkll-i - 3 3 (normal) node - X|3£| 00 tE (0¥fe 3 3 4=S*II (bioreceptor) EE) - X|3@ °§ (source/sink) EE - XI* 0 (free surface) EE

33 EEfg AiS 3E #3# 7lX|X|0 §7HEQ0| X|33*| ?2* §ESS M0|3. 334=S*II EEfe Et OIBOI 0A|§1*O| 0gO| @g 7l*0 0§EM X|§1

4=71 yti 4= y* ximm* 333* eesoi3. oi eeie^ei 0* 3* xi§i4=

on s*a 0x1335#* 333 s3#0*h aoixi xi@3oi*3* 33711 a is a warn. Source/sink EEfe *0#O| X|33fe *#0|3. 3 S3 EE o| EEfS 3¥ (infiltration) E* 33* 3337| *§H *H3*3. X1*0 EE* MMHB01I 38H J.

yxi 7i i§eie xi§i4=03 3 x 1s 3333. 00 any n* ee71 §133 33* S*ll EE# Em 71333 “river node”* 0243 E 0 5*3 EE71 @ §0|3. 3* 3 3*53X4 S|3S EES* 3*0 EES 33# 4= 03. 30X4 ¥33 EE 3

7ii3 3e#oii 35104 oi ees3 oiis* 33* xi§14=33 33# 713* 3013.

§133 EX|0|| 3304, VANDALOII 30 MIM0 3# 33* 33 *X|*X1M| 7|S

03. E003* 33 33A4 *33* ¥03 SiS 333* EE3A43 S¥3 * 3# X|3§17| 333 ISS §71|ES 30*4* 37H ¥A|$xi3 X|33 SS E00 0EEE3 33 *E*3. §¥3 3*3* 7|# 00 E* ¥X| 7H0M 00 ©S3 0#@ 0*5171 36H 0E3 ¥3*001 AH*@ * 03.

A1* XI X|S 3* 30|| 3*§1* 00033* Gauss-Jordan elimination 7|0EM E

3. 013* pra SSOII #4=30 OH* 3*0 711300013. 0| 00035EM¥33 #4=30 *3* ©S3 3 §M0|| 3E *0*# ES1B03EM 3*3 033* Darcy ¥ES3 3SEE *3*3. 0|O*4, 0X13^3 0|*0| #0* 4= 0* 03* *533* 333* 003 ¥33** Darcy 4EI 3*0 33 53 ¥E7| 7113* 3.

S3 ¥X|3 E*3* Ml M3 3 *E3 0E* E003* 003 3E, X|#3 003

2-14 eye, aeAiyy o,xioii yyy yoiy. so 2D MirnyMy a 8 inH2| gg# mseiHS EH Sfg CH|o|EH® @oE yy. ajysjo Si ygj g§ y y^jO| y$|S|7HM, aiinsj r-yyc E7|. step change# yyM|7Hy, Efe ©ea #7|

7| yyy yyy ¥7iy°j EE7| ygyoioi yy. oi#a 7|yy exiles wolfnet E1 PLOT WOLF2} STliy #ygy 8§£i§ A|gg|OH VANDAL 2J¥0)|Ai X|AH|§| yoHoi yy.

vandal moii ah tfflis Aimiiyy ^yeemiAH myyya §ts #a@i7|oii oi

yyog £ioi ay. #yoii ay ye 7ia*on y#ya me *iimni 2i eye Q7ii y## ¥ siy. y sHyoi on8 »»|S7| meoii eyy yeyy yyoi

a thi yyy ¥ aey. ayassy ^yy yonsmy chioieh °i pdfeoi yes ¥ ay.

saa eseoii yy y meggy m@n e*y# ¥ ae Aigxi-sa y#g ygy ey.

- ©son my yyy

- tSJSEE - gg eoi

y ge m oil ah #y esse vault aaa §£S§ xHiaae uniform isotropicyoH yya Aigyioiee #yy w§§iy. nanns flis ygyoii yy snea 7iyg esyAiy y§ gyyoyi yy yoi §ssiy. zzyoiiE yyyy

¥ai chi oi y cons #y Aims ay chioieh)7| igsjog yyy oiimy^ys y# y

a sis oil §£2i eyypj eye sit e ay. oiany Aiyg oi@7i#y you my

y chi o i eh on my Msy isas ysyy. oi aeeoii yyyEH#(#@i ^aass) a yyy yes any Aiyy y#@ ese £§i yoiy. yya ¥¥2toi xisae msa ¥8 7iay y yyy siy oiss y yas yyy esa eemoHoi yy. yyAH, yoiy wiyg. oiyxis em^rSxHi less a#a

2-15 @3 30O|| qi§8[fe 38 @3 8H30OII 0*8* X|00 * 0O| tigoiq.

TIME40II 89 90S *0* §13 *§309 HJSsHf 830t| 00 Ml 38 §^0|| #

tig *@*oii 0001 ai* ##*# Aie9 oiti* 7i #* gu\7\ #oi 80 . xi* -SOI 3BlU 83 TIME4 002 08 U|0|E1* 0g@ @g Ml 38 §MS 0*60.

- 611338 #0011X1°, yS}J= MI388A1 871138® 30AI30. - 838 88 2* 833088 808 #9* 338 388* 08 MI388 ¥S ft* M3AI8 3 80. 2*. X|S 388 §3ftOI|Al ©soil 88 383308 8 0|7| 0| 38011 89 88* 8* 3 38. - #8 X|880 01180 #0 38* 300330 ft##O||Al0 3*33 0080.

x|30 3* 80011 85H *3@ 808 *83 A|298 8838010 *0*0011 30 7| *0* 9* 3 Ml 38 oil AH3* 97| 3300. X|0338 08* 30* 30011 89 3§i 3 838, 33710 0El* 3 80. VANDAL* WOLFNET User GuideOII Al#@ 3*03 80S A|S80 888 A|0O|| 88308 ¥08* 3 3*8 30* X|83001 3303# 00. @3000 #0 33#* *11718* (switch-off) 8*88 8s 80 33ft* 3*80 (switch-in) SS MI0O||A1 *300 30* 3*3* 3 8 0. 30 30ft* Oil* #8 888 300 BS0*33¥E1 ftft* 3 80. 3El3 3 7|*3 0188 SS8I88 3 00* 3El* 3 8* Ml38* 3*0* 0O| *20 0. 0IW8 07| 8SHA1* @08* *0S00 037f PRA8I %A1 23ft 3 80.

Ml38* 8008 380 33390 PLOTWOLFS A 1*001 39023 *3ft 3 8 0. A|#x|b tEU 710, 30, 30032 ft* 3 §82 088 00 oil A! Ml 38 © #* 02*9O| * 3 80.

2-16 2.4. 01# fiUBj

SBE EEte AimESSE-iMOII °i5H Tiigsjfer Darcy @E#Oi 0| S- ¥s^oii g^g#. oi StiB 7ix|g. oi#ES@ gei## s xiy gsoii #moi LIIH^oj o«g j#g@ fpj #5# 7j|g©0|| °\m tyA|g6!j#°| oi@@ AiBaioigep. EEi## ois EE/iigg #@# s#.

- O|#(advection) 5EB -S # 3#(mass flow) - @xi|gttfg ¥tl(Dispersion) - i#X|# Sj-g(diffusion) - S^K sorption) - yAig gill gji|

yAig®j#oi#g #7i =g¥ig*oi mzs #@#oii ## hai@#.

dc\ dc\ d2 C[ 1-1 E' = — v ■ D’ A'- R' - C[ + A'" R Ct dt dx a%2

Oi 71 A-|,

Cj = S#^0||Ai i°| #E (mole/m3)

t = A|y (y) R = A|ggxi (Retardation factor) v = S5 5# EE (m/y) D = #g#E# @xi|#6f# ggEE# S (m2/y)

x = SOI (m) A = @5|#E (y" 1)

oi sis Aim^oii mmoi ###g #xig@i#ai oisee# xigoi gs, 7i# g s#oil 7igg#g 7igg#. xiggxi r# #@# soi Tiigg#.

2-17 l~e< R K'd 1 + P. £<

04 7| Ai,

Pg = aFyol|A-| SBlJSj @5" grain density (kg/m 3)

e, = yyai aaii

/Crf = ®!§ i°ll mEl @3' emi711 ^(distribution coefficient) (m3/kg)

Sa(dispersion)2j gEte S0| 7)ia@C|.

n‘ D' = — + L • y

0471A-|, D'mS «!§ i24 EA|@a^rE(m2/y), Lg teESOI (dispersion length) Ete E

ag(dispersivity) Cm)0|k|. EteS2| g/g 992 | ##EEA4 74g 5go|| A4MC4 xlim yyoi|A4 C4 #9. ffligoisas 57| 94 5H Crank-Nicholson 949 0| AlggEg 0| 949 0| EAM9 949 0|EE U4|ES40||A4 9 SEE nti 2-521 gA|@|7)| x|ES|(discretize) gc|. 52| 7||E fe A|l-24|0|go| mE* feoife S504IA4 @z)A|azt ygeioi x|gaEE 9 time step24 g0||A4 fe£ S7)|tg0| z| EE Oil °4SS SE&I E* EB4@|04 A||7)ia@

Cf.

894# EE24 sag VANDAL 1.301! E#@ b| %c|. @94# EES S|gS|B49 a5 Hi L4|ES40| A|gx|oi| OJ8 H §2|E|o|oi ting 0|SS SM*1°E ti U1|ES| moil e*H site ES(ieg)#oii sssitii xias E7iaej Earns) fisict. oi wi^msoh

2|SH agsite Di40| EO)XI94 94te 3EB lH0||A4°| sy# gE7| AH7)ia@c|.

AiBBiioiao| AiaoiiAi Tiiaoi E@site sebs 94Aiason a# sboici. ai SOI smsiE E90| 2j^E @a@0)| cc|B| E7ISEB0I TJiaoii E#gc|. o| 9494011

2-18 bsh tiisoi sstsjog 0124 Dii^uigoi 94 bs g§ l-heboh istife s >11B SE7f X|Bx|>l| XIISH 7|BS0| @B.

xiyg^ sbboi eussb §¥, miebb §jsbb tigoii bahsib BBB @1#

ahesb yi eiiTiion ss gwm. «i# ahesoi @94011 xi^oiyqg

7-|7|(HI ncilE @(HSO| H x|cj| 7| Eg- k HB xib BXI SAISSSB ^i= 3jgg 7|S

SB. B&' x|S|B@o| m54BBS EE aheso | SBXIBE %|74 B24SB3 7|§S B.

Far FieldOIIA-|SJ X|BSSS @S|S @1# SellEB 0ISIS 0|7|BB. 2B4BE B @I#B SSHE7I ESB 7|S feE OIBUS B04X4 X|SIB #S @@0||A| SQB *HSB

(reconcentration )01 BSS74B SEO|E SB5 Til^ 0|§S|E 5J0| 7IBS1B. SBB #S SBO|| °40|A|°| fiBBB SSEOll BB EBB SSSB SSS04 0||#S17|

04B4BB Sah SUB BBS BBBfe 90 IB. BBSEE, B BE7| £2)i SBOIIE

oi sue ee@i se a js* eseiB. 01 §e sjsb eb* mss7i bsh as7i

SE7| 2B@ %0!B.

2.5. SBB SB-SB

VANDALB Vault’ SIS S#x)B S7HBSHB. 0| E1S0| B74SIB x|gA|S

7H@s b@xiiee(^, eebeb Aiyise ebs b seisms bbbe sahsjs) m @A|BBE 7 IS SIB XIS1EB SB« SXIS17HB SBA|7|7| SB STUB Iff B Sife SMBIISB BOIBB 5 AH oil BB 5H|7| BB %!B. B7|g B XMHIE ESSBB 71SBB S|B 87|X| B7|# SBB BS# B BB. BBS SBB BBS 7|$B 84 E EBB SAISSS SEE @A|SS# 0|#B BMB BUS SB A|gS|04 BA|# B BB. ‘vault’ EBE 0#B BE failure distribution functions X|SS4°|| 2JS|04 BBS) SBB @7|B BS@ HAISlfe B A|@# B SIB. VANDALB X|Slg@0|| BB04 MIM B sas A1SSID4 SIBB X4SAISB X|S@ SB 0|SB BE0|| Bx|S|B BEE S

BSIfe B0| 7IBSIB. 14 0|SB vault SB SBB BOIS SEB BBX|0| S## B

2-19 SUP. 0|3te ygff SEES ¥Ojp(M WEB a|SA|S EH|7l VANDAL pO||Aj Sj @5| £SI ¥ BE# 6H5P.

Near Field S0B SSSB ¥PSSS B@A|#j ¥ SUE &S BX|#0| SUP. VANDAL aSHIHB 0711 pOj A|gS SP°a PEE ¥B S3€ ¥B SSS SEE on eb=ipoio|: m eixigs pbb sp.

- .3.3*1 (crack)

- iaas axi (placing)E be sb - SS ¥P (mix segregation) B MBBB 0¥EE V!Si SB - SB (joint)B BHIB - g*fO£ 017IS, ay oil 2] sei - A|SE¥Ej2| a@ - AI9IE wm

xippp 7iyoii gxj xibp bbeeeei bse ¥ SUE xiee@b bee es^bxi &EP. SEE X|c||0||Aj gp*p ¥PSEEB ysi# @710011 %!P E SEEPOI e AH ELI. SB 0EOII CHE 0| ppo|Ej#B EE EE ESS x|0o^ ¥E^oj mm\ E BS0| ESioj (HE §°o|| io6 tiHv|X| x|0|7| Bp. H|p7l XIEEE 7IB0II B07| 3 X|CH0|| SUE BBS EHflB 0Ef|¥ BSPE SSKH ?)§ ¥ SUP.

(xj¥X|E°| HI MB EE)

X|E x|¥X|E0H PM SJQE X|«0||Aj£| ¥PP xj|xj|E 3 BEAIMBB @7| EE0||

B3B0 BSS S a SUP. 30 2-4B 0 ¥SS BE xjgxiE Ej^B bBB SM (3 EHEOI ¥0 ¥¥¥011©IP 2BB S#(laminar flow)B 00O|| BPE mi ¥ near-field E¥0| @P3 7|SPE)» EPEE B0|p. 0| Iff ppp7| B5H EE S ¥ SUE 7|0 BEE MIEPOI 30 2-4B 0|p ¥¥BHI. 0j7|Aj BE ¥B(leg)S 0 ass PPBP. ES. B#¥*B near-field HIM0 EBO| #EE)E BBS 30 2-5011 CHI A | Ep OH EP. 0| 30O|| Aj Vault 1, Vault 2 #EM SA|g 7HBPB SEE#

2 -20 S -?-om any A|gx| xig ^ttjgoii giscf. o| f@j#g sipisseiis @

MB ?ife 'yg-X|| (buffer)’ EEfe fjxHSXH* 7||Btho^

Host rock

Waste/Backfill

Flow paths

-____ Direction of ^ | hydraulic gradient

Tunnel lining

Excavation disturbed-rone

O Node —► Pathway

7 Waste/Backfill

3.6.8 Tunnel lining

2.5.9 Excavation disrupted zone 1.4.10 Host clay

Hid 2-4. AdSAiy Edyoil cjib xis§

2-21 Node Vault 1 Buffer Vault 2 1 ‘/TV.1

t t Stream tube or 'Leg Vault 3 Vault 4 Subdivision of 'leg'

US 2-5. Near-field/Far-field 8 All SB BBS.

(Near-Field ¥flcJ§)

VANDALOJI BS vault BBO|| CUE Si£I HU 2-6011 LMWj%(CF VANDALOHA-)

near-field £IS B*l ZSS S§AHS far-field BB0|| $S@Cf. VANDAL01I BE near-field flIS o||° BESMB SEE 0| BP. 01 BBUHOil ins mm ztafQ|E4#2| H|gO|| 2|5|01 BBEl near-field

xlSAIBOJI BE BAiyatg XHBSS EBP PBA|B ££§2| B a roil 0|O| BA|S$h ##01 far-field BBBB 0|§§HS0|| pa| BESIP. 0|B 0|SB 8HA-), @##XHB#0|| PS XISISS MIEP BAiys|§ 0|§pp -AMBB @9|| S7II 0C|. BB PS

AIBOI # 0|At2| vaults issife 2 SB BBBP0 a|§x|S z[z|o|| q|©f xHnBS Af^eioiOt gc|. BEAlfd B2@o| A mg A|MS||o|B ggo||A-| @|p°| BSBPE PPQ|E40|

P. failure distribution functions E^0| ygs| BBPS SEEEWBB SX|PE -¥P #(corrosion rate), BBPI(wall thickness), BB^IB #0|| 2|S|0i A|@ 0U|.

2 -22 Membrane Failure

Degradation/ Flow in . .Dissolution/ ■ Variation in pH Corrosion Backfill Cement Depletion

Variation in ' ' Kd . .. Distribution of Release from Waste Package:: ■Waste Form. ' Failure Variation in ..Solubility Release to Buffer/Backfill

Nuclide Transport in Variation in Buffer/Backfill ; Bydr. Conductivity

GEOSPHERE

2-6. Near-Field S^Ofl cf|«t SE£.

Soil 24(HA-1 EiES ^ 24 ¥A|fE xJSA|§°| Kiel ^ 24 El. £ 7|§ @7|S aS0| UH1B14 ^ 5mg[c j 0|S 0|Sg AI Zt (failure time) 21 S£7l Slggp. SS@ EH ^ EE £S@7|2j S?ll 51 S5SA121 ag EH SOI S^-SEOII cHSSlct. ESE ^£2| ESKOIIB E oi, J#§)01| m

Rc’ t-(i At) 1 a dt CH27C

017IA1, Rc = ¥§(EEfe 2121)21 @5 ESS (m/y)

2 -23 M = Hg ES E3g7|p @3 P Sa Cm) » = EB ES E#g7| p «=*||p Hggxf (m) PSS ±3» OIIX-I UPS SESEP #911 se PS5A1BS A^#0i ^SSP. PS S AlgXpl SP61S Sis failure7l gJOiPS A|# tfai,E¥E| A|3§10H tfail + O +3 » )/RcOI|Ai gyq. §7| failure functions EPEE¥EH pAlS®jSP J ¥# 8 8sms HI Aisgq. 0I9S SPSSP ttS BBPP s>SOil o|g 7isa mi7| sapp seas saps ppp 36171 oixisAi a fm* A is #04 #a@p. eb P S^IP SEEPE 0EE EE 9S A /Rc B ¥ SA|0|| fig EB80| SBSPfe 98 PBBP. PE 8PP @7| failure functionOI 61 pp PEA|8P zf vaultOII p 6104 A|g# ¥ SUP.

P7|#Spoi| 5US PAia@j#*p fefife SPP Xlffljgp a SOI EEHa xheBEE EBBPP. PEP 8 ass, *f|7|# OHEPS pp g-ppO||p g6H, conditioning matrixPP SP §0|| P610H SSBP. P7ISSP p oil AH a ffijgp S3 PS SEE PSAJfifi ¥OiQp.

C{ = r(t) v. l+A'Om—V — -^(f)

047IAH.

fit) = ®|i iP A|p ## AH3# (mole)

Vd = xHEAISP S7|p ¥P (m3) fv = 6PO| gPPS P7|# D|| EPSP PS em = P7IS DUE PSP Sxll 33#

Pm = P7|# DDE PSP grain density (kg/m 3)

Ktii) = A|p tpAH a|g ip p# S3 SPPE (m3/kg)

oi ap Kd peas ai## fv2} KdB y S#P ppp hs s sup. 019 s p#a tup p7isspp #psiaa 7hs# hai# s suss msp. P7is#p p a# EE* SP618 ppO|EH#S PEP PP AH zf vaultP P6104 7HWPEE A|@# ¥

2 -24 MM. mss ssiie SEi smsoii Moi sm°j MAhgsBcoiie moi, g, ms, s)m e SOI X|SlBo|| SMBEE mg o|g #s@BS# Iffflfe 3S# MSS 4s MMO|

BM. 01 ES0||Ai BAH MB §sh EM (solubility product) SMS MSMXI ySM. 0| 9SS SAIME yg MSE# HIM @7|ME# ME 8 S0| MM.

bs ssEEM @7i7i ssbse mb bbm S7i##e emmtii haime moi # a SIMM # OISM vault? l AlSMOiOi BM. 0| BEBSS SB @l#EEAi SsBg MX| me MB siafiiS Elgsife HloilE Mgm 4 MM.

(gi?HEM SB)

S6HEE pHM S4S fe'ti 4 MM.(#AfB BBBSOI EhOll MS gsHEM SSM MBS oil q| MOI AHM@ B MEM OIMS SAME o|#MX| %SM) VANDAL M0||A-j near-field ESS NaOHM K0H7J BAH Mg MBS 7|BM £7| E pH B74I# BA|B Pi BB7IMS 7|MOII BM 7|B g£S MSS BEE E0|g Ca(OH)2M EH 8 AlgMOIMSM. SEIM 0| ESS MA1SMBM §5HE EE SBoil MS# MSM E JLsm B MS EE S5HMS# SAfB7| MSH xHS# B MM. 711 MM EE pHS vaultM A|BE MM SEE S B MEM, A|SMM ESS A|gXK>]| M5H X|Mg B MM. 6ME Afgxsi 0|B0| MSSME OiSMM SMM pH MB S SEE Elgl B MM. xjgxiSM S7| 3IBS 7|B#o|| SMSM pHS E# BOIM BfS SB SSI MM MO IE MBiM S6HE71 M All MO) E#M BAH MS SBS# x|IS SB m yo|M. MAfSMB S6HES BBSS SSM SBE XIBfJ B MM. VANDAL MoilA-j Algxf S vaultM A|fflE EE 7|M SSM EBM SME SSM SB# BBS B MM. vault BMSEEOIlAi A|y#BM BE# BMSE EE 7|#SM. OIBS AlgXfE S Oi# vault ISM SMS MS* HAfSES 5IIBM.

(SBAISEBM MAlSMBM Vi)

S7|@SEj|0|| MSSE B@#S MMS M7ISSMM SSBEOll MOUiM BE# MS

2 -25 SS. S 51I7|#SE|10|| MI&101 Atgg7| SSSE s'tfS n SMIoil gAUSS g sa| ^SHgOII M|7|@SM|o|| £|g§H= Stf2l ILgO| Algol) OM SSIXI mess 7ia# m sess e yA^ffijgOI xtgA|gg rcjigg T 7|X| gBJS JUSOSA-1 SiSS OIW(convection)7t

se eses mss goi gsss.

= I.i 71/^) (Cl..-cl)

CH 71 A-|,

L\ = vault nO||Ai ffijg iO|| MIS 31|7|#@E|j 2|g

(multiplier) (m/y) A/t) = SS Vfioil m® SSS ESS°5A| ES Efe Mg7|°| g^Oll A|g oil tttBl SS g SUM. (rn2)

C\,n = M|7|# ES§7|LH OHAiop-ioj ajg EE (mole/m3)

Cl = S vault* ESSS SSS MIMS Eg MS Ml SS0IIA1S @|# SE

(mole/m3)

SEA|S EES, S@A||, M|7|# OHEqgoj m^oil OM ijgSg-0| gA|SSSS near-field ^12£ 0|#A|g E %m. 0|B|S 0|# EfiS 0| E^0||A-| g0| fiA| SCf.

F'a = tit) • Aa(t) • CJ

017IA1.

v(t) = A|g tOIIAI M|7|#@ SSE Darcy (m/y)

Aa{t) = ess EitM Aigoii fiiems, messoii ess axti bss (m2)

Sx-ll SAIE #ggg F^2t F‘°| SOIS.

2 -26 2.6. yjE|| 711

decos-mg# *i s eg (-yi eh/-in on a-i baiebbb oi## mbs emoi b# eg# 7j|e@|7| B§|Oi 7||BB 2EOIP. OI5JS B# BBS7IB SH^rS BSie BSEO! 7|

?5S2| Bee ±s§ife xie^-s* sh^bb. decos-mg# §'X-iEeBAie$ii7i# ssxiSAie°i BAieee ibioii aisspi bsh bbbb see 711BBBB. decos-mgoiia-i BAieems xie^ oi# B ?§ (abstraction), EBB X|5|eg SSB E#B I2|5 XlSSSOfl ^°j£|fe 525 E

24@e. aims moiiAi BAie@##e aibeb ses sb (compartment) sb Mime on 2|sh §a|25 EA|@ci. Eesou BAiEEEEEi oiviei# egoi ess BAi^-eg ebb akb bead# Aigsiot A|gxi7i BB@i# sbb* soii nneot n ebb. xiBBe, mb #B ee, ^EiiTiioiiAiB oiss Aiee# eernE-ise ss 7I9IE X||M3||0|E-| oiEt5||0|EB T4_VAN_KEY* 8# #01 7|@0|| B8H SEBS E §B$I EEB TIME40II B#Oi Ail SB B. E%HB BSB DECOS-MG 2.OS VANDAL 2.025 §S£|S1C|. DECOS-MG 2.0S A||5S 5HBEBS 5?1 S12fl AimES0||Ai

BEiiTiiE sbb# sboi be sub# 7iieeBB. eh 2-?s decos-mg 2.ob 01 0|E-| tii EOt^pi, s 2-1S 01 5E2| 52 BBS fiBEB.

decos-mg 2.0s Eats xis se## AiseB. a ah me se oiois e ebb beebes aiseb. BEE-es bb tii see oiss ebbb sb ssbsb # BE eAHEAi°| BB# 7|BS BB BB. 0| BEEBS SB EBOIHS E ESS SEOII Sib fib BE 5B SB SB Be## BEEOi Til EBB. BS SB SB# 7ISd| EBB BBO| X|B@ oh ys BB BBSOI BEBBSSSEl e BfiSBSS goiBB. tciBAi, 7HWBB BEBBS BBS SOI* SBEB. BS7IBS, BB BB 0| BOiBBB BBSS B£SB°S¥B AIBSBSS BOIBB.

2 -27 TIME4 data on Sea picture data on DECOS-MG Sediment & Water Fluxes Marine environment Compartment data

Compartment volumes TIME4 data on River & Estuary dimensions

Inter-compartment Compartment Sediment TIME4 data on Sediment & Water fluxes & Water contents Soil/Sediment characteristics

First-order rate constants for radionuclide transfer between compartments

Compartment nuclide DECOS-MG Doses contents Q'i (t) Dose factors H' Or,(t)

Compartment nuclide

Data on radionuclide fluxes

HU 2-7. DECOS-MG 2.00|| A1 ^2. C]|0|Ei g 7i|

DECOS-MG 2.0OIIAi gMfeg z| ^S|o||Ai giffEKn. 7f§em. ## e AigoiiAioj yA^^Eoii yAii Huse sm. ee e mm mmmmoii syyEH $goi sms mu 7f*mm. mmes seeim

(enemm mme ma a^soii mem gmarn. mmm maamoi m&e, mss ^g# Efe a §2| SH40JI EftElfe AfgXfe AjW# oi xiyoj isats wimxi asm m %m. 47Hm 7i@ sehoii mm ch mm me emyxfgoi ms@ m sum. isai« oh me 7hpjoi ye ems m s 741 earn.

D„( £) = s’! cCf( d + /“sprHsprC'sprC t) + fm:uM rwELL.CrwELik 6 j

2 -28 0H7|A|.

Hfc = 7|er yE,| c g o| ^ej i0||AH sijg rO|| CUB AjWeJXl-

a = @1# rOII qimoi #E (moles)# BqE SSS17I B# S*!

CKO = A|Z| t, EB iO||AH S!jg rB SAIIWE (mol/m 3)

fsPR = ISIS « 7i PSSEEH SB# SWBS 1, ZLSAI BBS 0

H'spr = 71© yell c WS ##0||A4 q# roll CHS SWSXI

C'sppi 0 = A IB t, P#0||A| ffijg rB WE

f'well = #sn# « 7| ?ifS¥Ei BBS BSPS 1, n@X| BBS 0

Hv^ll = 7|* BE|| c SB SS#o||Ai ffljg roi| qim BBSB

C^(0 = AIB t. ¥##0||AH rB WE

B Oil A|ga fsj iO||A4 SH§ rB QAIIWEfe B§ Ajo S ^OIBB

CKO = -^[M:cKs)+vrcKw)]

Oi 71 A-|, V BOIEI EB BxllB EB (m3)

M\ EBB ESSS'B ¥711 (kg)

V? = EBB SB (m3)

CK$) = EB iB :nAll poll AH atjg rB BE (mol/kg)

Cf( to) = EB iB 9!j-yo||Ai sh§ rB BE (mol/m3)

BBSBS DECOS-MGOIlAi #7|S|X| BSP.

DECOS-MGfe 7IIBB @B# BBOH BSP ag BBBB 7|g# ESSfl SUB

2 -29 - SM42J H4HS 60ME 3 u^is smoi gsjsw EHE®. - ® ^mms EAfzisom. - SUHStiEE EE HE#® 0|#E EE®gO|®7|ti® step changes HEBE®. - E® HaHMlKmeander)® ME TIME4® DECOS-MGOII AH ®g®ES HA1®X| %E®.

- ®A^@!##e aism Aiama aoi®xi e®he action g-sm/ii se®®, TIME40II ®8H Oila fig interflow# 0| £°^aji§ #®0H eg®.

- HE interflowE ®® S® HE#0| Ml ®E ® HE HE EE®. - E7H01I Alg®E IS S7HS0I® ®ESH® E6HB®. B E®® @®7l 0| HH01I ah ais®® a eee aiboii ®® eexi mg®.

DECOS-MGSH®® #0 fag c^-g-jif g®.

- ® a®A|®01|AH ® HE® E®® @®Aieoil ®E ® EE® ® (moles) - ® fi®A|®oi|AH ®® S®S WSZLgoil CHE # BBS (Sv/y)

- ®shcH|0|eh - Error Log - AlgxlOJI 216(1 XH|®®E #E#E#

DECOS-MGOH ®6H ^E®E #E® SAHIE VANDAL Version 2.0 User’s GuideOII XH| A|®OH $U®.

2 -30 5 2-1. DECOS-MG Version 2.OS) #o gg

w # E E # 3

ssss §3, aibse

ISf5j, SBS VANDALS) geosphere 0|8 EE# SEE) 3A(36!iSa oje^g #Eg 5) E^s) SS □1, TIME4EEE1 X|5S30||A4 £BS go, Q|#@ A-|S5|b 2)5|P|Eifi 2) 7|# HjSHHI SB Aiyoil CfE SEE ESS S3.

0141(0) E EU EEO||A|b BE chain; VANDALOfISfe 57(1 SX|

Activity 4871177fX| (207|| S) geosphere discharge soil ESS 17||S mulsifyre ES Reservoir 3£B)

g ES, interflow, # 0|§, B3S EaHSS 33# SOI, S)S#S) aS s as, S7H, ax)s#a. bse % shboiiai sags * he# ## e S0| S3 a. aS^t bioturbationB BBS EE EE4. surface runoff 2} tif3-SX| SOI, B9I Baa XHXICHO) EE45(X| %#.

S#S Si EB45(X| Sta. 01 2ES #, MB. SIS #011 A) @|# WE# Til S3.

TIME4 2.001 gBSIfe 9|0|El 8 A|g©(0|, SUES B1S5 SB X|£8aoil A1 Earns 01891 9S ESS EE9I fiA(B. 7|#B1S dflES Bias 7|a 8HB#8 2|am|El#g S9I 57HS ‘sea picture'll 3 ea. saeJssE 7i#a s#oi exiaisb sis# seme# Bias E BE.

saeixt# 8 ese 9i Esia asssg# ai#x(7| §#s btii ss S)#@g a E BE# a. S7I, SSESS % ESE5EE1S 3¥S#3 Eg, EBB SB, SS# % 8EEE1B £|¥S#0|| SB SSii SS.

2-31 2.7. AISfiM CJ|0|E|H||0|^

BfS S.cMm0| VANDALS XISISPI YiSH AJSSCKH^ 2-8). 0|#g B.7\I ^ ¥#S uiyct.

O CII0IE1 §ti|, 2JSj, ge| S&f, VANDAL ^x| - PLOTWOLF, FENDER, GRAFT4, VANT4, 1NSTAL o VANDAL •¥-J2.H tiS SI equivalent parameter iRS) - HYDRO, CHEMTARD, WOLFNET, DECOS-MG

TIME4 GRAFT4 Databases Detailed T4_VAN_KEY sorDtion/ Models diffusion

i.fl., Online 3LOTWOLF FENDER VANDAL VANT4 Graphics presentation

Preparation Codes

QA Hardcopy Hardcopy INSTAL & Graphic Data dump Data dump

Graphic Indirect Link Presentation Packages -> Direct Link

ZLS 2-8. TIME4/VANDAL PRA A|^*S xMl .

2-32 sb, cm cHioiE^nomgoi pra xissp.

o SECOS : ssa#p as, eb gw, eaaxisoii pb ssesa

xie agsfe di A|gpg a#p ojai oioiE-imiom o Ion Exchange : CHEMTARDOII p# SEP# 0|8E@ §M* ISSfe S

#p ojai dioiEimiom o Biochemical : EB#aj tijAiyqgoii ms s# @@ SS/8# #8 o Thermodynamic : CEC CHEMVAL BB BPS S#E4 ojai dj|01EHm|01^ o Diffusion/Dispersion mots ojg b SB @@#011 ms BAfsstjg as# a B ssm¥# as a*m as moiE4#om

(1) PLOTWOLF 0| H^lig WOLFNET0II IBflm BEls||0|aB #@SP. ORJS W0LFNET7I VANDAL mg SSa Si ¥Si!0|Hg BSP EE #8 SB PS 88 PP A||glj 8 SiP. PLOTWOLF# C|g 7|g* 7|X|S BP. - SSSP A|pp aa - Aigpo] mma ms# xi a

- vandal @#oii §>Ai mma z±±m

(2) FENDER (Front END EntRy to VANDAL) oias VANDAL# ms mom asm m¥@@ ship# xigxi sp shs pg 3EgAi m o i e-) am on Eg eps #om chi o i eh sap spss gap. VANDAL# P BP 7mm FENDERS 74pX| %g 88 T4KEY.DAT(TIME4) P SEAPIC.DATCSEA PICTURES) S0|p.

(3) GRAFT4 EEgEgA||A-ia GRAFT48 TIME4 *PP 8PS gO|S|7l| §|7| p# EBB, B #ei ship a## eohbxi a# amp eeepoip.

(4) VANT4

2 -33 OIES TIME42I VANDALS ¥ EH Sj *^H|0|E)fi- S7H¥¥5)7| g@H 22!S EES ¥ RS/1 5||7|X|(BBN Software Product Corporation)E A)#g)0) 7||i)g n||* Efoio, E¥0|E|.

(5) INSTAL INSTALS VANDALS) #xH x)#S)8)7| f)B EES, A|)SS ¥Ea#0| A)## ttHn)C| SSo)C).

(6) HYDRO HYDRO P)0||* canopy storage, snow storage, surface storage, upper soil storage, lower soil storage, groundwater storage, channel storage?) A|¥gL|,

(7) CHEMTARD 0| EDS VANDAL* X|g)6)0|| 910] #@| @#S) gSHESj &)* *E@)* HI §2S sjS* E)E). CHEMTARD* E6)F)#*0||*@ #6) 5)6)#Sj 0|#g HA)§) 7| Y)6H S2)Sj%E). 0| fifg SjQ, S6H, 0IS2S E* surface complexation

(Davis-Leckie EDI) 0)| S|@ * S0|« SE48)gA4, 0|#2) S)*0|| S)@ Qhm ymgg 5) lx)g)¥ E* g)A)A)oj o|## fiiSS ¥ 5WE). CHEMTARD* S)6) 0|#@ 7))*# ctfl ^¥ SS£ 7)S§)PH, 7|EA)S CHEMTRANS) E5J2) *E). *gs) "master species'7) EE E)g f§§ S¥8)fe HI I2S Sj± *S¥SA4 @S)gq. 0|0)Ai Qh # (complex), S3*, #S) Mu)* *#0| master species* * S5)E US)6)*) Di)2|g EQAiES E0)gE). ExIlS xHgg E)gaH*sj Hg ¥Z|g m#S) **0| z| master speciesHI HI 8)0) *n|* 0|#&,* #8)0) ^#gL). 0| fifg X|S)6)2)ES E)E E)# oil as ¥** ¥54X1*6)2) X|¥0@ E)#7| 9\m 7Has|%)C). 0| EE* EE Oil* E* (OV)XIE) 0-OB|*E *EE ¥* 3S0|| tt)E 6) 6)#S) 0|#m A|gSj|0|E# ¥ %E).

(8) WOLFNET WOLFNET* VANDALHI/XimaS ©SEES) #**2) tHSOlL). 0|E* A)gx)E mo)E Sx|| VANDAL EE* *B4H|X| %E X|8)¥ ** HISS EA)D ¥ SUE* SHE

2 -34 P. ciMA-j 0| VANDAL Ml Oil AH Algy 61p°| BpSlS M|Epg #a51fe Ml titS

aaei pp ximaas 3e§ 7ixia mihp s^g ^psis sa§ oi@m a %ip. WOLFNETOI |§f5jog S@Pa# MTIIS PSO|| VANDALMI AlgE|fe ficSB01l ¥

qqoiof mte A|y mips ysm a oife Miff-a 3*181 mimpoi gfi a

pap 5hsp. SUPPJ PMIP WOLFNET0 MMM MS a (degree of discretization) P MiM 1, 2, spaas. xoae aAipa# mfe sp *ieia assa Ai@# a %P.

2.8. VANDAL

vandal saniss ssspas as apspaa a %!P. p a a on Mi5i 04 SP MI0IE4M PS VANDAL MaSSOII Ml 5101 SfSP. 0x 41 qoj M|o|Ei Sgoil MI5101M Zip 3-1S S5SIM.)

- Vault - Flow - Transport - Biosphere - TIME4 (7|#) - Timestep Control

as ¥ai§§ ¥afe #Ai# pp5i?i psha-i aszts s# mioiepi aa@p.

Timestep ControlP X1IPS Ss #a#0|| MIS M|0|pb p@ # MW#P 51 poll PSP. - fixed data : S.E PSMP, #711PP S@0|| P51P p7l| PAISP. - sampled data : SSSP SPOIIfe gJSS 21°a £7qqp #7l|pp SSOIIfe US S 2a O|P PPS S*P MSSaP PMP PP SP71 A|@# a %P.

2 -35 2.9. VANDAL sm

y# §yy @2401 VANDALOII 2\m e yy.

- isai tis-Aiy y - ewey# S^-A|?J a

- yei 21 ay (&&&& &m) - a@y yyy # - Ml My inHSMIAi yA^SHg teESi - Ml My SMOII cue yAl-yqe tea ^

- ^ehTii ayoiiAH yAiey# teEy

- si3 gy msai

oi# ye %!g VANT40H ysH syym, yy*ig rs/i emi yyyy Ege rs/i 7ites Afg^oi @y# E yy.

2.10. VANDAL M|0||AM Timestepping

yyy pra y#oiiAi y Aimmioiey sy#y see yystspi ysHAig timestepping A||0l7f near-field, far-field, 'teMlTil EUB far-field2] timestepOll 7|a§|01 yg timestepping control loop 21011 @9)1 #01 gl°y tilEHTlIE iS far-field H^y timestepOll yx|Sfe E Algy Egti Ml¥ timestepping# MS SIM. yyy Aigenoie# timestepy ess xiiome mi Aigyg 7i#g msm y y.

- #Ai#y# yy7i - Migy sggMMiy oiteAiy - yAlteSjggoi vaultSMEl Olgyg #E

2 -36 - timestepOl A|S #gSS A|SSS gixispl SS OTjg

timestep# SSS @fAtS@l#0| SSS MIES g^iHS S MS# MSSfe HI SS8 AISMP iJXI BtO|-0|: SC|. timestep 371 (HI HIS XtlOl# A|#B1|0|S0| SS^OII ttfa|

ass 5 si°M $7ioiia 7is §sset. ees ass ## ass ess n ess A|SS SfOII Ct %# timestep# 125 Set. timestepping# Xt|0t6|# Dt| 35S8 SS# e|#S US.

- S a 3 oil At MSS Til sass. - $7| timestep 37|g SSSS. - timestep 7tg Xt|OJ0t| CHS 7|5# SSSS. - A|S g5SS AtS#S S#S timestep# SUSSO. timesteppingS 7|gS x||Ot oil as 715# xHSSSet.

Sets SSasoilAt MSS 58 SS§tS HI sets# 7|5# et#S #e|.

- near-field SS S3 MS SA|S@|g SSA|?i - SA|S®|5 0|gOII CHS #SA|S(characteristic time)S til (7IS UtitE leg / SXtlS leg) - A|gxf7f XISSIM m± MS 5 - Atgx|7t XlSSfe 31CH MS 5

SSS°5. sets# a «lgO|| CHStOt near-field S 5 011 At 0|#A|S# SBS0|* gA| S®!5 0|# 5M3 etMOt S*S 5 SS. Oia# 0|#S MS SMS 125 5SS et. g,

rp R ' X n-»m - 0*. , D' A + x

At#xt7| X|#8t# 5|5M15(a@sj25 3)8 7|# uu|g ggo|| SSSS. SB leg# on At s Mfigfe saasAia# as ass msmoii asa ass bsaiss son

2 -37 7ISSKH »BBB. ay 0| ay oil IS9 gf E7| a |0x |7| xise as ^ @ skimpy oi as yoi assy. 01 yg ss^i^ 25 seoiei . as a #sa BS 01#, as, BAisgaoii mmoi awSEE ass #^A|y§ sjyyoiy.

SH40J sHgoi siaa-SAiae yg ggsi a em@ #aaa hi ebbs ayg 01 BAi m± timestep 8 IS@fe HI Afggcf.

S7| timestep 37|g H§ § 7|S SS SBBB.

- m± Mt §n|A|y - as fil^S BA|S@|##a SIB BB7|£| 1/10 - A|0Xp| g°|Ei SJH1 timestep B7|

VANDALOJIg 0 7|X| timestepping BEy#0| 0|@BSHL 0|§g B# A|#g 7|SE

- AliaSS (E 0E7| yo| E)fe)0)l EWi ^4*1, timestep B7|S EES #7| AIBB. - 6W# SE BSiB SISB 4571 A|0xp| S°m BEOII EBB tti|77|x| 7HSBB.

2.11. £SSW

VANDAL A|^mo||X1 ##gSB rlSEc SHIHS XIM3II0IB0II 07|E|feHI, oi xigaioiB as oil x^ qxii aaniEi gy°i mss be ¥soi s@BBE# aas b a so i EiSH. e, y esag nimsi #se be ayniys^ga sma b oia ggsaoii mmoi xigxpi say as sesoii a@104 ysaa. vandallhoiia-i Aigxig aaniEigg see. xissig y a011 a#a as sxixi g E WSS 010# E S!H.

- uniform

2 -38 - piecewise uniform - log-uniform - piecewise log-uniform - normal - log-normal - beta - log-beta

VANDALS SYVAC SES¥El *HgS SSM random number generator* 7fX| S 91 M. M 2iain|E-|0|| d\mi SSSS Rndfe MSM U0\ 7IISSM.

R n

Oi71A-j S^s SSSS A|E(seed)0|tN, C,S 2147483647 7lS S SEO|

n. $7i aies^s s«bms 7} jziBinicioii mmoi smass io5~io6 bhoiiai §i

MS] SmslAH A1SM0II °|d|| SSSM. 0|01A1 0|5jg SSS HE Bison °|sH ass

M. mBS (convergence) E SSE/AIS SEHS71 90% ES 95% SME SEOII ES71* EAfSOII 2|sH $S S71SM. VANDALOIIAnS SBO|| °SMfe S0 51S* @7l#7| saioi S7|A| E-aoi SBMHM. 01 SM#S Aigxiona BA| xiass seism,

(sas aiboii CHS SB CHOI El e A is §101) sas sasj soil CH§101 S.SMS s assi saxie ssson °imoi m±^m s hm.

2.12. TIME4 - VANDAL eiM2llO|^

□ 1*1 MSS TIME4S1 VANDAL S SE°| ggoil SS101 SSBM. SSSE5 0| X|@ S TIME4B HI!XUS VANDALSJ SB* SX1IS BM. SB1M TIME4MSJ °17I|

S@ OISHS1S SS VANDAL ?JM8 SMBS MS0|| o||S SSMM. 0|CH| SB a IBS

2 -39 maoim c\A\ Ojggq-

s eess ejEWi^fe es agon as gyoj ag s essci. 01 B4@ STHEQSS B§S yA^$i|7|#^SA|SSfciBi A|^Hj# mi xisego^ yAissHgesi Aig-#^ oi#e vandaloi issife m Aiggct. VANDALS B.n Ail ¥&2S SP. QA-j, xiSAIS, ^A^ffljg ^ a§oj m afS SSiSj gw §§ ha^IS VANDAL Vault S^0| SP. TIME4S 0| ES Ojl qgsjog sue D|X|A| &SP. Still5, A|@@M Dues SS A|e|E 0ISS5S oi xiSAie^t air* s#@is ssai mim^ ©goii o|§h rai-eis vandal Geosphere HHOI Slc|. TIME4S 0| SS All Soil DlEl STIIES SS ygg- A||gyci. D|AMS^, VANDAL Biosphere 5^21 DEC0S-MG71 %Cl. 0|%S TIME40JI S|sH S csgeis 7i^^g as moilAi AisegoiiAi sAis@i#2i son raises eTH&is sci. time471 Aisegs ysie raisis sstoii vandals time4S se^ioi ^S Biosphere ¥ERS2| @R S0|0|| g§@c|. ZL&H4 VANDAL GeosphereOI) a-i aisiess Tiise fig STusges Ayeais srse awaci.

2 -40 3. VANDAL ?\°\

3.1. 7|| o

VANDALS ¥2080 2*1171 718512# 28000 00. 82 tiSiiSS 080 y

0.

(1) TIMESTEP. a§ ¥2HS0| g§pa Alg© timestep# 0000. (2) FLOW. *1SA|08 20518 X|07l| 00 0000 X|S1¥SS8 0000. (3) VAULT. ¥¥€1 07|82¥E1 0A10«|§0 gafsj 2280 «s|. (degradation)# HA100. (4) GEOSPHERE. X|07l|# #0 0A10Sjg0 0#(dispersion)8 EA100. (5) BIOSPHERE. 01 PI74|0)|AH 0A10ffijg0 0|§g EA1612 000 02* @0 80

804110 0A10088 ¥000.

VANDAL0 SS8 00 020 0000100 0x1100 *||7I|S 00 3-10 80. 80 TIME40 SEA PICTURESOII 00 §fif Xl|00, VANDAL 2E01I 280 008S 2. ¥ Algxi 08 2E0 FENDEROII 00 @002# 001 2120 0| 2ES @0 KINS 0IIA1 018 7l*61X| 08 00O|0. EB1E2 KINS0||A1 VANDALS A188171 00A18 LZ0 3-10||A1 FENDER 0100|| 0x|518 fig 0O|El 0^#(O|#O| .DATS 80S 0 88)8 00 00510101 SIP 0| 00 80O| ois E 208 8008 %o|0.

0| 00 A-16-8 RMC0A1 000 X|0A10 “VANDAL Version 2.0 User Guide. Volume 1 - Input and Execution"# 7|SS 0 0O|0. 0| 8@0|| 020 0¥M0 0O|E1 0 # 0B4 0S HI 0 si 801 08 0010 0¥ 0001 El 011 05108 E#X| 0@ ¥2 %!8 %O|0. E0 0808 00 050 RMC0 088 0251710 x||20O||Al 5H0 ¥88 ¥0510 010 @18 yo| g XII SH00 E80I m 0010.

3 - 1 HU 3-1. VANDAL 9\m SM21 C||0|EJ 2f^S2J ©i

3-2 3.2. 13101 El 2fG| QS

VANDALS ^js»0|| d|0|E4 5fgJS2j 0x11 ssg e g-ioJI SJEmOT.

S 3-1. VANDAL SjSj D)|0|E1 2f&!

Input Files in CASE Directory Input Files in CENTRAL Directory

T4KEY.DAT TIME4 data DEFMODEL.DAT Model Definition EXEC_ERRORS. DAT Error file SEAPIC.DAT SEA PICTURE data INPLIM.DAT Input Limits file VANDAL.CTRL Command file INPCTL.DAT Cotrol data VANDAL. MSG Error file

INPFL0.DAT Fixed FLOW data SAMFL0.DAT Sampled FLOW data

INPVAU.DAT Fixed VAULT data SAMVAU.DAT Sampled VAULT data

INPGE0.DAT Fixed GEOSPHERE data SAMGE0.DAT Sampled GEOSPHERE data TRANS.DAT Fixed Transverse Diffusion

INPC0M.DAT Compartment data o SIMPLE BIOSPHERE INPC0R.DAT Correspondence data - SEAPIC.DAT M12 INPD0S.DAT Keyword Dose data - dummy T4KEY.DAT §2 INPFLG.DAT Debug Data flags SAMBI0.DAT Sampled BIOSPHERE data o FULL BIOSPHERE - SEAPIC.DAT 12 INPINT.DAT Intermediate Output Control - T4KEY.DAT US

3-3 3.3. 2M m

VANDAL 2.02] Aj#Oj|Aj o||HE| ®}gO|| C||S x||om s ojti vr|atD|EiO|| CHSfOife C\£ ni yoi sjm^oi x-ms ys ^ #e opioji oy^ bou-j Afg x\7\ ^amiEyyoil E^gjif °mn# sfe yoi 7^S 5!0|el oiay® x-iiee 0|(H xife ^oilxy 5|Btn|Ey^s elm iggsyxiy A^iogzpg nmmt: B7i|oi|A-| «Ey jyeymfe

%oi ^ sjb.

Number of Chains 1 Number of Nuclides on a Chain 4

Number of Paths in the Network : 100 Number of Subdivisions in a Path : 25 Number of Junctions in the Network : 100 Number of Connections to a Junction 7 Number of Junctions for Intermediate Output 20

Number of Vaults : 12 Number of Points in pH vs. Solubility- Curve : 20 Number of Vault Activations : 10 Number of Wasteforms 8

Number of Future Switch Activations '• 100 Number of Future Pressure/Flow Activations 20

Number of Biosphere Compartments 44 Number of Climate Types 4 Number of Climate States 60 Number of Critical Groups 10

Number of Geosphere Discharge Soil Compartments 5 Number of Fluvial Points 20 Number of Terrestrial Points : 20 Number of Marine Compartments : 6 Number of Sea-Pictures 5 Number of Exposed Estuary Soils 5 Number of Soil Types 6 Number of TIME4 Points 20 Number of TIME4 Parameters 16

Number of Sampled Parameters : 500 Number of Correlated Parameters : 500 Number of Transverse Dispersion Paths 10

Number of Output Times for Dose : 500

3-4 3.4. C1I0IEJ 2|S §ai

VANDAL S^S m# M\ 7lX| am#m 5[ufg £10| %m(5 3-1 ®i).

(1) Fixed data file (0|#0| IMPS A|SSS)

mmm sset giog sim xigsjfe simmEi## ESetm.

(2) Sampled data file (0|#0| SAM2S A|m°im) £EO||Ai gsya nn SfgEiSAl X|@# M aiS 3|Btn|El#g ESEim.

(3) Keyword data file BIOSPHERE 2|Bfa|ElSS MSmS, mmm SSEt SlSE XlSam.

3.4.1. Fixed Data File

S mSS SXll EM (header section) m H|0|E1 mS#S S^am. mam EH 91 3J ¥

Moil fjxieHe SX1IEMS All Si £KH ai°m qj^es Otmss 374# ME aim. =X1| ESS EES VANDAL S#S mS@ 91 S 5fO|Cf. 3E-IHS. ESS Aimss asm a ms Ai#@ 371ms goi s-m. S H|01EH ##g 3.5S01IA4 S3m# S8HS SA40II ttlEl 3^30101 SE1. HI0IE4S m mss @M@. jl a son ms A-ie, asms moiEim saie samoi aim. SMSS 04% 7H OISS WS9! HISXIS £|m aim S mss mg space# mxiEiCL sums asae ashioiei7i e ms oig n^m asm s am msseis gma m. asms mm# ah am sm°s warn. as A4#g ss am si a on Ai Aims# text strings 3x 4 tg(:)og mam. moi

Ei7i soi?s ms sms ess saoi aioioi sms a oimms a4#°i stoims xh soi sm. hioieis m mss so na# mxim s sim. ai#°i ggg moim* 71 sms sams iAisib s# asmms moim. Aiem xig-as mass asms xiiyoi sm. mm EES m oi-ym moiEi ggoi xy# mm oioiam. mm oiam moim ssoi a sms as, oi moiEigg space m mm Emmotot am. sxnm hioiei a#oi a

3-5 etejoilfe ESS 4 &iq. qqaI qqn|E-|o|| mqot qid 7||7f SE t||0|q g#o| o. qg i4n-|*l S#E8 oioixih are oil 7-11 ^ q^d 7||/;|A| Eoreoi gq. as 3-20)1 Fixed data fileS SE||7| Oj|A|Eq.

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZ INP*«*. DAT xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxxxxxxxxxxxxxxxxxx xxxxtxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxxxxxxxxxxxxxxxxxxxxxxxxxx

VARNM 1st data item - 1 value 1.0 VARNM 2nd data item - 2 values 2.0 3.0 VARNM 3rd data item - 6 values 1 - 5 1 0 1 1 0 6 1 VARNM 4th data item - 13 values 1-5 5.0 5.0 7.0 8.0 10.0 6- 10 4.0 6.0 7.0 3.0 2.0 11-13 1.0 1.5 0.5

ns 3-2. Fixed Data FileSj 8S.

3.4.2. Sampled Data File

01 WEES SAM***.DAT (***fe FLO. VAU. GEO Efe BIO) Smq 0|#@ 7f£jq. q area mqsj sxiiEgq as more arem aggq. All e)°i£g qo) SX1I¥SS «req #qq SnM* MS 4E VIE OM 2£ S711J 9E %q. S are yoilAl qqq qqPiqoil mg EE DIOlElfe S|qq Variable block’EEA1 xigqqoi gq. oil# gq, msqojiAi ee SE(Path)o)i mg gg go|gs mqq variable block# SSgq. 0| variable block ES Sqq XlSfj ¥ %q. q block yoil*) mo|EiE o| qgq §HS goire a|A|©ie £aioii qqq gq. ore# e A1E ’specifier’Oil 2|t|o| A|@gq.

ssse q more g#s q@ sms sygq.

3 - 6 Ai # (Description) # 9*1 49 Coded Name % 49 Specifiers % 9 *h 49 Units % ti*H 49 Sampling Seed % 9*11 421 Distribution Identifier f S!»I9! o|olx|9 #96 Distribution Data 9 9*1! Si 0|

0|# CHlOlEHfe 0!S HH1»B 8 importance samplingOII gS| Sampled data file4 @#0| ag 3-3011 94 AH 84. 4 CHI01EH @94 oyg_ 494 a4.

(1) AH i? (Description) Fixed data fileO||AH<2| ao| S§(:)o^ #49 text string 99 AH @*@11 444

EH* AH##9 chi AtsacH. 4014# 84 St 49@o|| §SS g#o| 80 |ot @49 9 oi2joii# AH#«j aoioii xHi°ts gm. 40149 # 999 so atm# 44 st ^ 84.

AH @4 990 CHI 01 EH* °J9, EA1#0 48# 499 #9 51014. ah soil a is

4# 451.99 Ssho)| x||mg oh^

(2) Coded Name

4 SB SI 9 89 4 chi o | eh fag #44 BE $19 0|#og @8 @4. o|#9 =■

#4 8HB CH| 0|4 @99 0|0149 * oil AH §HB 4 SIB 5 8494. o|#9 849! 49 4 9489 4OH 84.

(3) Specifiers 0|#g array @44 40|4 @#011 4#0H, 4444#0)| 84 4949 CH|0|EH @ 9#(Oil# #01, @9 9, vault 4^)011 44OH §HB Sit## 9949 8 St# 94. 4 0|4 94 o{| 44XH# 4 7H@A| specifier?! S4# ^ 84.

(4) Units 0199 @SB49 444EH4 93 99# 4449 #44 948014. 9019 4 44471 9498 S9OJI0 948 ”(0)”5 A|A|g4.

3-7 (5) Sampling Seed 2iam|Eife zfzj- i*°| S71 sampling seed* 71A|5# &|0i ojc| 0|

%* a*nsia 3iBjniEpi mi Ai^tysi gai#@ ss hub ^ swai sii sci.

210| use ^(CONST)og AIS5MW eSSffe(CORRN) JZfe+0|&i^CH| mmoi* sampling seed* A|SB! *£7l glci. SlL-12| sampling seed* 0 011 Ay 2,000,000,000

(sms*^* loo.ooo ~ loo.ooo.ooo) aioisj s^oioioi eci. oi^g

4 WBlOi °}C|.

(6) Distribution Identifier 015!* 5IM2j gAl^gAi ^OIS 5fBtn|E|7| S*W&I* S>B**2j §§1 7|SS cl. OIS 7l*e E$fe C1*31 act.

CONST constant value BETA beta distribution LGBTA log beta distribution PCUFM piecewise uniform distribution PCLGU piecewise log uniform distribution N0RML normal distribution LGNRM log normal distribution UNIFORM uniform distribution LGUFM log uniform distribution

CORRN correlated parameter

(7) Distribution Data ssa zi ^sssoii msioi ci@zt aoi a ss* xis@i* m iss c-hoieib

§4sioi oi eci.

CONST #aio|E| yjr BETA HlEfa|E| £\±&, £10121, p shape q shape & LGBTA BETAS! i)0| 10£] SZ2 :S?IIgJ^. PCUFM nlElO|E| ^0|| S* bandS) band 10||A| S|£&, band 10f|A| £|0(2l. &!*; (band =M| *6*)

PCLGU PCUFM21 ^0| 10°J £2 ;S7||SIS N0RML ulElD|E| SS21, 5ggAK S5. cut-off

3-8 LGNRM N0RML21 °jO| 10°J SZ1 unifm n^B^lel $IM. $|cM LGUFM UNIFM21 gSJ; W0| 10°J £2 CORRN cfSate nf-Ef-DlEl, multiplication factor, addition factor

NORMLa LGNRMOIlAi cut-offte OH EE SSaoiOl @ia E# 1~9 9^011 M 0.5UII ^OIQB. BETAg LGBTA E# importance sampling BE* E«S1* gS01| Alga Cl. E9 SES #0|7| aeH Ol gisg cumulative risk vs parameter value a£10|| fit£]JL S aE}P|E|0)| CHS! SEEA1 Alggd.

5H42] S1E|P|EH* CORRN identifiers #@101 CIS 2}ElP|Eia M^E# AISS1# 510| 71SS1C1. o|51S #aa°E Mate a an I E1S( oils #01, BS yy§o||Ai)a oioiEi7i Aig asa## site 51s sissa. as aw asasEa aameieoi

SS St# 5>E* Sl7ia Aigxpi AlSSlte HS1E# si# 5101 7l#sia. 0| 7|#S as tiieaa importance samplingOII #@| 0|g 7l#Sia. Ma Oil# P§21

UQ.

Path 8 Path 7

Path Porosity Path Porosity a a path sa sae (porosity) oi path ?a aasa aesaa, 0151s SAMGEO.DAT sampled data file01|AH pga mi X|S@a.

Path Porosity - path 7 EP 7 (0) 79132196 Distribution UNIFM 0.25 0.6 Path Porosity - path 8 EP 8 (0)

Distribution CORRN EP 7 1.0 0.0 oiEiei xiss s exii ass asa mi a#Ai7is sae 7isa.

EP(7) = sampled value

EP(8) = ( 1.0 * EP(7) ) + 0.0

3-9 **$****$****$$**$***********$********* .ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ zzz SAM***.DAT zzzzzzzzzzzzzzzzzzz. zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz ZSZZZZZZZZZZZZZZZZZZZZZZZZZtZZZZZZZZZZ zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

First sampled data item C0DE1 (0) Distribution CONST 100.0 Second sampled data item C0DE2 1 M 1798132 Distribution BETA 50.0 17.0 1. 49 4.71 Third sampled data item CODES 11 M**2 9416112 Distribution LGBTA -12..0 -8.0 1. 7 0.78 Fourth sampled data item C0DE4 1 1 1 A 9313617 Distribution PCUFM 3 PCUFM Band 1 100 130 0.3 PCUFM Band 2 130 160 0.4 PCUFM Band 3 160 190 0.3 Fifth sampled data item CODES (0) 874413 Distribution PCLGU 4 PCLGU Band 1 -12.0 -11.0 0.1 PCLGU Band 2 -11.0 -10.0 0.3 PCLGU Band 3 -10.0 - 9.0 0.2 PCLGU Band 4 - 9.0 -8.0 0.4 Sixth sampled data item C0DE6 1 1 M 414137 Distribution N0RML 2.6 0.8 2.0 Seventh sampled data item CODE? 1 1 1 (0) 559213 Distribution LGNRM -18.0 0.8 1.5 Eighth sampled data item CODES KG/M**3 3136556 Distribution UNIFM 10.0 20.0 Ninth sampled data item CODED KG 7921443 Distribution LGUFM -20.0 -15.0 Tenth sampled data item C0DE10 KG Distribution C0RRN CODED 1.0 0.0

ILiJ 3-3. Sampled Data File^l .

3.4.3. Keyword Data File

7IS1E Cr||01E| Oje^ EH7||(HI d| 7J HUiS £*l| ¥S

EW6I71L1 y7l$J E si El.

Z[ 21^0||A1 ClIOlElfe SIS 7ISIEB2] ESEE yea El. 71 21BMKHIA1 ClIOlElfe @

3-10 7)X| XHIB ^0)|AH SBB AISSI E BB. B Rl0[EH SBS ^ufo, yj«jc

oil bboh essb. asss s asoii b bbb sbssxh xisbb . b a bee l£2| BBOI BE S CHS4S XiaBBOl BB underscore(_)0|| °|t|0| gg£|fe « S EBB E &B. o|o|x|b BBS S 7IBE0II BB CH|o|B* SSSB. E

x|5j CH|0|EH°j b|B ES 7IBE0II BESB. BS 7IBEES SSSS SB S (flag)* SB C||01eh* *BBX| BS8 WB7IE SB. S BB yoilXi XJSBS BO|EH SBBS efB 0|SB space o|| BSD gBBBO) SB. B BBS 7|BE “END*** ”0|| BBB USB. B BBB CHI01EH SB® 7|B7|fe 7IBES 5*11 B EBB “END” BB iSS Boil BBMI BB X|B0|| XISB E BB. SBHB 3fS Bl01EH SB* XJSBS 7IBES S EHB CHI 01 EH SB SB 7HE* X|@BE# X|E (index) 71 EBB B#o||B SB E BB. SB 3-4S 7IBE CHI0|EH BBB SB* EBEB.

***************************************************************************** *** INP***.DAT ********************************************************** ***************************************************************************** KEYW0RD_0NE 0 KEYWORD-TWO 10.0 KEYWORD-THREE 1 2.0 2 2.5 3 2.8 KEYWORD-FOUR 4 KEYWORD-FIVE 1 1 2.0E-02 12 4.0E-02 1 3 4.5E-02 2 1 5.0E-03 225.6E-03 2 3 5.8E-03 KEYWORD-SIX KEYWORD-SEVEN KEYWORD-EIGHT 7.0 END***

SB 3-4. Keyword Data FileB SB.

3-11 3.5. xt'M'M ^S. Ml§2} oa

VANDAL 2.0* *@el* Ml ISS U|0|E|21 @§4 &§* 21@@5 @74@W. AfgxfSj

@2|» 91 aw @74 §|* £M2\ @0@£* “VANDAL Version 2.0 User Guide. Volume 1 - Input and Execution"#! Lf2| 5121 i=5z# §1S9. E|.

3.5.1. Cotrol data

Cotrol datafe AMI @^21 All01 am. A15: *8#! 215404 S^-Elfe @@4* A1#@m, 7|tixjoj A|AE| jziBiniEise Aigsife MI0IE15 9aSM. oie MIOlElfe xmH2| g *18 011 OISI01 JISEjm U|0|E1 21^ INPCTL.DAT0IIA1 A|S@p.

3.5.1.1. INPCTL.DAT - Fixed data

$*s *** INPCTL.DAT *** *** ZTITL Case study title : (Cl.1) NRUN Number of runs in the case : (Cl.2) ICONT Indicator for continued case : (Cl.3) ISAMTY Sampling method to be used : (Cl. 4) NCHAIN Number of radionuclide chains : (Cl. 5) NUCNUM Number of radionuclides in each chain : (Cl.6) RADNAM Radionuclide names : (Cl.7) HAFLIF Radionuclide half lives in years = (Cl.8) SECLIM Half life limit for secular equilibrium : (Cl.9) TIMMAX Simulation end time : (Cl.10) DTMIN Minimum timestep size : (Cl.11) DTMAX Maximum timestep size : (Cl.12) I0PDT Indicator for the timestepping algorithm to be employed '■ (Cl. 13) ATIM Timestep acceleration parameter no. 1 : (Cl. 14) BTIM Timestep acceleration parameter no.2 : (Cl. 15) MINDIV Minimum number of path subdivisions : (Cl. 16) ISYSDM Dimension of network system : (Cl.17) STTIME Start time for dose/flux data output : (Cl.18) LOGIND Indicator for dose/flux output at constant or log intervals : (Cl.19) TIMING Time increment for dose/flux data output : (Cl.20)

3-12 IVCLEN Number of points required for dose/flux data output : (Cl.21) INTIND Indicator for interpolation, nearest or max. dose/flux values to be used : (Cl.22) IFLIND Indicator for full dose output file or condensed : (Cl.23) IFLTIM Indicator for timestep information : (Cl.24)

(ci.i) so me amojiA-j Aipiyfy na§ yimsici. 01 x-iisig tigo s s.b stmoiiA-i moici.

(ci.2) Eamei mtsm xiseiei. mam (ygg Me beoii m 5H MM 21 BID IE4 El ^|E0)| 7|SE1 y Hjoj A|EB||0|ti

0)1 CHSSE1. £|±y y yoj ysH(> 1)0| ofgci.

(ci.3) Ai&ii7i oia AieiigkiEi Tiimeim ome ah^s myxie me El. AHSS A1B1I01I mS101 0: Til^y Alp|0|| Pimm* 1@ meEtEl. Til^y mm SB, AI^HJO 0|y Aiaief«! DlAiaj A|M51|0|yo^u Ei ysyg. pA| A|yyci. 3 g21# e 7ie°i a2i mmsoii append aEi. 01 sb , Aieuy?- mem #e mmmoi AlBlief directoryOll yfeX|* StEimfe 90| gSSlEl.

(Cl.4) maS A|@yci. random samplingOll PI SI 01 0: importance samplingOll CflSIOlfe 1@ meElEl.

(Cl.5) m± 1, S]EH 57H£j decay chainOI X|@@ ^ 21°El. o.&j Slfe %0| Hie^JSlEl.

(Cl.6) mHS| decay chainOll Pimm m± 1. SIP! 47Hm*l yxiyajgoi A|g@ ^

21P.

(ci.7) (ci.6)piAi xisa @j# 4^Pi me mmm 01 mm cs-137 (blank) Am-241 # m gA|og 7IAHEE1. mum 0|gg blank* 5SSHA1* yM 10 character 0|pj01 01 El El.

3-13 (Cl.8) (Cl.7)0)1 XllAlgj ffljg(S)°| yy7|g 0.300D + 02 (blank) 0.432D + 03 SB @BSS 7IXHE1C1. yr 0|B.

(Cl.9) Xlteaijg(progeny) 01 J. (secular equilibrium)0)| % B5 BgS te 21* BB7|y B5(S|BB)S x|*mB. BBBteB xieq #B BB7I71 BB7|°| 1/100 0|@1B SteoilOl EMB.

(Cl.10) A|gai|0|B 7IB* X|g°tB. BBfe yr 0|B.

(Cl.11) XI^QJO) AllB§171 BBB SIB timestep (yr)* X|a@B. 0| BS B *o)| uffife (C1.12)B BMBfe B010I §|B, 7IIBB °x|7| §)§■ BE 0|B7| ys# SteSI B0|0| SB.

(Cl.12) SIB timestep (yr)te (Cl.ll)B BMB* BOf SfCN. BBB Sx|7| §lg ©1 E 0IB71 BE# SteB B010I SB.

(Cl. 13) te 7HB time-stepping BJLBE § BBS BBBB. 3J ti«H BBte overshoots. BSD *(-)B *E210| B@BX| atte B timestep* 7i#Bte BB0|E, te ti«Hte *5011 BBA-i SIB BB BSS x|gx|7| X|§Bte SSS xiIBBfe B0|B. % B9H Byoil BBB 0: te H#H BBo|| BBBte IS BBBB. 1* BBBte %0| teBBB.

(Cl.14) timestepOII BBB Til BBS SEB S|B BBS XISBB. 0| ti|0|Elte timesteppingB 7|#ES xi|0|§|te HI 0|*BB. 0.25 SE7| teBBB.

(Cl.15) timestepB S|B #7|@@ X|SBB. 0| C||0|E|te timesteppingB 7|#ES %| BBS m OISBB. 1 0|B°| B0|0|0| BB 1.05 3E7| teBBB.

(Cl.16) BBB as (path) 71 EBB # Site S|B ES X|@BB. n S|BBE 3 0|*

3-14 25 0|8K)|O|0t mi, vaults Ml £ SIS S£*0||A| XlSSte SSS EEC! 7|A|fe °| teCl.

(Cl.17) 5§ MIe^oj *181(1, 2 Ete 3)S X|A|SCf. 0| «g SE gS AHSS TllS

SIS Ml AlggCl.

(Cl.18) SS21 flux Ml01EH21 *24 011 MIS A|*5||0|ti AM A|g(yr)@ X|SSCl.

(Cl.19) tiif2| flux *240| A|soil SWOM aSEl EM°£( = 0), Ete £E SSSE

(= 1) SSH 981*1* Aismp.

(Cl.20) teif Ete flux* *24 Site time increment(yr) * XlSSCf. (C1.19)0||A| gJS SS0| AIS^I^tMm 04 71 A-| £| time incrementte years £ E01SC|. SS (Cl. 19)0||A-|

£S SSOI SB|E|%|C|S 01 M|0|Blfe A|g£|X| %*C|. 0| Ml0|El* Cl.2121 E-IMOI CONDOSES.DAT (5.2.9*21 6.3.IS HE) *54 mm* S S A1I0181ES Sf SS #2|o| A|#M|0|X4 2| *7||S MS* £248104 S*8| SS&IOI oi mp.

(Cl.21) SS2f flux *5401 ss@ *54S2| *# XlSSCf. 01 siaimcife ss@ @

542| 0421 #2121 §S|E A10|2| El@0|| Cl El SS£|0|01 SC*. 0|# A|S0||A-|oj g&jg.

A|S^2| Z| timestepOII Ml8104 SSte #2l#g^E4 gE(MS)@ 90|Ct.

(Cl.22) A1SX171 X|sm A|@#0||A4 SSS #21#g^E4 (C1.21)0||A4 X|SS *54 A|

S21 urn s*si* ss* xisscf. ss mi son misioi o: 7 is asm mioieh s*

OlSSlte SteOII l; S8IMI SMI M|0|E4 §§ 0|gSl* §gO||g 2* 7iasci.

(Cl.23) SSOII CHS teSS *54 2lgJoi OUTDOSES.DAT 211121 SS 04 ¥* ISS ei. sas 2iaei condoses.dats mss steoii* o; outdoses.date mss steoiig i@ masci.

3-15 (Cl.24) A|S!HO| -ysoii timestepoil c|)® §M» Bb @P EBB TIME.OUT

s| ah^ 01 be @b mioiEioip. bspai bpb o; bsepb is beep.

3.5.2. FLOW data

oi mo\B\ pup 7iee asp oi# mimes aieps asgAi as bbp ximb aSP §E 0I5S SA1PS mi Alggp. p 35b SEE SEE pspj?

aisbp. ppp ah^ies-soii as mimpp season pbe bpai bps s

51P. 0|#g (§£§§ BPP BS S %lb) SEP bPx| SSPBMai, (AHPS- g

Tilsas xisa s 5ib> pep bb/mb sepbmai, ebie ai = be, ee, b ?§£§(permafrost) SP S0| TIME40H P6H WlbPb BP50II PSP01 XIESp. vault Eb P7IMA1SAISP SEE ESBP BSBBES SS PEP B¥EA1 MIM

PS SEPS mi SEP01 Of EP. Oias SSPb EP ssoh PP BSEPJ ¥SB

S 7|A|pog ha IS S SIP.

TIME4S B7HM EPS Alps SSP HA1S VANDALS ESS ofl 7IE gxi|7| pg ¥®0|p. X1|2S0j|Ai ojSE PP go|, VANDAL0||A-1 Alps SBS SA1P7I gsH AH SS BUS WOLFNETOIP. 0| BUS PS BSE EE Spoil 7|aP2 SIP SEEP P SEPPP. SA1IB BE RMC01IA1E WOLFNETS A^E VANDAL0J|A1 A|pS 2B (ami BBEBMS BA1EPE 0|# SB) MIMES SEPS mi oil B Alggp. o| KH WOLNET01I PoH SES MIME0|| pppfe A|pS @BS PLOTWOLF01I ppp 7| aip pp a pbsoi sbsp. rmcp as smip xips ass maiaps oisp FEM BE01I P5H fiAlpsmi 01 2ES BAig M|7|gp¥A|E BEE S#o|| EE BP SB¥P S7| (1980BCH SB) BBS0|pE @ S 51b SYVAC(SYstem Varibility Analysis Code)P 7|g7l S P 51P. MAIAP SS E4I 2E01I pSH SHES Alps ass PEI AMIP Aise 71 p WOLFNET01I BBP2 EPEES VANDALS PE X|

PS as Ml ME MM Alggp. VANDALP Alps SB Ml EPS a^IEBB WOLFNWT/PLOTWOLFMS BE# S 812 MAIAP SS PS BA1I 2EP ESS B oi msps aoip. oi pes attpmi p7i ppp rmcoiiais misebm psp b

3-16 e-i5iioi^ smbbss xhsbb nadp rmcsi oie-im as mim =MBB#s KINSOM 0|@g 4= BP.

(1) BSBO| B#@ Bg as (Oil, MODFLOW)* OlgpOj AhBliga PB XI ^ (Him

mod xisit shbbp. (2) PMI A-\ 5HBE! XI8^ B#S MpM VANDAL* BB X|814= SI Ml MBS y B@l 2-2 #2). VANDALS! Monte Carlo X| S3d|0|BS BBS Ml (1) onAi bbs Mirny# Bemms moi #?i ppp. (3) omotl i@£|fe, XI814= s§3| BB0| VANDAL BB 2|^M §H B PPP| Ed oil (1)S| s||y 141 medmod BBB &S ^BP. (4) VANDALS B@@1B X|814= SS0|| BB SB PBB OUTFLOW.DAT (5.2.5B BB)S S£8B (1)2! SB21 MBmBXI* SfBBP.

(5) (2)-(4) 4§§ ymmod siyy Misy# bbsp.

3.5.2.1. INPFLO.DAT - Fixed Flow data

fix I# sSMiayy S£0|| BB SM2} §a, §41 BB B Si4 BBBoil BB S MM xdlBBB. 0| Ml 0| Ed * ^OdB X1MIBB-2) Qxdl B@o|| Ml mod BBSP.

*** INPFLO.DAT ***

NTUBE Number of paths in the network (C2.1) NA/NB Junction numbers at the start and end of each path (C2.2) JT Type of junction (C2.3) SWI(s) Initial switch positions at the start of each path (C2.4) SWI(e) Initial switch positions at the end of each path (C2.4) ISCNT the Number of future switch activations (C2.5) Path number for which the switch is to operate (C2.6) the Path end to be switched (C2.7) IPQCO the Number of future pressure or flow activations (C2.8)

3-17 the Junction to be activated (C2.9) Indicator for pressure or flow activation (C2.10) IV the Number of vaults to be modelled (C2.ll) LEGV the Path containing each vault (C2.12) NDIVV the Subdivision in the path containing the vault (C2.13) NODIVV the Number of subdivisions in the path containing the vault (C2.14) IOUTFL Indicator for flow data output (C2.15) DHIGHT Node height (C2.16) DELX - Node x dimension (C2.17) DELY - Node y dimension (C2.18) DELZ - Node z dimension (C2.19) HG Topographic surface height for each surface node (C2.20) ITYPE Indicator for path orientation (C2.21)

(C2.1) M|Eqo)| °!b legs] ^E m ©IS 100 o|ci.

(C2.2) path yg junction numberai &KA|S1S yM Hj£)e 7|o.

sasaj s§§ amien. path2i junctional yse dh7|# sm.

(02.3) yA junctions! type# S^-SCj. Type 2 = free surface node Type 3 = multiple junction node Type 4 = geosphere discharge node/fixed pressure Type 5 = disconnnected node ("sleeping" pathway) Type 20= river node (fixed head# surface node) H# fixed head node# geosphere discharge nodes?

(02.4) zt pathai ai* im #goi yej(= o.o) %!#%i y§i( = i.o) ai#Ai* xise Cl- Slciai switch? 1 ysj oicife ys Aisa path# #@10j Sg0| @21# ^ ainimci.

(C2.5) pathai H-ggOI PieHCHI ^a|7ld y#(^, switch? 1 activate #) 51^* A|

3-18 g#q. qqq# loo.

(C2.6) 0|BH switch activationO| BE# paths) E* AISftq. switching events) E7) 0| D)|0|E)2) 7f)E7) get. (02.5)7) OB SE<>)| 0| E)BE AHqEjq.

(C2.7) q switching eventOII 0)S)0), J. switch?) EO)S paths) on gy 7)gD)| 0) qo||Aj q#qEA|* issq. Aiqqoil switch# EqB l: #@o)l EqB 2* SMB q. switching events) 4=7) 0| D)|0|qs) 7HE7) @q. (02.5)7) OB SE0)| 0| £)°Jg

^J5)SP.

(C2.8) pressure SEE flow Bj§-0| activate SJE S*)) E, ^ BEO) IS®) junction 2) 4=# AISBE). activations) 3)0) EE 20.

(C2.9) (C2.8)0)|Aj X)SS E0|| 0)ME junctions) BSS B?)Bq. A|y*)B -Aj CHS °)q. qqs) juctionOIIA) 0)E-|x)e)| activationO) BBBqB It junction^ BSE activations) EBft qqqof gjq. EA|0)| 0)E)7f)2) junctionO) activate ft SEOII X)3E|E BEE §SS)*I %q. (C2.8)0| OB §E0|| 0) BBS E

q@q.

(C2.10) (C2.9)0)|Aj A|@g junctions) activationO) pressure B§(= 1)BA| flow B S(= 2)B*IS A|A)sq. (C2.8 )0| OB SEOII 01 qBE EBgq.

(C2.ll) vaults) ES AlSSq. mS/S 12.

(02.12) q vault?) BE paths) BSS 7IB#q. qqs) path?) ft 0|B2) vault# MW E Siq.

(02.13) vault* DIME q pathOII til8)0) 3 vault?) *0) BE subdivision ES Aissq. S)qq subdivision# ft 0)BSj vault* ISS E Siq. OilSftO), EBB pathLj) (Bx)| 471)2) subdivision ft) E ?H0II vault?) EBqB 2# gj^Sq.

3-19 (C2.14) vault* ESSte A path B subdivisions] rl X|§®B. BB path#Oil Ml SOtfe 3E7] subdivisions] ES BSBB vaults] @#0 SA|2| ¥BS BSS7I S oHAtte vaults ISSIfe pathS0|| MlSOt Afgxpl ES XISBte yo| Ifisfq. oil*

#o], (C2.i3)si on oil m siois 4s sb.

(C2.15) SgOII ®® @BS] yg O1E(0 = no output: 1 = @B g®)B X|A|®B. @@ MIS.*] y oil At xieiES] SSSB SES % B«H S«o]| Ml Slot BSS oHBB SB 3] St® OUTFLOW.DATOII MESB.

(02.16) fixed datum levelOll SMIBB, A junctionO]|A-] ZL nodes) SOIS X|g ®C1. fixed datum levels] g-gg® 7|ES SUM. BBte P|Et(m).

(02.17) B junction nodeS] BBS AIMS] x BS H7|* *IS®B. 0| M|0|Ej SSS y ESS Ml sj yg A|SB BBB x|SES o|goi| S]ai0| BSS BE in El ft 0|| Ml Slot B Alga El. CM El At, X|fiE¥Et B icS#0]| MISOtte dummy B#0| X|@@ E BB. Bate P|Et(m).

(02.18) (02.17)011 Mj® ®®2f gysiEl. B, x BSS y BSBE tilES SB.

(02.19) (02.17)011 Ml® SB21 gysin. B, x BSS z B8°S BE® SB.

(02.20) fixed datum levelOJI SMIBB, A surface nodeOll Ml® XISBB &0|* X|S SB. surface nodeSS (C2.3)0]|At junction type 20 Ete 2E BBS BSO|B. ®B SHB node7l BB® 0| BBS SSSB. BBte m.

(02.21) A paths] BSS X|3®B. l=x(ES): 2 = y(feO|); 3 = z(30|) BS.

3 -20 3.5.2.2. SAMFLO.DAT - Sampled Flow data

MSKdS SB 5|am|E-|S0|| BE gtiB xj|g@|M, n A|±#o| zj Al@oil tJIMOj

MMB E %m.

sac *** SAMFLO.DAT *** *** Initial Flow at each Junction : QSI Junction No. M**3/A Seed (C2.22) Distribution : Distribution type Distribution values

Initial Pressure at each Junction : PRESSI Junction No. M Seed (C2.23) Distribution : Distribution type Distribution values

Time of path switch activation : TACT Junction No. A Seed (C2.24) Distribution : Distribution type Distribution values

Time of pressure/flow activation : PTACT Junction No. M Seed (C2.25) Distribution : Distribution type Distribution values

Value of pressure/flow activations: PARV Activation No. M or M**3/A Seed (C2.26) Distribution •' Distribution type Distribution values

Time of membrane failure : TM Vault No. A Seed (C2.27) Distribution : Distribution type Distribution values

Time of vault saturation 1 : TSAT Vault No. A Seed (C2.28) Distribution : Distribution type Distribution values

(C2.22) S.B junction^ <2J¥ sourced sink#B £7| XigBM. ZLBjuj type 3 junctions°llM£J &t@B fixedSAj SHBBM. 7=1^^ A|^@ Ml BS (abstraction) 8 2|n|S|0j, B( + )M §S(recharge) 8 MMBM. BBfe mV-1.

(C2.23) 2E junctional Aj (fixed datumOll 6M1MB) £?l 8 A|§e}Ej. UMM type 4 junctionSOI|Aj°J 7diDJ fixedSA-J ME junctiong-0||Aj°| B88 E

A|@M. BBB m (EE).

(C2.24) path switch?I BBMfe A|g#B mmg. *||A|BM. 0| (M switching

3-21 eventOJI n||mi BBB) A|BBB BOM BB. BBS yr. (C2.5)7| OB aSOII 0| BBS EBBB.

(C2.25) pressure i£fe flowB B§0| BEBS A|@#B SB SB. 0| BEE (B switching eventoil BSoy BBB) A|BBS SAys Boyof SB. BES yr. (C2.8)0| OB BSoil 0| BBS BBBB.

(02.26) pressure EES flow iflS| A||SS 2t## AISSB. 0| EES (C2.9)0||Ay @ 7y@, activate @ junctionB £Aycj|S 7IAHB0I01 BB. 0| cy|0|Eyfe (C2.10)B 8HB indicators! &0|| BB pressure ES flow # gsj BBS Ay 8HBBB. BES pressureO|| BBOi mCrr); flowCHI B81 Oi m3yr_1.

(02.27) 0| B0|B BBS (C2.28)B BS BBS Bfe BBS BAH BBOIIAiS SB 0 °S SB SB.

(02.28) B vault7i 7C|81^01| S|SH AH55|(resaturation)BS A|@@ X|B°tB. BBS yr.

3.5.3. VAULT data vaultB B||7|e AHJLB, 3||7|#Sj S)EB EB, B7|g SBS7|S| failure rate, vault B BBOII SB A1BSS BSBB. AjgAIBS EBBB vaultSS HE BE H B°B BBS] vaultoil til Boy SSB x|E, H5, #7|# @tiK#)B BS Seym H BB. E B B vaults Ays BE EBB BEE BS oyey ?HB BBEB EBB membrane# S HA1B ^ o(B. membraneOl EBBS BEA|E0| AHSE BS A|g(0|BS MBS legOII BS vauItSOII a|B BS E BB)S S7|0|| vaults SB lif A|HHBES B SI H BB. vauItB #BB SB SB BBS SEES SEMISBB BIS BBtil B6H BB# E %!B. VANDAL VAULTOIlAy BBB vaults waste package, backfill material, membrane,

3 -22 engineered barriers?. ¥S@P. gESBBS S1PP po|p ES 7|pp X|B oilppES P5S a EP. 6P ES pe pssoi gst mi xigxis §jxh* xhp bmp ebb sp* bepboi ep. awxi mpB. pps sipb bbsb gppAi axi# a EP. membraneS gp SEP P# 0|#S BX|S1* PUS EP. Algp* membraneP EP A|p@ X|SEP. membraneOl ES SS, EPAIBS 0°E ¥PX10l EP. fJxHSAHfe p7|g ES§7|S¥P BA1SPB0| 0IBPP71S DHS5 EPSP. DIPS SB Ml EBB vault legoil BP SAlpp, X|Sia SSP P#0|BS PXHSP* BPS PSg SAigp. waste packages P7|g DUMBS* SB«1E %S P7|g ESS7|EAi 7|gpog P * Eis Epgp. p@ ebp asmi pxipsHgp ves ebb spmi pm eb E a EP. E EP Alas EBP SPB SPSS XISECHI psH HAlpp, ppA-i BSE EPS B SPB ¥P«Oi gpxis A|poll EBBPE BP. “gpgl" failure rate* SA1S17I BSlOi ESE ¥E»P BMP EB ¥PB SESE71 71SS p. sap a eps ppp spe vauitp as ebboii mi sib ese eb sp(p, EB SPP x-iia £5BB)B ESE ¥E#S XISEOII Pi HAlg ¥ EP. 7|pp pe EP SiE PPAi BPS pppEigp a BP PSIP A1SX171 HA1S1S EEP X| AlgpOIEg a EP. EB EBOI SEPB BA1SPBP 0|#o| 7||A|pp. iS§7|M¥P P#P SSS (Ala PE, SSS1S P7|g@pgp EEPE(degradation rate)a EBB) P7|g g poll PS SIS Si PS oil psip EBB EB A| S1¥P SBO| A|pg ¥PS flow washoutP PSIP X||PS pa 71SSP. 5ES§7|* BE SBP SES membraneP ep, aeggp aa, sss7i esp se bp peep, ebs eppesp membraneS SBPX| ES SS, iSiS vaultPPA-1 PEE a ESP X|EPE S eg as SIP.' EB membraneOl EPEE, vault* BE # S#0| 7lSpX|a BA! SPBftOI XISXIE gp* a EP. Bxismsgp SiES P¥SE PEP Eaaxy XIS# a EP. VANDALPPA-J xi BPS vaultp AIBMP 7|p #@p ESP ilPM PEP BBS SEE a EP. vault aasEEP aia #a bbs xisms as xissip. vaults S1PP XISB SEOIlAi S1PP BE ¥tt(subdivision)E EPPS Hi, 0| gf

3 -23 g H vaults 37|# 9ISEE %0|OM EE. EE OIEE SS0|| E# vault? | X|S#

4= %E.

3.5.3.1. INPVAU.DAT - Fixed Vault data

9|7|# EES? IE E9IE ot HAlEjg vault StilE near-field^ EES EEMIfer E

B|niBison SE 7|#s|E StiE *il5EE.

*** *** INPVAU.DAT *** *** MWF Number of waste forms in each vault : (C3.1) FANCTP Amount of cement in each vault : (C3.2) IDRUM Number of drums in each vault •' (C3.3) TDRUM Thickness of the drum wall in each vault '• (C3.4) VDRUM Volume of drums in each vault : (C3.5) SUDRUM Surface area of drums in each vault : (C3.6) XADRUM Flow x-sectional area of drums in each vault : (C3.7) DEP Porosity of drums in each vault : (C3.8) DALP Proportion of drum area available for sorption in each vault : (C3.9) PHVI Initial concentration of the material controlling solubility / sorption : (C3.10) NPOINT Number of points on chemistry controlling material vs solubility curve : (C3.ll) PH Concentrations of controlling material on the chemistry controlling vs solubility curve : (C3.12) SOL Solubility values on the chemistry controlling material vs solubility curve : (C3.13) NVK Number of activations of conductivity for each vault : (C3.14)

(C3.1) E vault MiOII 3x|E|fe waste formal ## XI9EE. (C2.ll) % (C2.12)2| C||01EH EA-|2| Em.

(C3.2) E vault Ml X|@jE 7|e| S5HE/SE 9|0|#E)2) o tg x|9EC|. 0| 91

0IE-I2I C3.19fe C3.11-1321 ESE EX|E®!§ S5HEE A|yo|| EE SEE SA|§|fe

91 Aisam. DIS7IXIS, 0|# 9|0|Bfe C3.24-C3.26E E*0| g|A|E@|# SEE A|B

SEE HAISIfe 91 AISSCI. BEE kg.

3 -24 (C3.3) zj vault Ml Egg EE *l3e)E|. wasteform vault US 7|X|1§171| E|01 &SB SxHg gg CNIfer vault g Eg Eg E2HB E g7l| g0| %!(% Algy g^o] vaultoil E fW 0|3°1 waste form* E24W E ffife BSS 0|8H@p.

(C3.4) z| vault Ml Egg S^lKm)* 743SP. 0| CH|0|EHE Eg 01| g§!04 Egg failure? 1 SJOHgE A|@B 7113 5171 g510H SE51P.

(C3.5) g vaultoil 018104 Til'S Egg S3( m3)B 7H3Bg. 51gg B3 vault Ml fig Eg me w^cifi 7isep.

(03.6) g vaultoil CHS104 7[|S Egg (g # fifif 585) £S3(*w2)B 7199 g. Slgg Mg vault m EE Eggs BBgE 713 mg. 0| CH|0|gE gAiyqgoj

BE fif§ 711SSIS CHI o|SSg.

(03.7) g vaultoil cumoi ® Egg A|51E SB g»o|| Eg® BS3( V)B x|§ mg. Slgg B3 vault m EE EgBS ESS BS3B SEgB 713 mg. 0| EH|0| EHE gAlgeHgai OlW(advective) E#B THEBE C|| 0|g@g.

(03.8) g vault moil AH Egg §g# (porosity) B 3gmg. Slgg BS vault Ml EE EBBS EBS BBSS SEgE 713 mg.

(03.9) zf vault moil AH Eg Ml SB # SgO|| 0|S 71E2I SB, g7|# oHEq^ oil AH 5 Boil SOHS Bg BBS gSmg.

(03.10) g vault moil AH AieiE ccfe 7|q. gsHE/SB XH|(H Biig S7| EE* A|3 mg. EEHE kg m~3 .

(03.11) Cl.7011 AH Ais@ 03.10011AH A|3S XHIggS m SSflE @71171 3g # points) E* AI3SP. 01 CHIOIEHE 01.7011 AH X|3S B#g 0|g EES gggOI

3 -25 ot bp. °i m± 27H°j goi maeip.

(C3.12) P ffljgoll P5104, C3.130)1X4 g8||E7l X|gEJfe XIIo| #®p #5* XI@5

P. BBfe kg m~3. 01 tHIOlEife C1.70||Xi XISS 8H§£| 01# ojB^SEICHOf: S P. points(C3.11)£ 7IXHEP.

(C3.13) P 6Hgo|| ppol, C3.12011X4 Ppg P0||X4P geHEE X|§°lp. VANDALS

ppg a# xioioii mb® 4=%@p. point® y 7|xhbp. bps

mol m-3.

(03.14) P vaultoil P5104, C3.27P C3.280||X4 X|gE|® EPS EE (hydraulic conductivity) P B&1 51E* X|SBp.

3.5.3.2. SAMVAU.DAT - Sampled Vault data

B0| MSI®5104 P ®@0|| CH5104 MSUPBoi g vault pppEioil gg gyg. xi|g SIP.

*** *** SAMVAU.DAT sst *«« Std. dev. of drum thickness TCOR Vault No. M Seed (C3.15) Distribution Distribution type Dist. values

Corrosion rate of drum TCORF Vault No. M/A Seed (C3.16) Distribution Distribution type Dist. values

Cement depletion rate VDPLR Vault No. KG/M**3 Seed (C3.19) Distribution Distribution type Dist. values

Multiplier for cement depletion CMULT Vault No. (0) Seed (C3.20) Distribution Distribution type Dist. values

Multiplier for flow through drums VMULT Vault No. (0) Seed (C3.21) Distribution : Distribution type Dist. values

Multiplier for sorption : ALP Vault No. (0) Seed

3 -26 (C3.22) Distribution Distribution type Dist. values

Bound water pH PHG (0) Seed (C3.23) Distribution Distribution type Dist. values

Leach rate from wasteform WDLR Wasteform No. M/A Seed (C3.17) Distribution Distribution type Dist. values

Initial inventory RINI Nucl.No.Chain No.Vault No. MOL Seed (C3.18) Distribution Distribution type Dist. values

Cement concentration for Kd switch : PHCO Nuclide No. Chain No. (0) Seed (C3.24) Distribution : Distribution type Dist. values

Vault Kd at low cement cone. VKDL Nucl.No. Chain No. M**3/KG Seed (C3.25) Distribution Distribution type Dist. values

Vault Kd at high cement cone. VKDH Nucl.No. Chain No. M**3/KG Seed (C3.26) Distribution Distribution type Dist. values

Time of vault hyd.cond. activation : VKT Vault No. A Seed (C3.27) Distribution : Distribution type Dist. values

Activated vault hydr.cond. values VRK Vault No. A Seed (C3.28) Distribution Distribution type Dist. values

Fraction of nuclide in wasteform FIWF W-form Nucl.Chain Vault No. (0) Seed (C3.29) Distribution Distribution type Dist. values

d|01El Qg74 AJX-II 21gJ°l °'^A| S£!

C|. 017|A-lfe -yxi| 2*1121 7150^

(C3.15) vault LHEg^ AI3EW. BBE m.

(C3.16) vault m EB ^ AHliB ^Ai#(m/yr)# AISOT. uniform (CONST)0| 71S@C1.

(C3.17) Zf waste formOil ^0# @**(m/yr)@ *IS°iEl.

(C3.18) z| SHgsj S7|XHEB(mol Bfl)# XISBEl. ZL C1.70II @74@ 2J2} yomt SB. 01 dlOlEife Zf vaultoil mmol B#BB.

3 -27 (03.19) A|SjE (Eb 7IB Stl$t Xl|01 #*)0| 4 vaultOIIXl ESS* BE* XISBP. H BE* E01E vault* #2t@tb * 1 BDlElg ESS* molS BSE §S@Et.

(03.20) 01 tHIOlElb ES SEEEE1S HDfi 711 Bate dl BSSfe SEEA1 AtSSE stois EBSE BBS palatal BEti E &7l| 6H5B. SSSEE o| &# IE *Et.

(03.21) B vaultotl CtjatOl, EBS #S SSi E24@ E BE# SLtS HD* (multiplier)* T^SSE^m) ESSS SxH*xil(backfill) AtoiS E&ISEE SO IS 7| Et 7|St«tB 2!At*# ESI# E B71| SUES.

(03.22) S^t tiSOll BOiatb 5||7|# ESS ES @#* vault BE XISBS.

(03.23) vaultE ESSE X|atE WM EXHSfe SS xi|0| #SS fe£« pHS SEE AISSEt. Oise 03.19011 A1 SS@ EB Allot #S0| SB EBS7IB atB SB* B BBBE 7tS@Et.

(03.24) B SjSOll EHSOi, vault S01|A-1°| Kd &0| C3.25S 03.26011 A-t X|@SB E

21 Atoioiixt switch atE# atfe Allot mss #e* xigss. o| ci|o|Eife ci.7S ciioi E1S EAl7t SOtOt set.

(03.25) C3.2401IA-1 X|3@ A||S#SS *E7t tq| vault M|0||A1 zj @w#s Kd 21 S m3 kg _1S BSE BBSS. 01 ClIOlElb C1.7S C1I0IE1S EA171 #OtOt SB.

(03.26) 03.24011 A-t X|§@ Al|Ol#SS *E7t *# nfl vault MWl z| mgoj Kd21S m3 kg _1S BSE BBSS. 0| Cl|0|Elb C1.7S Cl|0|ElS EA17t yotot SB.

(03.27) C3.14S B71|atS, B vaults ESBEE71 BBS# A|S(yr )# A|gSS. 03.14011 At B* %E7t OEE XI3SBEB 0| BBS SBBB.

3 -28 (C3.28) C3.27011 X|SS A|S0||A| z\ vault Ml gHHSEE* A||^g &(m/yr)* X|S S2£«l 0J|g go | vault materials) degradation* HA IS g %X| 5||gCf. C3.27S) 8HS B|OJO| 9M9 01 SSE S^SS.

(03.29) § waste formO||A4 ¥04S @j#(#)S) $7) g§* ¥5) 7|gog S***. EE4SS ajgoi SH4BI9 fg l.o 0| S*.

3.5.4. GEOSPHERE data

XIS74IOIIAH o|gf ¥ o;g gg#s| ga)*, 5|S|5j aiii x|S*c|. o| §agg-

ssuiie ^oiia 4 xiss rngoim. s gsoii mm04 ;)s#oi sesm.

- oiss imamoip.

- ssms a ns sms s§4 chmo 4 74 §sfe asm*.

- *x4ist j/xiissj

- DSSE Etio| Xjg@q.

- 7im* sssm diitimsoi mss*.

- s)§ys) ms* sssse

3.5.4.1. INPGEO.DAT - Fixed Geosphere data

SS ¥B)x|gLi|Eq gsim AI5SSH* x|o|s| §741 21*o|| g°i §Mi xiigs*.

0| Stife AiB)|21?7| TIME4 eiE45||0|^ 2)g0|| °]8H XllSSfe A|§ ## BSS* S

54*04 asms ggoii ggsjoi*. oi mioiEife Aimsa* s§ sgoii mso4 as sm. es oi ms on g ais gEjAism SAissms **@ soim

S flaggoi ^04SCI.

3 -29 :** *** INPGEO.DAT *** ««* NGACTS Indicator for geosphere changes from TIME4 : (C4.1) SURFACE Surface indicator - Time4 connec path : (C4.2)

ISEAFL Indicator for node at sea level - Sea/Rech flag junction •• (C4.3)

IOUTFX Indicator for flux data output : (C4.4) NPTSTP Number of timesteps between flux output • (C4.5) NSN Number of junctions for which flux output is required : (C4.6) JSN Junction numbers for flux output : (C4.7)

IOUTPT Indicator for path concentration data output : (C4.8) NSTPPT Number of timesteps between path concentration data output points : (C4.9) IOUTJN Indicator for junction concentration data output : (C4.10) ICVTP Number of junctions for which output is required : (C4.ll) IJUNC Junctions for which concentration data output are required : (C4.12)

IPIPE Paths for which junction concentration data output are required : (C4.13)

NSTPJN Number of timesteps between junction cone, data output points : (C4.14) IFLVOL Indicator for pipe volume output : (C4.15) IFLMAS Indicator for mass/concentration data : (C4.16) MSTP Number of timesteps between mass/concentration output : (C4.17) IFSOL Indicator for far-field solubility check : (C4.18) FCSOL Far-field solubility limits for each nuclide : (C4.19)

(C4.1) 0| Cl|0|Ejfe geosphereOilAj TIME4 P|EH Q512j HStig 0j¥# 71E1£]E1. EW

^£ixi s^oii o: suns g^oiib ie ejeim.

(C4.2) 4rOjg 3 E (path) 71 X|E inE£J*l. 3^0114 @E#E#2l X|ES^0|| 21SH g§§ yfeXI CH¥S 7lEiyn4. ¥Oig SE71 X|=0|| oig 01 d|0|Ej fa s j. time4 xisxime 7iaitici. aim 2071121 time4 xiexich (surface zone)71 %(C!. 3571 ESOJI %!X| 35 0: TIME4 X|c|l x(tiS)

21 QSS eqoii ojfe yoiais x* gj^EEl.

(C4.3) fcE7l (sea-level)£1 X| recharge EE2JX|g MZiElEl. J_

3 -30 EE7f SIIESOIB^S 33°| piezometric headE SUES ti§24 FHM04 Btt 340|lM. 0|

3E 3 k£fe C2.30||A-| Type 474 SP. DJa ^CH5j EE74 recharge EEB40 334

2| S7J I§g recharged 04*04 St 340|04 ZL EEfe C2.30||A4 Type 3011 8mS

04. 01 g^OII 0| 0||0|E4fe £811 EE74 E§4E recharge X|°4S 74EIS04.

5HES EES4 SE -l: TIME4 x(C4.2)5¥E4 discharge* Sfe tES §? 1: £71 E 3¥0|| 5H££1X| affe EE oil Ml §404* 0* £@4S04.

(C4.4) yAigsHg *@4E2j @@4 04 E* X|A|S04. 0| @@4S A4gXj74 X|g§4* Ml E-Bj EE (junction) soil M4§404 OUTFLUX.DATOJI 7|#@C4. @@4§4X| gt§ 0; f

@4S gE0||* 1* 7|gjE)c|.

(C4.5) OUTFLUX.DAT0II 7|#5|* 34# A40|0|| Q04 timestepSJ Ell X|@SC4. 0134* *@424 ys ion Afgx^ §404* sm^i see xi@@ e %Mi &n

*04. SIE^S OOltp. A|#B4|0|S timestepSI *0|* £A4S«h§<>4 chainOJ SS4X|g umte yoi tiSOlhh 3B4E3 *@4E *@40| £S£4# AiaSE chainOII K4B4 Ofe/ll

@04.

(C4.6) gjA^ajg @@4E2| @@401 a?£)te junctions E# XlSSCj. £|MI 20SX|

74*§404.

(C4.7) (C4.6)Oil CHS§404, WA^SHg @@4E°1 @@401 a?E|fe junction^ Bsf xissot.

(C4.8) Xisa path* C4E4 ^A4^@|#2| *E* *@464* OUTPATH.DAT 241421 ^

<8 04EE x|A|eip. @@454X1 g* 0: *@4S SEoilE IS 7|°jSo4. £A4S«h§ #E2| @@4S 33401 EOIQ Ojoj subdivisionOIIAj *£S £A4*o S @AH§4*

SE0II 3 pathOII M45404 E 04304. 3 “SSS ?To4| MIS SSE *E 2| 3MI&0|| Ml §404 E#@04. E4a oHo 8 H (solution) 74 MSS (instable)§404 3£S “S (negative) 21 SE”74 path subdivisionOIIAj ^jSSOty 0| &S 7|#*04. “SSS yA|@ ”o|| MIS

ESS 1.0 x 10"30 moles/m3 OHM.

3 -31 (C4.9) OUTPATH.DATOII 7|^£|fe A]0|0|| timestepS] E* AISEiE]. OI51S ygsib #^2] fOli A]gX]£ 51015 @^Sj y^e A|@# E 0(7)1 8H Esf. 00|E|. X|M5]|0|y timestepS] iJO|# ^A^ffljgo) chainOI gS]X|y umfe 5101 mo|Cf. EE] BE path SE S^0| gys|E A|g#E chainOI K]B| E]

5 711 Sq.

(04.10) path A]0|S] junctionOIM g£ C]|0|E|°j *yo| @2®]X|* gg W. A]gX]7] X|§5]fe junctionOIIA-|2] g£fe OUTJUNC.DAT 2]iiO| 7|#gE], mAi %s gs o; mrnrn seoiie is ai ^eie],

(04.11) yAKgsHg gES] e^0| SSElfe junctions! E# 74§°]e]. S|CH 20gX| 7]S5]E].

(04.12) (04.11)011 qismoj, yAl^ffljg SES] @2401 2BSIS junctions] ys# Aisen. aH4S] junctionOI 0]E] 7||Sj paths] ygE E 21BEE Eg Site pathE AISH HS7f oi@ 5jO|C], 0|Ej£] paths] X|gg C4.130||A-] 0|#0]gE].

(04.13) 04.112] 04.1201 Aj XISS junction^] @@@[0] yA]g®jg SE 0|0|E]7] 2. E£]fe path# A|S®]C], 0| U|0|E]°j -s] EAjfe ^Aj 04.112] C4.120IA4 X|gg junctions] E 5! EAjS] ^a|S]0]0] ®]Ej.

(04.14) OUTJUNC.DATOI 7|@£|fe *## SEE A]0|OI SM^IS timestepS] E# X| sep. oiss sssjs @ys] otg. #oiE A]gx]s moi# @ys] yE* xise e

247HI 511 EE], SIESie 00|E], AlgeilOlti timestepS] ZJ0|# yxf^siigo] chainO] g

5]A|y Hmfe 5j0| M#0|Ej. HEIEe junctionSOIAj fe£ g^OI gSEJS A| SEE chainOI tt]B] E]27l| @c].

(04.15) leg volume data7] MASS.OUT 2]^S] A|g EEOI gg# %yx| 0]E # i!g EiE|. 04.1701 Aj mass/concentration A]0|SJ timestepS) E7] 00|E]y 0|

3 -32 PiPII* #pO| pipe volume data #P0| SSSPPS 0: PEPP B IS BBEP.

(C4.16) 0| C)|01EHfe mass/concentration data?! MASS.OUT SB PE Oil ^9EPEA| * PEEP. OIE-1S Sfefe C4.1701JAH AtfeXpl X|gpfe 931 a§ PPPE timestep BPOilM <9 EB P. mass/concentration data @B0| MES.PPE 0: SSPPE IS BBEP.

(C4.17) MASS.OUT0II 7|ppfe mass/concentration data A to 10|| EM pfe timestep si 4=# BEEP. OIES EEBE @BP PS SO|S Aigp^ pot* SBB be* Ala# E 5^X1 5H5P. OS BBEPB mass/concentrationP @pg EEB*I %fe P. A|gai|0|E timestepSj E0|fe BAlSffijeB chain0| Epx|g umfe pO| M#0| P. EEtEE mass/concentration @B0| EBB# A|@#E chainOII pp PSP @ P.

(C4.18) 0| pOlpfe p# solubility limit?! far-fieldO||A-| XJIHPP E pgp #E?1 0IS71I X|S@ solubility limit# SPP# 8# §2 fl|A|X|* # PBAI* I§EP. solubility limit* far-fieldO|| At xt|3pX| PS 0: PEtt 8 Soil* IS BBEP.

(C4.19) far-fieldOl!A-) p Sjgp solubility limit* A|SEP. BP* molm"3.

3.5.4.2. SAMGEO.DAT - Sampled Geosphere data

X|E?tl pppp# SPEPOt AIESP P E19 oil ppot ESPPPOI m PBOll EE SEES All SEP.

*** *** SAMGEO.DAT *** *** Path Length : PLEN Path No. M Seed (C4.20) Distribution : Distribution type Distribution values

3 -33 Path Cross-sectional Area AREA Path No. M**2 Seed (C4.21) Distribution Distribution type Distribution values

Path Solid Density RHO Path No. KG/M**3 Seed (C4.22) Distribution Distribution type Distribution values

Path Porosity EP Path No. M Seed (C4.23) Distribution Distribution type Distribution values

Path Dispersivity AD Path No. M Seed (C4.24) Distribution Distribution type Distribution values

Path Molecular Diffusion DM Path No. M**2/A Seed (C4.25) Distribution Distribution type Distribution values

Path Hydraulic Conductivity RK Path No. M/A Seed (C4.26) Distribution Distribution type Distribution values

Path Nuclide Sorption : RKD Nuclide Chain Path No. (0) Seed (C4.27) Distribution : Distribution type Distribution values

(C4.20) A pathB U0|(m)g X|g°HB.

(C4.21) A path A BB*i(m 2)*

(C4.22) A path Oil MOt JEM BE (solid dry rockB mass* ILA0\ gSSLH be g*ii ¥2is Mte A)m xigmct.

(C4.23) A pathB (effective porosity) 8- XISEW. 0| 2JS pore water velocity* 31*51* HI EB VANDALS- HIEBEE BB 8i|g°j X|Q (retardation)* 31*51* HI X1SBS A legOII HI* *31 ggg* (0| SSgggg path BE* EHIE) 3I*SIB.

(C4.24) A pathHI HI Slot dispersivity (***, 0|5!S dispersion length SlEE M BB)* X|S*B. BBS mO|B. C4.28g C4.290||Xt BEE transverse diffusionOI Q §B3| &EHS Slt-IB path0||At BX| lateral dispersionBOl fiiiSH.

3 -34 (C4.25) 4 pathOII 41404 #Ai#A474lfi(mVyr)* X|S°44. 0| 4S fig ##0|| 44 04 #4fi 4g@E|.

(C4.26) 4 pathOII 4404 fi44fifi(m/yr)* AIS44.

(C4.27) 4 pathOIIA4 4 ##o|| 4404 @4711 fi Kd« *1344. B4g m3 kg™ 1.

3.5.4.3. TRANS.DAT - Fixed transverse diffusion data

@gfS 44(transverse diffusion)0|| 44 X4lfiM4§* X||g44. 0|4S SB# 44 (through diffusion)oil 44 #AK>|| 4404 VANDAL0I44 fiA|@4. SSfS 44* 4S 47| 4 404 4@4g 33 4 MIM4* 444040i 44. 0|4S 4B3°fi &#L4|g# 40144 legSOtl @#44 *I3S fi?i3B leg#4 #48 444. ZLB4B 0| 41444 0ilO|Eib 01 @# legs Ai0|S| @B# 44* 44B4. 0| C4IOIE4* 444 AMIBfi* #404 fig 4#o|| 4404 4444. SB# S40| 544*1 Bg #go|| g 01 4Hg 5X41 44*4 ## 444* $#4040i #4. (Oi4 b B«H ot|A| 4$)

*** *** TRANS. DAT trans diffusion params.

*** Leg 1 Leg other Diffusion factor : (C4.28) (C4.29) (C4.30) Leg 1 Leg other Diffusion factor : (C4.28) (C4.29) (C4.30)

No more transverse diffusion = (C4.31)

»« *** TRANS.DAT trans diffusion params *** No more transverse diffusion : -1 (Terminator for transverse diffusion data)

(C4.28) @# path# *|-0|4 transverse diffusionOII 44 @4(source) path# Ha.

3 -35 (C4.29) Bg pathS A|0|d transverse diffusionOI CHS Sis'(destination) pathd «J5

(C4.30) SS pathS AfOld transverse diffusion® 7))BolS Oil Algdg multiplication factor, path mO)|A| path n7/|X| transverse diffusion rate® d# d o s soiad.

r, _ mn ~ emDmL„ + e„D„Lm

xm„ = path mO|A| path nSS multiplication factor

em = path md Qx-ll gd#

Dm - path md longitudinal dispersion/diffusion coefficient

Lm = path m2) transverse length

(C4.3D esm ss oioidd §gi 7iaj7is sal --r® bbsb ad.

3.5.5. BIOSPHERE data

VANDALOflA-) gO|7i|EBS DECOS-MGOII 7|SSd. DECOS-MGfe VANDAL tflO)|A-( S mm ee be bsee EE aid. decos -mgs de eebsss ds gj d oioid# see sd. SBdB see Aig@ oi oioid# rS° oi oid s

^s¥d ssddoi sd, 3. § dEa vandal AiEBd be eebsoi dm #d Old. 0|Bj 0|0|d 2l^§ BBE71 VANDAL0IA-) EE# gld0|0|E0| doll 0)x|dd Oiaei Bg ¥S0| VANDALOI doH SEBd. DECOS-MGS dynamic compartment modelSA-) d# o S71# ESSIE 7|B#B g oiTjid BA)g@j#d aoie ddBd. sss swoiiai bale gEd xwim ebbs 0| EEOJI ESdXI BEES Algxig EES BAlg-BB fiBBS* A)|#SO)0| S d. stye Aids oh eoib g oi Til* dd0)7i dsoi dds ##d be essoi xi@ ad. E71SB ESDI 7|© SO)BSOI 0)#SO) 2.E0II d5H X|@a ^E Sid. 0|£|

3 -36 ti BBB MjS)0|| C|| 6)0) BBPE EIIOIPE 7)PB 19^7)21 T4__VAN__KEYS 0) TIME4BBP 0|S 7ffe§fEK BP gs 0|| yyg SSaBS m 107|)pA| XI9B 4= BP.

3.5.5.1. INPCOM.DAT - Keyword compartment data

BE BS0|| cf|§|0) BSPE 5JBB 19 EM compartments) p°m SifS X)3E P.

**« *** INPCOM.DAT * $«* RIVER_ORIENTATION (C5.1) ; orientation (angle) of river relative to national grid DEPTH-SOIL (C5.2) ; depth of soil compartment DEPTH_RIVER_SED (C5.3) ; depth of river sediment DEPTH-GDS - MARINE (C5.4) ; depth of marine GDS compartments COMP_FAC_RIV_SED (C5.5) ; compaction factor for river sediments COMP_FAC-MARINE_SED (C5.6) ; compaction factor for marine sediments IRRIG (C5.7) ; indicator for preferred source of irrigation NUMB_GEO_DISCHARGE-COMPS (C5.8) ; number of geosphere discharge soil (GDS) compartments MAS_AREA (C5.9) ; area of water abstraction soil compartment NUMB_SOIL_TYPES (C5.10) ; number of soil types END*** (C5.1) BBtiPE ysj ygn) §3* (Easting) ti@0| 0|#E PE (0-180) * BPtiP. Easting t!§ 7)EBB E E0| 0)BE PB* A|?)| tic)) ti#BB I§S| P 180BE PB01IE B& P0||A-) 180# UUllB# tip. 0) E)|0|E-)E TIME4 A) Sii 19 EH7)1 BP (compartment) BE 7|# PPBP SSBE SO)5)

7)1 # EPBB TIME4 A|g#S) 2)E* A|)BS PE7)IB tiSPE PI 0|S@p.

3 -37 (C5.2) MS soil compartment (catchment soil, marine soil, water abstraction soil, ground water discharge soil, exposed estuary soiDS y0|# X|SBS. BSE m.

(C5.3) river sediment compartment (catchment river sediment B marine river sediment) S yo|g XIBBS. BSE m.

(C5.4) marine geosphere discharge compartments S0|# AI9BS. BSE m.

(C5.5) B SJSS01| SB compaction factor* X|gBS. 0| y £JS#S Bgj

ss (s ssbbm y sis#* ssbe) mss ss sseoii sb y sss s sses him ssss s, 01 b* ie ims bxi soioi mm, 01* y sjssoi B BSMMS g BSBS SSBS.

(C5.6) 6HS SSSOII SB compaction factor* SSBS. 0| Sx|* 6HS SSSS BSM7| SB MSS @5 SSSS SB SflS SSSS SS*S HIM SSBS. #, 01 Bxihr IMS BX| S010I sis, o|* SHS SS#0| j. B SIMMS B B#B# S □IBS.

(C5.7) 0| SOISM MSBS(water abstraction soil compartment)0||X-| SMS E 57H(irrigation) SMS 8 SSBS. 0| SOISSS* S(= 1)S S8( = 2)M S^B 01 SSBS. BS well/bore hole M¥SS BBBS0| MS* ##A|?|x| MB SB S

□ixi xiesMM ysM¥S smbs.

(C5.8) BBMSBS(water abstraction soil compartment)S SS( m2 )8 SSBS.

(C5.9) MSSE A|B||BBSA1 X|SSE Geosphere Discharge MS BS5S M (0 ~ 5)« sses.

(C5.10) SS71IM7I XISSSOI m MS ##S ME SSBS. B SffS MSS oHS

3 -38 SIS## 9\rn Oi P|y BByoi 8HS ^ oil AH sSTliay x|S@ SHSEP. L4PHAI a

S ###g T4KEY.DAT 2fg!0||AH SS/SS SB §b0|| C||0|EH2f yttStOtOt S

y. as ay, s, yoty ay mb ayyame oib ay ssyasaaEi tubs

y. ay ##y at yyAH time4 ay ## + iy ma# gsyyot ay.

3.5.5.2. INPDOS.DAT - Keyword dose data assay a as assy## yama yoiy* xusmy oi m#g as a# on y yoi assy, yyy mss son yet a y as (vandal ss sa -wilt overall dose as collective doseya ia§ta %i°y “BBBB”y yoyi oiya as sa aayy yiohs® ttam 7iissyoiy)s Aigxyi yssts ayma^y 7iyg#@ stay on sasy. ay §wi ay ess yes 7i# ay on ygyoiot ay.

*** UNIT DOSE FACTORS *** ****** INPDOS.DAT ******* *****$******************* NUMB_CRITJ3R0UPS; (LI) (C5.ll) ; (L2) number of critical groups

CRITICAL-GROUP (L3) (C5.12) (L4) number of compartment types for each critical group (C5.13) (L5) compartment type keyword in critical group

CLIMATE.TYPE (L6) (C5.14) (L7) climate type number KEYWORD-DF (L8) (KEYWORD stands for a compartment type keyword) (C5.15) (L9) [Chain No., Nuclide No.] dose factor

END***

oi 7iya ymy ys ese ya yyay aye sew. yoiy* yyys y 7t a #e yys oipi ass yy# stays yoiy.

(C5.ii) a soi %7\m. ms a sy aa~io)* yssy.

3 -39 (C5.12) oM-|2j EtO|| 4c 4B off-(compartment type)2| 4 (1 — 13) m X|gElB. 01 CH|0|Bc BS C5.13B e71|£|0| Sft 0j| AI Oil A | A|| 7||°| y^xjoj e}oj L3, L4, L571 B 51 0|#0H C5.110||A-| A|§£ *§BB2| 4Bg BBB

Til BB. yy BB2| @@ayo| oi eh 7ii°i E4#B bbbbb oi By#g B@B g b sbes saaci.

NUMB_CRIT_GROUPS 1 CRITICAL_GROUP 4 SOIL GDS MARJ3ED WELL CRITICAL.GROUP 1 SPRING

(C5.13) BB2J ^SSBm 44 2| ##(compartment type)* yA|@B. C5.120||AH ygg Hiy goi 0| By L5g L3 y L421 bmoh oieb. B 44 g sib y yyy eibe* aiaie bbsi 44 sbbb. 448 # 1571121 4 ebb. g 7H°i g#)g ygsife 44# bbbxi xiseibchi 01%

8 B4 8@#B B8S¥BB BB0| 44 B BBB BBB8 ^£5. XISE1EE epi b&oib.

(C5.14) 7|S §Bf y7igci. 714 BEll21 #ffg BE #gg 48 714 BE||#@ ¥^48 CHI A1SSB. VANDAL 2.0011 AHg 47|X| 7|4BEH(gfc4 01BB (boreal). EE 24, yep|)S BB S4 1, 2, 3, 4* ¥01401 4¥BB. HEHB @EA| By 714 #

#y@ aig©ion ^as be %!B.

(C5.15) 44##y EB(@B)yAi* ¥oisb. bbsi 714 b eh 011 mmoi b

E ECHE 4*1 ##21 QBS ti#(SB)yxie xiSHid. y Oil a I Oil AH ©1M°J 7|4 B EH0|| 8HB48 BB L6B L7 08HE EE1B8 EE 44##B BSyxigoi XH|A|E|0H0| SB. BE 714 #EH7l ZL 0I40HI BA| 74SBBB o|EHB aiy#o| BA I BEBOHOl

3 -40 BS fgoiq. eeb, §m°| ^iaj§ bbe afoi L80II 0|0H (*SQB^ X b

m L9 BPJOI B*BO|0| my. BB* (Sv yr-'f/CBq m"3)0|B. 0| BB®0|| BOIAHfe ajgei @BS|B spread sheet* B@@Hs B0| BBBB. BB BB^- BB B B#BB If BB*K Committed effective dose per unit intake: Sv/Bq)gB ICRP EE* IAEAB BBB* SIB 2t§§ AiS§i£s gcf.

£ 3-2. 0E||Til BBB Keyword

Compartment Name Compartment Type Keyword

Catchment soil compartment Soil SOIL

Marine Soil compartment Soil SOIL

Water abstraction soil compartment Water abstraction soil WAS

Geosphere discharge soil compartment Geosphere discharge soil GDS

Exposed estuary soil compartment Exposed estuary soil EES

River sediment compartment River sediments RIV_SED

Marine river sediment compartment River sediments RIV-SED

Estuary sediment compartment Estuary sediments EST_SED

Marine sediment compartment Marine sediment MAR_SED

River water compartment River water RIV_WAT

Marine river water compartment River water RIV_WAT

Estuary water compartment Estuary water EST.WAT

Marine water compartment Marine water MAR_WAT

Well water WELL

Spring water SPRING

3.5.5.3. INPCOR.DAT - Keyword correspondence data

0| BWB 7|*g TIME4 BBSB BBTil EcEESBB BBB TIME4 XISftB BeM

3 -41 E#mm# 9 98 *19 m* #oiE}* xiigm* 5101#. 01 ciioiei * @^1 9# on 9 m

ISScf.

geosphere network Ml# # bioreceptor node* discharge *1## #*|# 99m7| #

90} m## TIME4 points 9 9*1019 9E7| 9#. # 0|9# bioreceptor node7| §|

## TIME4 points 999 E SiP. 9E# TIME4 point#0| water abstraction soil

(WAS) geosphere discharge soil (GDS) compartments} 998#.

*«* *** INPCOR.DAT *

NODE-POINT (05.16) ; number of associations between TIME4 points and geosphere nodes (05.17) ; geosphere node, associated TIME4 point (in a pair in a line)

P0INT_MAS (05.18) ; number of TIME4 points associated with WAS compartment POINT-GDS (05.19) ; number of associations between TIME4 points and GDS compartments (05.20) ; TIME4 point, index of GDS compartment (in a pair in a line)

END***

(C5.16) *19711 kES2l TIME4 *1988# 99# E# ##9#. g EH 7115 9*fe8 ^islfe 9 *19711 EEfe J. 9 Ell71|71 n EE# 9*1* 99#9 *19711 IS 98 ### E#8 SSS E SUE# #7| ##0} ### TIME4 EE# 9 9#fe 5101 9am#. TIME4 *I9/*I971| EE 99# E8 1# TIME4 *I9E *}0|# 9E0| #.

(C5.17) *19711 EE ti£# 0|0|| 99#fe TIME4 point 9£« S #9011 9 ww C5.16011# *11*18 E99 9719#. *19711 EE# 9S8 1# *19711 EEE *10|# g E0I0101 9#. TIME4 *198 1# TIME4 *I9E *10|# gE0|O10| 9#.

(C5.18) 9E 59 E#(water abstraction soil compartment)# 998 *19# TIME4 *19# E* 8#9#. 01518 1# TIME4 *19 E *10|# SEOIOIOl 9#.

3 -42 (C5.19) geosphere discharge soil compartment^ °j Hy T1ME4 A|y°| rS tl^lel

El. geosphere discharge soil compartments] E2! t=0l01 SfCl.

(C5.20) geosphere discharge soil compartment SI 21 fl@ TIME4 point tiSSl geosphere discharge soil compartments] A] 5 (index) S El B12J 0]| El 05.19011 Ay

AllAig QgAygci. TIME4 pointfe m TIME4 point 7||E A10|S] gEOKHOf @

Cl. geosphere discharge soil compartments] AIEfe 121 geosphere discharge soil compartment A10|S] 3E(lietiS)0|010|: S1C1.

3.5.5.4. INPFLG.DAT - Debug data flags

0] 2}2jg Aye]]711 a ]|oy cy| 0|Eysi debug SHAIKH ciioiEyg eseiei. o| debug @eyg 7|]y Alg£]ul Ale]|oy9-* mi Ay EH 7]| oil Ay

2}aimEy 7mm xiiMfe hi Ai@# ee %m.

************************* ****** INPFLG.DAT ******* ************************* NSTEP1 (C5.21) ; Number of steps per characteristic time ■' first step NSTEP2 (C5.22) ; Number of steps per characteristic time : subsequent steps PARTIAL_C0MP_0UTPUTS (C5.23) ; Number of compartments (NC) ; Compartment type Keyword (repeated for NC lines)

OUTCOM (C5.24) Number of timesteps between compartment contents output (C5.25) Flags for summary data output (C5.26) Flags for debug data output DUMP-IN: (C5.27) Flags for activity dump after a glacial climate state

END***

(05.21) zj geosphere timestepO]] H] el 3 21 #H biosphere timestepS] zjQ|# 7110151

3 -43 E 01 -8.2.0 0101EHE.A1 characteristic time constant § timestep4 EE g4S 4.

y 01 Til 4 gg sgoil 01401 o| 44n|0E 55 ggcjotot 44 debugging 8| |

4 g#EE $Aiei7| 45HA1S 0| &18 g7lA|7|E 40| @8 EE 04.

(C5.22) 4 001 A|gB||0|ti 0|E biosphere timestep* OI04E 01 AIE4E

characteristic time constant 5 timestep4 EM A|g04. y0171|4 0g 80011 01 4

01 0| 4044E 5S 0040101 44 debugging #00 8H4 04EE SAI47I 4@H

AIM 0| 08 §7iA|7|E 510| #* EE 04.

(05.23) #040 OUTMOLES.DAT4 OUTDOSES.DAT71 EE 84 g^SOil 01401

yg# 40ai yyy gy@ b# ewsoi omoiy yg# 40 aim Aig04.

(00 INPFLG.DATOII 7|£|E PARTIAL__COMP__OUTPUT01 §103) defaultE BE 8

401 01401 *4# E04E 4014.

00 INPFLG.DATOII 44E PARTIAL_COMP_OUTPUTO1 080 #0E tig@ 84

*0il 01401 y ggaci. 0| 48 compartment type4 EE 0| 404 48 @01 44

04. 102 0IO1A1 my compartment type4 7I4E7I 0 yyoil 444 07140101

04.

(05.24) 0| 0|0|E1 0EE biosphere compartment S0O| A|E@I4 0 x18 019 Oil 22SS 71404. AISX^I 2j8H 884E biosphere compartment Mi yAigq @4 SEE 4 timestepOil 01401 #4 400 OUTMOLES.DATOil 7|#@4. 00 01 7I0E7I 040 compartment 60S g04A| 0E4. 00 0| 7I0E7I 04E40 E04E 0E (integer) E compartment @4# AI0I4 timesteP4 E* 71404. 0| 7|SS yg4E #04 4# #0|E AigxiE 4010 # 04 0El Aigs E 07il 471 00014. X|g@ E 0E 4E0E 0014. A|#O|O|0 timestep4 0O|E 0AigsH@ chainOII 44 4^4 E4. ZLB1EE compartment EE #0O| E04E A|0E chainOJI 04 4E7II 08 EE4O10 0 4.

(05.25) 0| flag®E 400 20 0|0|E1 4084 @0 01 EE #04E Ol AISE4.

3 -44 01 fi^S biosphere, sea picture EE T4KEY.DAT EH|0|E-|E pA| EOiE Eh vm ^IY4E7i sXIIEEiS om 5igj0| E<£!Sg. ygj 7|?4E7i 84 qg om s^gj

e tijggxi SEg. i/i94E. essie sg ggg sggE gg gg#g E#oii g

mo4E s 3-ss s_Egg.

E 3-3. INPFLG.DAT0IIA4 #g Keyword#

Keyword Input Files Summarized Output Files Produced

IOCOM INPC0M.DAT & SAMBIO.DAT 0UTC0M.DAT

IODOS INPDOS.DAT 0UTD0S.DAT

IOCOR INPCOR.DAT 0UTC0R.DAT

IOFLG INPFLG. DAT 0UTFLG. DAT

I0T4 T4KEY. DAT 0UTT4. DAT

IOSEA SEAPIC.DAT 0UTSEA.DAT

(C5.26) QAHg ggo ilM 0I CJ|0|E40)| SDS^E 7IES 0|§ 7fESW ggxi 6H g EjO|g. AHqgj E0|Eh 0i71A-|E =5jog Q ESS' 301 Eg.

0|# FlagE E-0ia Aiti=EjoS¥E4 OUTDBG.DAT 3143 fe4 04¥* I§8[fe ^0| g. (H@ AiM¥#E^¥gg @goi 33371 gsM# n AW¥@g oisoii gie ^e 7IY4E7I- INPFLG.DATOII gA|| 5^404 SG. 3 7|Y-IE7h #A||3X| &E3 #B thE E333 &EG. oig SeJGE 7I94EE UQ.

CKDS CMAR CNUM CORREC CTCOR CVOL DECAY DOSES BEST ERDEP ESTUAR EXPEST

3 -45 FLAGS FORC MARP MARSL

OUTRE OLD RADIN RIMARF RIVMAR ROTATE SCA3 SETIC SETCC SOILF SOILP

WATP WASFLX

(C5.27) y, yoiTH 5E5 5 0|g 7|g®l 8115 #o||A-j 01 hi yoi yspi 7|# y Ell Oil §>A1 #5@ 5A|g* UISI7I is #011 5* yojAIS tiSSIfe 71915*

symy. sHy 71915* yy river , estuary , marine oiy.

3.5.5.5. SAMBIO.DAT - Sampled Biosphere data

cl eh Tii yyniBis zl yoi *#*yoi y *#011 my 04 tiieyyyoi m ysoii

§m« xiisem.

*«* *** SAMBIO.DAT ***

*** GDS_AREA : AGDS GDS No. M**2 Seed (C5.28) Distribution : Distribution Type Distribution Values

SPRING : FSA GDS No. (0) Seed (C5.29) Distribution : Distribution Type Distribution Values

SORPTION : STKD Chain No. Nucl. No. Soil Type No. M**3/KG Seed (C5.30) Distribution : Distribution Type Distribution Values

END***

(C5.28) geosphere discharge soil (GDS) compartments 55( m2)* 9J5°IB|.

(C5.29) GDS compartment EH 55B55E1 HH 5 (discharge) 55 X|55 §0||A-| n|W s WI555 his* yysiy. ^*g yy 5554* #yyy at# sy y

£g 7iygy.

3 -46 (C5.30) 3019 £?} fWIS 3P9 «!§0|| SE appES X|9BP. PPE

n? kg~ l.

3.5.6. Sea Picture data - SEAPIC.DAT (Keyword Sea Picture data)

01 PHS 0424 sea pictured SQIti SHg@go|| SB SO|p* ti®BP. 0| S0|E4b iSdll BSP S7|0|| BB HE!P. 0| pgjg Full Biosphere 90 EE0||A4S go PB Simple Biosphere tiE0||A4B MiSSm. QXH KINS?! Pfe P90||g 0| pgJ0| ESP04 %(X| gfcf. BPA4 047|A4fe SEP PPEti 0| pgoil C4|0|E4P sta§y S474BP. tip XM4IS pge VANDAL S3 X|SA4°! “VANDAL

Version 2.0 User Guide. Volume 1 - Input and Execution ”® SEP7| PSP.

(C6.1) AplISti X4IS

(06.2) PH PS HA! 5Efe AIPIHt1 90 HX1 (day-month-year)

(06.3) marine compartment 37t|P BBS X|9#p PE (Easting, Northing)

(06.4) sea pictureP 3

(06.5) sea pictured gp 9x41 ESP

(06.6) SHB9P BBS X|pgp pE (Easting, Northing)

(06.7) 3 marine compartmentOllA4 g0|| gB BP. §1P 0|Sp compartmentOll SP01 0 3* 7L§J ^ Sip.

(06.8) 3 compartment^ @P x||p. pp 0|SP compartmentOll Spot 0 3® ?!

3 -47 U ^ SiB.

(C6.9) B marine sediment compartmentOIIA-| S]${gSj ygj 7||B marine water compartments] 9*j(2] x||B)0| 0°^ A|§@E|B 0| C1|0|E|S 0°^ X|gEjO| of met.

(C6.10) B marine compartmentOII A-| $]g(suspended sediment)Sj SS. gS goj g*j 0| 02! compartmentOII C|1S|0|# 025 AlSBOIOl gfE}.

(C6.ll) zj marine compartmentOII C||g E|Sjg BBfe m.

(C6.12) zj marine compartmentOII A-| £|BH AH^4° (resuspension) B-rl# m.

(C6.13) B marine compartment Ml BB@S| gB#

(C6.14) B marine compartmentSgE^ u|2.fe M #@42:. # compartmentOII CHB04

BCHtH BUB yen y#S| *&|±* ## AISBB. BBfe m3/yr.

(C6.15) # marine compartmentsg&l BSfe BB# #@42:. B0||A4S| #0| g BW 25 AISBEI. BBfe tor.

(C6.16) bed load movement, # marine sediment compartments gE| sea bed# H|

SI #5|0|fe OJ7J Ejxjgoj otg ^|0||A-|2| #0| g BUSS XISSB. BBfe tor.

3.5.7. TIME4 data - T4KEY.DAT (Keyword TIME4 data) o| 2|gjg TIME4* #SU0|| S|6H #°S A|@g 7|yoi| #x=| UBS C|4^S| BS|7|# ssi04 61 All# SSBS|2|§g AllgSIS 0IS4B BSI7I BggA|0|| CH87II s #@ P|A|fe7|* BSBEI.

3 -48 0| HfgJg Full Biosphere EE0||Aiy simple Biosphere EE0||AH dummy fileFl SP. 04 aW 0i7|A-|fe Simple Biosphere EE0||A-1 0|g7Hg dummy fileSJ gAiy OHAISq.

0| staijii mgg TIME4 User GuideOM xfAi|§| °jSSC4.

101 CASE TITLE TIKE4 Version 2.1 NULL TEST FILE 102 DATE 18-AUG-1994 103 NSIM 1 104 NPOINTS 1 106 NSOILS 1 107 NTERPT 1 108 NFLUPT 1 109 NREPPT 1 110 NL0WPT 1 111 NESTPT 1 112 NULLVAL -999.9 201 NUMSIM 1 202 NCLIMST 1 203 MINSEA -100.0 204 MAXSEA 0. OOOOE+OO 301 TIME 0 302 DURATION 1000000 303 CLIMATE 1 331 ERODEP 1 1 1 0.0 330 PERM 1 1 0.0000E+00 344 ENDTIM

3 -49 205 ENDSIM 113 END.

3.5.8. Intermediate output data - INPINT.DAT

CHSI01 °*£l* sy (Intermediate output)* g#SfCl.

*** *** INPINT. DAT *** *$« (LI) Indicator for time history or pdf : (C7.1) (L2) Run No. of time history or time-point for pdf : (C7.2) (L3) No data items for flow, vault, geosphere, biosphere : (C7.3) (L4) Nuclide name (C7.4) (L5) Indicator for element type : (C7.5) (L6) Element number : (C7.6) (L7) Indicator for intermediate output variable : (C7.7)

Note : Lines L4 to L7 are repeated for each data itms requested from the flow, vault, geosphere and biosphere submodels respectively.

(C7.1) time history EE* pdf (probability density fuction)7f gZi #&! # DS7) *X| # X| A| o>Cf. 1 = time history, 2 = pdf.

(C7.2) time history7l C7.10||Ai X|gg| S*. 0|510| gg# yS: pdf7l X|g b a*oii* pdfasoi a gsHojiAi Aig(yr)* yysiEi.

(C7.3) Flow, Vault, Geosphere, Biosphere a ¥£U§01| CH@10| &*SJ* §Ete4 cjioiEdgsi xiseici. * msKn m 57»si chioiei $oie7i siggEi.

(C7.4) (H* GW#0j| CHS101 Dllo|El $oie7|. S* je|*X| * ffijgsj 0I8S 7|Eld. 015!* All0121^01 INPCTL.DAT01I 5** 51(01.7)21 a* xigsioioi El cl. Flow ¥hhs¥ei°i #y@^oii msioi* y*#oi qgoii si*eixi at°Hs sH#oigoi xiss sssixi sci.

3 -50 (C7.5) C)|0|E| z OIK oil D|gl element type# X|A|«|E4. Flow VS'BIOII E||SI01, 1 = Leg, 2 = Node: Vault ¥ HI 0|| E|| @KH, 1= Vault. 2 = Backfill: Geosphere HH'SIOII E|| 8|04 , l = Node, 2 = Leg : Biosphere HEUOII E||#|04, 1 = GDS, 2 = River, 3 = Marine, 4 = Estuary. (GDS = Geosphere Discharge Soil)

(C7.6) gyeet mi 01 Ed IE oil HH^I# Element Number# EJSJ2.U}. 0||##Ol, C7.50||A-| X|A|sy element type0| “leg"£J §°, EL leg @2# Element Number-21 gjg X|gg 8Hg element typeOII E||§H S|@@ Sldl^t# MSHAlg °l@t4.

(C7.7) gglg^Ol HH^l# Brl Xigsihl. Flow HU0|| E||S|0t, l = Head, 2 = Flow; Vault EHOH EJISIOR 1 = Inventory, 2 = Concentration, 3 = Flux: Geosphere HH0|| EH@|04, 1 = Concentration, 2 = Flux : Biosphere H^0|| E|| g|0t , 1 = Concentration, 2=Flux, 3 = Flow. gyt 24§ X|tillS|# HE# §7tSE4 SflS # H 21711 ^7|| HSU H 21# HE# 71XIH %rn. Afgxffe as@ gyt e4 §#o| 1J#S0| 2lgx| xiiHSIoioi s m. Oils SO|, Flow HH^OIIA-I “Head”# node#0l|A|, "Flow”# legSOllAi X|S#Cf.

Qa|| vault flux, geosphere flux, A|| ?H2| biosphere #S2| -feftJ# vIB ■¥■ #01 #AH SIAiy HE oil 0|SH£|X|fe %#m. HB4HH HStMtT BA| ¥H1 HE0|| Ajfof ti7|e °1 0|foil01 AlgE|O|0l BP. (Flux S^g INPGEO.DAT0|| #&, flag# Atg§|04 ORHEL tiS 810IE H 21P. C4.4~C4.7S MEL)

3.5.9. EXECUTIVE data

01 mi01Edfe VANDAL A|E@I# HS5|# HEUS^I HSSOII EHSKH HE|jl H9B0| BMSBJl ttBBBS yyoil MIBOl VANDAL EXECUTIVE SEO|| §Mf S7| B 8H ioSIU. £§, EXECUTIVES BElB BB B3P|EI BSB 0||B4 n||A|X| BBS S SB 04 EXECUTIVE n XKUOI Bx|X|7|74E} A|EE1 Ml SBBSOlLl ###0|| °|6|| Sf ojEj oilB-lsoil BB04 y JIBED EXECUTIVES VANDAL MI ¥£IiS MWI74EI SSBS 3SOUS X|§BB £J BBS iSg BED oioil BB01S S# 10||A4 °j#BEf.

0| M|01El BBSS central E|a|^BOl| BEE B*l@in4 X|MIB#0||A4 ## MIS BE

7HB B# 30|B.

3.5.9.1. VANDAL.CTRL - EXECUTIVE command file

XISItiB Ni§ All BBS Ml AlSBS SgMiS EBBEL 0| gg BBS VANDAL AI SB oil Ai ZLBOI #24X401 rn SX4MIE, S3JI SB, xi#_ xjyoil MIB BBB ¥S oi|X4 ¥fii§2| 0|## EBBED

EXEINI EXEICT EXEIFL EXEIVA EXEIGE EXEIBS EXEIOF EXEIOI EXEINS xIF xRESULT = 'ERROR' xTHEN xEXIT xREPEAT EXETWP EXESAM xIF XRESULT = 'ERROR' xTHEN xEXIT xREPEAT EXESET xREPEAT EXETIM EXERT4 EXEFLO EXEVAU EXEGEO

3 -52 EXEBIS EXENSH EXEINT EXEINC %UNTIL (xRESULT = 'LASTTIME' %0R %RESULT = 'ABORT') EXEDOS EXECHN %UNTIL %RESULT = 'LASTCHN' EXERUN %UNTIL xRESULT = 'LASTRUN' EXEFIN %EXIT

3.5.9.2. DEFMODEL.DAT - EXECUTIVE Model Definition File

EXECUTIVES A|±@j@ aSSS aH/aBOII gmot aaia ag0| SB|S SMOll c||

mot woioi sm. oi sms vandal.ctrloii xiss mss mams m

Ot7|At models sectiong a £11011 SJSH AIgg ¥ficl§§ Ximscf. (submodel commandOllAt AlgS U|a) 0|g#g a ¥aUO| ^S a®2j 0|@J%I CHMOt

dM¥§ exmods amoi as van asms aaam eamotot sm. gangs asoi Model Definition Fiieoii uimt-ts mm me eAtuia EXMODOII utmmoi BCf. groups sectionS ¥fii§2| m§ 7ISS SS£At* X|SS m.

3.5.9.3. INPLIM.DAT - Input Limits File

vandal ai^hjoj input sis amoi s^mnsoiiAt gts mmniEtsoii emot oil m* masm. moiEtm mms swsi ms mams mm ammot oi ass ctioiEt

&mo\ a UlOlEi ssm mss moil %S7ie masm. sampled parameters oil cHmots xi§@ aam msm msoi mss amoii wot maaci. oime ais XI7I 12/1 tyge a %!S INPLIM.DAT E||0|Et ZfSS Samot ygj CtIO| Et smoi INPLIM.DAT CHI0jEt mgOII X|@@ oiEH)0|| WOf warning 5ES fatal error7l #m@Et. warning^! SS A|anS ?ll^£|Lt fatal error

3 -53 2| S^oilfe A|btyo| i I.

3.5.9.4. EXEC__ERRORS .DAT VANDAL.MSG (EXECUTIVE Error File)

0| 4SE8 EXECUTIVEOII 2|g|) EEb A|#|go, br^B/BEOII SjSH SEJb Oj|E4S @ @BBb Dj|A|X|e SSW. Zt OIIE-I D||A|X|b *($$$)’£ BSBb 5H4S flagO|| 2|§H ZLEiJL D||A|X| 0|soil 2|S104 SWB4. bVSb 0||E4 D||A|X|b 4S 0||E-| flag2| Dll AI X| OISOI 9|X|AM@ 4)771X1 OIBHOII 4IB54b EI°JSS BSES.

3.5.9 5. ERROR .DAT

BB m gSHjij. eea Oil EH SOI 7|S£|b 5lgjO|L|

3.6. UlSAjpi pie* og

aW2| Aieny^oii VANDAL# ¥gsi7| 91 anxy# o| * 4011x4 x|#;;ix| eis SB ssss eiemoy shb siainisssi yoi ^oyoi ma. @11421 sai ^pi gxygAisoii cu@ioy gx|2| ais aaiJL xis s)i7|g°i sboii disf §mi sssui ^!S«f SS-Baie 74x4 SgB 7|g@|#C4| Ete AIM tBoil w|@is o| *IS s dh # bbs 30124 m s gm. nsyui sim aibhssoii msioi sb ei *41 eo , C4I0IE4 2IBB0I $Hia 01© SB 2IE4PIE4S] SSI ¥¥¥B BsIBS ¥¥Slb 3¥o||

E £§ SSSS SB4P|E4g# SSOI xllBEBb 38 ARS| XISSlJl ^axjpj *fS o| fi 30IE4. OIE4B gxyiae Q± m±m?\ BS104 @H42| SB0| SBS o|f SSI 3BES ¥ gib M¥B SB 8§o|| m@I04 xliaai SS7I Sb 4S0H4 2ia)n|E4 S® b 3-4011 SaiBB. 0|E4B ogg ^g>S A|@@i¥S §S§ #@|04 sfBBE #

¥21(401 EH4b at 4211 kh 0| ¥¥0)| A|gx|gs XISBS BBS 710474 o?@

BH @1414.

3 -54 3-4. c||££jeJ 9^ 5|qj moj og

yg my yu sty fa et£i Mm

eg 3.3S A|gs)ioie mviMm gg a |-®j- INPCTL.DAT s*ii tm OI-EH HE yg ## INPGEO.DAT - 04.1. 04.2, 04.3 TIME4-VANDAL 91 TIME4 Sg INPCOM. DAT - 05.1, 05.10 INPCOR.DAT - 05.16-05.20

INPFLO. DAT - 02.15 - OUTFLOW. DAT yy ga SjAl INPGEO.DAT - y*ii yg - / ms INPFLG.DAT - 05.23-05.26 - yenTii ee eg INPINT. DAT - dm yg - sgxfy INPVAU.DAT - 03.2, 03.6, 03.7, 03.11-03.13 - SOURCE-TERM SAMVAU. DAT - 03.18, 03.24-03.26, 03.29 - SOURCE-TERM, Kd INPGEO.DAT - SMI #§| 04.19 - o°HE SAMGEO. DAT - 04.27 - X|1 Kd INPDOS.DAT - 05.15 - yimyem INPFLG.DAT - 05.24 - #g yy xn SAMBIO. DAT - 05.30 - yen Til Kd INPINT.DAT - 07.4 - die INPFLO. DAT - 02.11-02.14 - X|S^©E L||ES| SAMFLO.DAT - 02.27, 02.28 - Resaturation X|g VAULT 19 INPVAU.DAT - dm - 9SE #y SAMVAU. DAT - dm - 9SE #y INPINT.DAT - 07.4-07.7 - EZlSg x|y INPVAU.DAT - 03.1 - Waste Form 41 WASTE FORM SAMVAU. DAT - 03.17, 03.29 - y@m, si#xn^# nyyy INPDOS.DAT 05.11-05.13, 05.15 7H^, gg, yyyxF

3 -55 (0|£7H OM)

3 -56 4. VANDAL *±m

VANDALS t4S yp SSSfb case data directoryyo||A-| Olgyx^Ot

SIP.

- INPCTL.DAT - INPFLO.DAT - SAMFLO.DAT - INPVAU.DAT - SAMVAU.DAT - INPGEO.DAT - SAMGEO.DAT - TRANS.DAT - INPCOM.DAT - INPDOS.DAT - INPCOR.DAT

- INPFLG.DAT - SAMBIO.DAT - SEAPIC.DAT (Simple Biosphere0|| CH§H*1fe MSSS^Cj-) - T4KEY.DAT (Simple Biosphere 0|| C|] ®H Af g dummy file St ijSS|-Ct)

- INPINT. DAT - VANDAL. CTRL - DEFMODEL. DAT - INPLIM.DAT

- EXEC_ERRORS. DAT

DlX|y m pyg X|^ umfe %0| OIHHS 6H4P central default directoryS¥Et 01 pygS ¥1 ^ 5US# PP yp. yy xigxpl 0| default file** AlgpB=| »t py 0| py§* case directoryOII 7|@ @&7| ftp. PBiP y^ A|gX|7| pg py i§ A|@pB^ °lpy case directoryOII PsO| central directory^ P g- override 61711 EjC|.

g@0|| Sp7f7| PoHXig gsy Sgpy yg directoryP promptOJIX^ g#py Si poippy. yysiy gp. oi y#m# ypaiy #xi y g@oi Aipgp. VANDAL.CTRLOII yg S@01SO| zjz| X|@0|| gsHgOII [t|B| P ygOpl Q^EH PP

4 - 1 you g 3*211 0| gg. 333^0| A|3!U $ prompt? I g3*21|0| gt[.

ggg vandal r§i mm oimoi mm 3 %g. oiy 300110 gg n A^i;^ y^goi%g 5igm mgg oia 5m m^Ei Aig* n^m 0 §10 %0| ^§sw. OIW^I §121 @ INPCTL.DAT data fileOJIAH g# 0 gy □|E4g gsy ao| 3x|y gg.

(1) mm «0. 0151s sv-ys 00 ^§sp. (01510 INPCTL.DAT01IA4 0 g«H H|0|Ei H=-0|g) (2) 7110510 A(-3=1104| me *13. 0011 Ad 10 ysmg. (01510 INPCTL.DATOMA4 g g*H d|0|El H0O|g)

gang Aleiiy3S¥E4 M0 §yyi!g0 y^gglS 71X13 %0 directoryOII &0101 mg. aibi|71 711011 tq| ti7igy @g yoiyg ggy eg mg sou append gg.

4-2 5. VANDAL M

5.1. S^j x|g

VANDAL Al^iyg §|U|2| rng A^BEOII H|8|01 BB @B H|0|El# 4ffS E

%m. oi tHioiEife aiebhioiei, heb eh ciioiEi, b sbe moiEie sss

D.

Hen VANDAL SB oil q|g HBB = eHBH|0|Bg PRA @B HBEEB VANT40II B SH HI SB EH B01 51014 si*H KINSOIHIH 0| EVl 0|g# E 5XP. SB1B 0| EE b es 9X01 e e^Buse ye§i s eh 5m. oi5ie hbbb H#on %Ai

S X1IH8PI ?|8H ijBBBB HM 5HEH SEOII #@| ^gsm. VANDAL *B@ 8E8IE 9 B71IE B#El go)|Al A|S||BE directory^. SOpfe ^ 0|C|. gglBBB BBBBS HS AMiyy directoryOII EHBB.

5.2. 31 BW Ai#

ebbub oigB j. hh* sbhs bsb aq.

(1) INPSUM.DAT bbbbb fie* (2) SAMSUM.DAT sampled data SB (3) OUTPATH.DAT §E HE EIIO|El (4) OUTJUNC.DAT BBS (junction)OilAl°j HE H|0|E| (5) OUTFLOW.DAT flow @B HI 0| El

(6) OUTFLUX.DAT bss bslsoiiaib §ma @4 (7) OUTPEAK.DAT s|3 HB @B HI01El (8) OUTDOSES.DAT BBBB @BH|0|E1 (9) CONDOSES.DAT BBHBSBB SB (10) OUTMOLES.DAT EH (compartment) BB HI 01 El

5 - 1 (11) RESTRT.DAT : restart Ul 01 E-| (12) OUTTOTAL.DAT : # IK totals) U|0|E) (13) MASS. OUT : ii2'^(mass balance) #mU|0|El (14) TIME.OUT : timestep E)|0|E) (15) OUTCOM.DAT : ^EH7)| yej ogtmoiEH (16) OUTDOS.DAT : yjEJlTil &'54 ootmolEi

(17) OUTCOR.DAT : ^ejitji ym synnoiEH (18) OUTFLG.DAT : oEH7)| ym &yE)|0|E) (19) OUTSEA.DAT ^ Ell Til ys) OOtmOjE) (20) OUTDBG.DAT : ^ EH 7)| debug CH| 01E) (21) FLOGEO.DBG : flow/geosphere debug E)|0|E) (22) XFLOW.IOP : §UtE4 . (23) XVAULT.IOP : §Ufe4 (24) XGEOSP.IOP : §Ufe4 (25) XBIOSP.IOP :

OjS4 7H21 DIIOIEJOII C\\m g^Ollfe @^^#0| EgEl %) a ysoil S15H ^ %ct. OilSECH, OUTDOSES.DAT: l^ OUTDOSES.DAT;2M feem. pi^ws, stwoi aa# we* ggg ygy&st chmch Mgsi jl ah #A|gg oigg aay mag fflgsi ma ysMy ^g ays gas m.

E 5-ion zf mgg. gajsm.

5-2 S. 5-1. VANDAL #&! 2HJ2J ##

Summary Output Files Output Files produced Output Files produced

for Run 1 Only throughout a Stochastic Run

INPSUM.DAT MASS.OUT (1) CONDOSES.DAT

OUTCOM.DAT (1) OUTFLOW.DAT (1) ERROR. DAT

0UTC0R.DAT (1) OUTFLUX.DAT (1) OUTDBG.DAT (1)

0UTD0S.DAT (1) OUTJUNO.DAT (1) 0UTD0SES.DAT (1)

OUTFLG.DAT (1) OUTMOLES.DAT (1) OUTPEAK.DAT

OUTSEA.DAT (1) OUTPATH.DAT (1) SAMSUM. DAT

0UTT4.DAT (1) TIME.OUT (1)

OUTTOTAL. DAT FLOGEO.DBG

XVAULT.IOP (2)

XGEOSP.IOP (2)

XFLOW. IOP (2)

XBIOSP.IOP (2)

(1) agsffe g^oiiy agsife §a ^qj

(2) m®Si\ S^OII m ^ Si oil NISKM

5.2.1. INPSUM.DAT : VfVIV) oot

^ms\jl Aieiig^e aissh= mss gj^moiEiE a^ew. ^ssn aife ^a

§Mfe EfgHf U^.

- A||S, AISEllOlti 7|y

- yA^tijg A^O) r- QJ Z| A^w ffljg e, S|g 0IS2} yy7|

- MiMq A' w gg a@a hs

5-3 vault E, 54 vaultOII SSI, Zf vaultO||A-| z| ^ZlggEll^ eg- zf vaultm ES AIM, zj §521 HO| %! yzj

*** *** INPSUM.DAT *** t**

i-129

SUMMARY OF VANDAL INPUT DATA

NUMBER OF RUNS : 1 SIMULATION TIME LIMIT (A) : 0.150E+06

NUCLIDE INFORMATION

NUMBER OF NUCLIDE CHAINS : 1

CHAIN NUMBER : 1 NUMBER OF NUCLIDES ON CHAIN : 1 NUCLIDE NAMES AND HALF-LIVES (A) : 1-129 0.157E+08

PATH INFORMATION

NUMBER OF PATHS IN THE NETWORK : 92

PATH NUMBER FROM JUNCTION TO JUNCTION

1 2

91 14 52 92 16 52

VAULT INFORMATION

NUMBER OF VAULTS MODELLED : 9

VAULT NUMBER : 1 PATH FOR VAULT : 69 SUBDIVISION FOR VAULT : 3

VAULT NUMBER : 9

5-4 PATH FOR VAULT : 74 SUBDIVISION FOR VAULT : 2 DRUM INFORMATION

VAULT NUMBER : 1 NUMBER OF DRUMS IN VAULT : 28109 WASTEFORM 1 VOLUME OF DRUMS IN VAULT (M3) : 0.166E+02

VAULT NUMBER : 9 NUMBER OF DRUMS IN VAULT ■' 12136 WASTEFORM 1 VOLUME OF DRUMS IN VAULT (M3) : 0.430E+01

PATH DIMENSIONS

PATH NUMBER LENGTH (M) CROSS-SECTIONAL AREA (M2)

1 0.118E+04 0.336E+07 2 0.177E+03 0.250E+07

92 0.546E+03 0.124E+06

5.2.2. SAMSUM.DAT : sampled data RSf

AI^Eijo, ^sy0„ q|8W Mjgsjaj 2|ain|EH52l Hgs| oots xtlSBch

- THIS

- 5|ain|EtS2| -SgaJEj 2tEtn|Ei°| identifiers! array g|x| - ^sht 2( mm, -yess statn^ u. ®mat # e!S tiSWSI S¥0||fe Bg glsHoj m#0| U7\ ffHSOII mm&S 0BB ^OtgiEf. Importance SamplingOII E||@10tc s###0|

*»* *** SAMSUM.DAT *** *ss

i-129

5-5 NUMBER OF SAMPLED PARAMETERS : 7

PARAMETER SPECIFIERS WDLR 1 1 VKDL 1 1 VKDH 1 1 VRK 1 1 EP 6 RK 14 RKD 111 RUN 1 PROBABILITY O.OOOOOOE+OO

PARAMETERS 0.9995832E-01 0.8557626E-02 0.6526551E-05 0.6756031E-02 0.6242192E-02 0.2071023E-02 0.1255266E-05

PROBABILITIES 0. OOOOOOOE+OO 0.OOOOOOOE+OO 0.OOOOOOOE+OO 0.OOOOOOOE+OO 0.OOOOOOOE+OO 0.OOOOOOOE+OO 0.OOOOOOOE+OO

5.2.3. OUTPATH.DAT : feE d|0|E)

SSl-H e^o M 35011 cc|E yx^aj#o| ^eo ]| sm SMS x||geE|. o| fl|0|E|°|

xil a I OIEfe SJ3SS! INPGEO.DATOIIAI gg. SM C)|0|E| A|A|7| (indicator) 0)1 2|S|OI

asset, oi moiei Ht&jg ^ois A^isf°i s e#n s#oii cue smss m^s

E|. ESSIE gife SMfe XIIs. X|gx|7| SSS timestep 330||AI ggcH ^Hf(m3

/yr)2| 350)| tt|g zj gf (subdivision)M) @1# SM (moles/ m3) #0|E|.

««« *** OUTPATH.DAT Radionuclide cone along path ***

RESULTS FOR TIME = 0.846E+03

CHAIN 1 NUCLIDE NAME = 1-129

PATH NUMBER = 2 FLOW RATE = 0.528E+07 M**3/A

DISTANCE CONCENTRATION MASS (M) (MOLES/M**3) (MOLES)

4.653 4.1871E-19 1.9707E-12 13. 958 4.0901E-19 1.9251E-12 23.263 4. 0338E-19 1.8986E-12 32. 568 4.0137E-19 1.8891E-12 41.874 4.0222E-19 1.8931E-12 51.179 4.0506E-19 1.9065E-12 60. 484 4. 0905E-19 1.9253E-12 69.789 4.1341E-19 1.9458E-12 79. 095 4.1753E-19 1.9652E-12 88.400 4.2093E-19 1.9812E-12 97.705 4.2332E-19 1.9925E-12 107.011 4. 2454E-19 1.9982E-12 116.316 4.2458E-19 1.9984E-12 125. 621 4.2351E-19 1.9934E-12 134. 926 4.2152E-19 1.9840E-12 144.232 4.1882E-19 1.9713E-12 153.537 4.1563E-19 1.9563E-12 162. 842 4.1139E-19 1.9363E-12 172.147 3.8263E-19 1.8009E-12

5.2.4. OUTJUNC.DAT : m ©S (junction)0||A-|£| d|0|EH

0| afSJ°| OUTPATH.DATS) #A^Ch 0| P)|0|E1S| X||A| gj INPGEO.DATOilAH Sfg 0|0|E1 A|A|7| (indicator)0]| °moi SSM. E S. OI CHI0IE4 ygJE 5^01 y AHHIS^-aj % SWI y 19 oil q|°f §>iDJS te ywyoii ojls aiss iego« ymoi, moles/m3 s\ ^yycf. issn Stife Ail ay AfgXpl^ yym timestep Zi^OllAi X|g@ StfSO||A-|°| ®jg fe£0|cq.

tt: OUTJUNC.DAT ***

i-129

RADIONUCLIDE CONCENTRATIONS AT JUNCTIONS TIME JUNC PATH CHAIN 1-129

0.1095E+03 2 27 1 0.000E+00 0.1095E+03 3 29 1 0.000E+00 0.1095E+03 4 31 1 0.000E+00

5-7 0.1095E+03 5 32 1 0.175E-18 0.1095E+03 6 2 1 0.OOOE+OO 0.1095E+03 8 35 1 0.000E+00 0.1095E+03 9 36 1 0.155E-13 0.1095E+03 10 36 1 0.849E-17 0.1095E+03 11 37 1 0.262E-18 0.1095E+03 12 4 1 0.000E+00 0.1095E+03 14 41 1 0.000E+00 0.1095E+03 15 76 1 0.208E-10 0.1095E+03 16 42 1 0.107E-17 0.1095E+03 17 42 1 0.292E-18 0.1095E+03 18 6 1 0.000E+00 0.1095E+03 20 41 1 0.000E+00 0.1095E+03 21 48 1 0.292E-15 0.1095E+03 22 48 1 0.107E-15

0.1396E+06 49 80 1 0.632E-06 0.1396E+06 50 88 1 0.194E-10 0.1396E+06 51 90 1 0.201E-10 0.1396E+06 52 92 1 0.282E-10

5.2.5. OUTFLOW .DAT : flow CH|0|Ef

0| 2fej°| 7|gg oi #go| A|gS||0|Sg 5 SOI ys rtH 5f M|E^m SS31 SM &10II && SMB Alls SIS 90|q. 0| d|0|EiSl All AI Of Mb INPFLO.DATOII Af 5i Cf|0|Ef A| A17| (indicator) oil 2|§KN #SSE1. 0| Cf|0|Ef mi!8 ^OfX| A| mysm s y«n s@oii ms ssy@ Msmm. oi mss a ^ism A-um, it yg m AIS, zj g| SMOII ms SB (Darcy) &t ( rnVyr), S SB 3M0JI mS 4M (Darcy) « (m/yr) #0|| SS SMS MSSFh SB MS ^M2| g(-)S| gg §SS| ysoii ym sssm sbs 7iajym. ggm wss inpflo.datoiia-i Aigxioii °|5H

Aigym.

*** OUTFLOW.DAT *** t:: i-129

FLOW CALCULATIONS FOR THE NETWORK

TIME OF FLOW CHANGE 0.000E+00

5-8 FLOW PATH FL0WCM3/YR) VELOCITY(M/DAY) 1 0.93935E+04 0.76450E-05 2 0.52820E+07 0.57845E-02 3 0.44455E+04 0.80871E-03 4 46150E+05 79969E-02 5 0.32152E+03 0.69918E-06 6 21626E+07 10135E-01 7 0.68620E+05 0.14052E-01 8 95587E+05 16564E-01 9 0.15403E+04 0.46829E-05 10 27081E+07 62621E-02 11 0.85235E+04 0.19128E-04 12 51622E+05 - 47111E-02 13 0.17898E+05 0.15087E-04 14 21949E+05 17082E-04 15 88792E+05 66421E-04 16 11074E+06 16310E-03 17 11150E+06 16298E-03 18 88792E+05 12695E-03 19 - 97462E+05 13869E-03 20 31482E+05 16861E-03 21 34674E+05 16186E-03 22 0.35790E+05 0.23330E-04 23 32792E+05 21376E-04 24 -.22093E+06 14402E-03 25 0.23100E+05 0.21018E-04 26 93935E+04 18318E-04 27 13706E+05 26042E-04 28 0.30658E+05 0.29607E-04 29 75581E+04 39956E-04 30 0.28618E+06 0. 30287E-03 31 25552E+06 11349E-02 32 49958E+07 65632E-01 33 0.10339E+05 0.18783E-02

89 0.26072E+02 0.17326E-05 90 83796E+02 55685E-05 91 0.24602E+03 0.54495E-05 92 0.75005E+02 0.16614E-05

5.2.6. OUTFLUX.DAT : £mS04|Ai°l

0| 5tgJS| 7|feg we L1|E£|0||Ai AlS^SgOil 7|S§K)4 tiSS gJA^ffij

# *sj±0|| Xllgsfe aoicf. 01 C4|0|E4°| All AI 04 INPGEO.DATOIIA-| yA^sijg A|A|7| (indicator)0|| 24^04 ^S@C4. 0| C4|0|E4

5-9 BEE ^OIB Oj y«|| »J8M0|| q|@ gyuff y#BB. 0| mg A|q|oj?

All#. A|@X|7| BBB Umeslep BH0||Ay A|gci BBB0||A|B *^(moIes/yr)

#011 es StiE MBB.

t:s *** 0UTFLUX.DAT *$$ FLUX VALUES AT SELECTED JUNCTIONS

RUN : 1 CHAIN :

TIME NODE FLUX 1-129

0.20200E+02 6 0.000E+00 0.20200E+02 12 0.000E+00 0.20200E+02 18 0.000E+00 0.20200E+02 24 0.000E+00 0.20200E+02 30 0.000E+00 0.20200E+02 35 0.000E+00 0.10950E+03 6 0.240E-12 0.10950E+03 12 0. 918E-27 0.10950E+03 18 0.120E-20 0.10950E+03 24 0.193E-18 0.10950E+03 30 0.000E+00 0.10950E+03 35 0.000E+00 0.24297E+03 6 0.954E-11 0.24297E+03 12 0.107E-25 0.24297E+03 18 0.126E-19 0.24297E+03 24 0.164E-17 0.24297E+03 30 0.000E+00 0.24297E+03 35 0.000E+00 0.40568E+03 6 0.343E-10

5.2.7. OUTPEAK.DAT : 2|3 B0 CH|0|EH

0| 3|gj2j 7|#g #EJJH|01|A-i Z| gSEjgoil ms S|H BBCSv/yBB A|yo|| @@ SM

e HiSSfE %0|CK 01 t||0|EiE a|EBB B M^Z} B@o|| moi ##@4. Sifm JL 91b: HI#. B Egg Boil cm @|# 2|3 BB BHE @1## ##), z|

BBOII cue s|B BB0| iHBiHfe A|B #0|B.

5-10 *** OUTPEAK.DAT *** *** VANDAL Version 2.0 ***

i-129

PEAK DOSE FOR EACH CRITICAL GROUP

RUN 1 CHAIN 1

TOTAL TIME 1-129 TIME

CR.GP 1 0. 270E-07 0. 785E+05 0.270E-07 0.785E+05

5.2.8. OUTDOSES.DAT : QBtiW 5^H|0|EH

IS9B tii,t(Sv/y)0|| DIE All S SIP. o| Ci|0|E^ gg INPCTL.DATMI E1|0|E| °JE|?||0|E|0|| 21811 SSSEj. 0| A^|»j^m z| Ajgoii mmoi ggam. A^§xp^ age AmoiiA-i z^ @i#oii qim maaa a a. Af@xM aae AiaoiiAy agge Aigg

INPCTL.DATOIIAH A|g@Eh

*** OUTDOSES.DAT *** *** VANDAL Version 2.0 ***

i-129

DOSE RATES(Sv/y) FOR THE SPECIFIED CRITICAL GROUPS BY NUCLIDE AND SUMMED OVER NUCLIDES

RUN 1 CHAIN 1

TIME(Y) GROUP SUM 1-129

0.00000E+00 CR.GP. 1 0.000E+00 0.000E+00 0.10000E+03 CR.GP. 1 0.000E+00 0.OOOE+OO 0.20000E+03 CR.GP. 1 0.000E+00 0.000E+00 0.30000E+03 CR.GP. 1 0.787E-18 0.787E-18 0.40000E+03 CR.GP. 1 0.153E-17 0.153E-17 0.50000E+03 CR.GP. 1 0.249E-17 0.249E-17

5-11 0.60000E+03 CR. GP. 1 0.413E-17 0.413E-17 0.70000E+03 CR. GP. 1 0.643E-17 0. 643E-17 0.80000E+03 CR.GP. 1 0.989E-17 0. 989E-17 0.90000E+03 CR.GP. 1 0.149E-16 0.149E-16 0.10000E+04 CR.GP. 1 0.199E-16 0.199E-16 0.11000E+04 CR.GP. 1 0.286E-16 0.286E-16 0.12000E+04 CR.GP. 1 0.383E-16 0.383E-16 0.13000E+04 CR. GP. 1 0.564E-16 0.564E-16 0.14000E+04 CR.GP. 1 0.812E-16 0.812E-16 0.15000E+04 CR.GP. 1 0.174E-15 0.174E-15 0.16000E+04 CR.GP. 1 0.355E-15 0.355E-15 0.17000E+04 CR.GP. 1 0.991E-15 0.991E-15 0.18000E+04 CR.GP. 1 0.174E-14 0.174E-14 0.19000E+04 CR. GP. 1 0.280E-14 0. 280E-14 0.20000E+04 CR.GP. 1 0.425E-14 0.425E-14 0.21000E+04 CR.GP. 1 0.622E-14 0.622E-14 0.22000E+04 CR.GP. 1 0. 903E-14 0.903E-14 0.23000E+04 CR.GP. 1 0.136E-13 0.136E-13 0.24000E+04 CR. GP. 1 0.221E-13 0.221E-13 0.25000E+04 CR.GP. 1 0. 287E-13 0.287E-13 0.26000E+04 CR.GP. 1 0.515E-13 0.515E-13 0.27000E+04 CR.GP. 1 0.920E-13 0.920E-13 0.28000E+04 CR.GP. 1 0.121E-12 0.121E-12

5.2.9. CONDOSES.DAT : SB SB

0| BBB 7|#g ViBEl SB°5 critical/collective gBtiB(Sv/y)0|| §MI Xfl SBE yo|Ci. 0|5!g VANT4 Output Analysis tooKHI BBSS Alg^stfe °|£0|B. oi bbs sb bsbb, 6.3.moiiAi bbbe bb bo i, bus b aa 01IA-1 #711B EBB CHBOI £|b BtiBB VANDAL 580IB. 0| BBS B# §bf $S£B.

- AMiBf x||#

- A|ga||0|E AIB AIB (yr) - SBOII mm S 8 (linear) Efe SB SBB A|y ZPA - B timestepOII c||® B(row)B S (SB@ TimestepB #)

- BSSBB S

- ASoilAi A|#B S

- 5Boi tiseiAi sneixioii cue aiai

5-12 - Zf Z4# (chain) 4^

- 0|# - Ai@AfiA|@ A|/joim Zj qgoil u||g

tiiKM fi^Sjfe A|yg INPCTL.DATOIIA-I A|@@4. fiejA|7J® A|SS) cil 01 EH fir 01 DJ|0|EJ

i-129 DOSE RATES (Sv/y) FOR THE SPECIFIED CRITICAL GROUPS BY NUCLIDE AND SUMMED OVER NUCLIDES 0.OOOOOE+OO 0.100000E+03 100 1 1 0 1 1-129 RUN 1 CHAIN 1 0.000E+00 0.OOOE+OO 0.318E-16 0.105E-15 0.205E-15 0. 332E-15 0. 551E-15 0. 857E-15 0.132E-14 0.198E-14 0.265E-14 0.382E-14 0.510E-14 0. 779E-14 0.119E-13 0.292E-13 0.671E-13 0.207E-12 0. 374E-12 0.611E-12 0.937E-12 0.138E-11 0.203E-11 0.311E-11 0.514E-11 0.673E-11

5-13 5.2.10. OUTMOLES.DAT : 94 (compartment) 84 H|0|E-|

01 88E cl Ell 741 8 Xigg 94 ###oi|8 @|##8 MISMoii ee gyg xi|§S8.

0| CilOIEiS) #8 049c 44 944 INPFLG.DATO||Ai 94 MlSi CH|0|EH °J8?II0|E4

Oil SjSH IS@C|. #48 INPFLG.DAT0IIA4 ?|4E PARTIAL__COMP__OUTPUTOII °|8H

ISEIfe 498 94 9WS0II EH@104 EE EE 94###0|| Efl804 9*89. MIS

§g S B45. 90498. BE BE 9ME 884 #8. - 83149 X4IE

- 8 timestepO||A4 9 4 #0|| Ef)°4 94 4SS

*s* *** OUTMOLES.DAT ***

1-129

Contents of each compartment type (moles)

RUN : 1

TIME(Y) TYPE TOTAL BY NUCLIDE

CHAIN : 1

1.00201E+02 4 6.048E-09 1-129 6.048E-09 1.00201E+02 22 0.000E+00 1-129 0.000E+00 1.00202E+02 4 6.048E-09 1-129 6.048E-09 1.00202E+02 22 0.000E+00 1-129 0.000E+00 1.00203E+02 4 6.048E-09 1-129 6.048E-09 1.00203E+02 22 0.000E+00 1-129 0.000E+00 1.00204E+02 4 6.048E-09 1-129 6.048E-09 1.00204E+02 22 0.000E+00 1-129 0. OOOE+OO 1.00206E+02 4 6.048E-09 1-129 6.048E-09 1.00206E+02 22 0.000E+00 1-129 0.000E+00

3.49137E+05 4 2.697E-07 1-129 2.697E-07 3.49137E+05 22 0.000E+00 1-129 0.000E+00 3. 49688E+05 4 2.691E-07 1-129 2.691E-07 3. 49688E+05 22 0.000E+00 1-129 0.000E+00 3. 50000E+05 4 2.687E-07 1-129 2.687E-07 3. 50000E+05 22 0.000E+00 1-129 0.000E+00 3.50000E+05 4 2.687E-07 1-129 2.687E-07 3.50000E+05 22 0.000E+00 1-129 0.000E+00

5-14 5.2.11 . RESTRT.DAT : restart HI0|t{

oi tiiold 444 /|::; - vandal aibboi 0134 Aiui 34^.451 aiuibbb xibii (restart)# E 9BH @14 4 BE71 BE40|%g 3^1# 4 %g B@S 48H 7114# E %E4 48 SE# A||g@i8 3014. o| 7|Sg 4=## ##47| 4o« 4 %S #0

01 ogddd Old Aid# #011(011; 34 MAj)7f mAM41= g° 0|| SS44. 0| Clio|

4 4B8 EB 01301 0134 SBBEB ES4E 44 A1BBE4 BBS 444 E

DIE g@ai4. 0I3S AI4B9 44E40||A1 g@4 "$TYPE RESTART.DAT”B #4

#o|| 4 8 || 4B»21|0|# E Si4. 0| 44 0| 7|X|jl Sife SEE 4S4 #4.

- o|34 BE

- 0134 3 v'i random number seeds - tilH44 B4°l#4 BESS 4##|7| 4 B Normal/Log Normal samplingOII A|-g

B 0134 run uniform variates

5.2.12. OUTTOTAL.DAT : @B (totals) U|0|E1

0| Clio|El 4114 71#8 4E #4 444 4B#0| *4 E#47|A|0|| 48H SS4E E @71# E 91 EE 44B A|3# 4444#4 3A|| E4o|| BS 3Eg X1I44E 3

014. A10X171 0| 4B4 MISS EA181S nil BBS 7lX|g US 81 S 3014. 0| 4 #8 4S 3ES 92 44.

- AldlBEOIIAl B# BE

- nm Ai#4 E - 4 Aiem @i#4 E

- 3B4 #4±011 DIB #4 a |34 ± - SDI4 ISSBD E - Vault, @E. BBB4 E

- FLOW, VAULT, GEOSPHERE, BIOSPHERE ¥21 444 4 B# E

5-15 *' OUTTOTAL.DAT *** its Number of runs Number of chains Number of nuclides on chain Number of time points 100 Number of critical groups Number of vaults 9 Number of paths 92 Number of junctions 52 Number of sampled parameters 0 0 0 0 No. Compartment types output 14

5.2.13. MASS .OUT : MdSCmass balance) #^M|0|Ei

0| Cj|0|El21gJoj 7|#g A1SX171 B0|B timestep Ba§0||Aj A|iJ7j| MIE^g mg m

A1^@!##S1 SM teEoii bb §Mi xtisBB BOM. o| bb otEfe

1NPGE0.DAT 141 mass balancing cj|o|B| X|A|7|0|| £j8 H BSStM. EB, 0| S IS SE£1 AIM oil BB Stig x||gBB. as %IM MIOIEM BBS

INPGEO.DAT 141 xlM M|0|Ei X|A|7|0]| °1SH BSEM. 0| Cj|01Ej BBS AH4IBS

- B BSB AIM (Q'Hf D|Ej)

- A|y %! timestep iJ0| (B) - B yAMSHgSl S7| AHBW (#) - b bsb #otixj bs

- b gsm gs ^ - B a SMI ujAMffij^oj rn (g)

- sag BB BfOII B agL|| H3 yxiBSHg WE (moles/ m3) - BO) AHEW (#)

- vaults XIH7H Ml SB Ml B gat (g) $*« *-* Geosphere Debug Output - Mass

PIPE VOLUME INFORMATION

PATH VOLUME (M**3)

1 0.21500E+12 2 0.86000E+11

91 0.62000E+07 92 0.34500E+07

INVENTORY INFORMATION

TIME 0.400E+01 : TIME STEP 0.100E+02 (in years)

Np-237 : INITIAL INVENTORY 0.100E+07 MOLES

BEFORE DIFFUSION AFTER DIFFUSION TUBE #DIV MASS AV.CONC. MASS AV.CONC. (MOLES) (MOLES/M3)(MOLES) (MOLES/M3) 1 2 25 0. 00E+00 0.00E+00 0.00E+00 0.00E+00 2 3 25 0.00E+00 0.00E+00 0.00E+00 0.00E+00

53 35 25 0. 00E+00 0.00E+00 0.00E+00 0.00E+00 54 36 3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Remaining inventory = 0.100E+07 Moles TOTAL = 0.100E+07 MOLES (includes remaining inventory)

INVENTORY INFORMATION

TIME 0.980E+06 : TIME STEP 0.304E+03 (in years)

Np-237 : INITIAL INVENTORY 0.100E+07 MOLES

BEFORE DIFFUSION AFTER DIFFUSION TUBE #DIV MASS AV.CONC. MASS AV.CONC. (MOLES) (M0LES/M3)(MOLES) (M0LES/M3) 1 2 25 0.00E+00 0.OOE+OO 0.OOE+OO 0.OOE+OO 2 3 25 0.32E-02 0.12E-13 0.32E-02 0.12E-13

53 35 25 0. OOE+OO 0.OOE+OO 0.OOE+OO 0.OOE+OO 54 36 3 0. OOE+OO 0.OOE+OO 0.OOE+OO 0.OOE+OO Remaining inventory = 0.395E+06 Moles TOTAL = 0.724E+06 MOLES (includes remaining inventory)

5 -17 5.2.14. TIME.OUT : timestep H|0|E1

0| Clio|El 5m°1 71kg A|7jj!f timestep H0|0|| a@ §Mf xilgnUf ^0|C|. 0| 5}

^S| SSg 1NPCTL.DATCII timestep Sti X|A|7|0|| 2|§101 MSEC*. 0| AlBfl eifsi % y«n a a1 oil ciihi @yyg sixHAiacam timestep aoKtuoii as §ms Men.

*** Geosphere Debug Output - Time

RUN : 1 CHAIN : 1

TIME TIMESTEP ( IN YEARS )

0.000E+00 0.172E+01 0.100E+02 0.102E+02 0.202E+02 0.104E+02 0.306E+02 0.106E+02 0.412E+02 0.108E+02 0.520E+02 0.110E+02 0.631E+02 0.113E+02 0.743E+02 0.115E+02 0.858E+02 0.117E+02 0. 975E+02 0.120E+02 0.109E+03 0.122E+02 0.122E+03 0.124E+02 0.134E+03 0.127E+02 0.147E+03 0.129E+02 0.160E+03 0.132E+02 0.173E+03 0.135E+02 0.186E+03 0.137E+02 0.200E+03 0.140E+02 0.214E+03 0.143E+02

0.126E+06 0.182E+04 0.128E+06 0.186E+04 0.129E+06 0.189E+04 0.131E+06 0.193E+04 0.133E+06 0.197E+04 0.135E+06 0.201E+04 0.137E+06 0.205E+04 0.139E+06 0.209E+04 0.141E+06 0.213E+04 0.144E+06 0.218E+04 0.146E+06 0.222E+04 0.148E+06 0.226E+04

5-18 5.2.15. OUTCOM.DAT, OUTDOS.DAT, OUTCOR.DAT, OUTFLG.DAT,

OUTSEA.DAT

0|#s SB yjEll 7-11 OJ51 E||01 E| S| oot| digger 0|@«| {dj gg inpflg.dateh fl

ot CHI 0| EH 71^15011 °|S|| SSM.

OUTCOM.DATb INPCOM.DAT0||A-| X|§E|b S=l U|0|E|2} SAMBIO.DAT0||A-| Ej AH Ell 711 JZMDIE1B2J itfgCH.

OUTDOS.DATb INPDOS.DAT0||AH X|@g U|0|E12} #§@5 7:|ga| sin.

OUTCOR.DATb TIME4 X|@#, X|*'7l| tEf, X|@7l| SB TBII# gssib E]|0|E|S ootsiEf. 0| E||01EHb INPCOR.DAT0||AH A|§gp.

OUTFLG.DATb INPFLG.DAT0||A-| X|@@ CH|0|EH* 2USU.

OUTSEA.DATb SEAPIC.DATOIIAH X|gE! sea picture CI|0|EH» R°mtT.

5.2.16. OUTDBG.DAT : ^EH7j| debug G|0|eH

0|^g 7HH §b3RBEf Afg£|fe g*f| 8HSS0IP. 0| 2fgjoj mgs INPFLG.DAT Mf

51 7I91E0II 2|SH #a@Cl.

5.2.17. FLOGEO.DBG : flow/geosphere debug U|0|Bj

019-g- ©gn} xm7||Oil @g bHUeoil Uig debug data# x||ggn|, 7||g #x4og

5Eb ©SOIL} XIU7II ^guHsi SXIIBS e.f©10H g#o| Bs||§|b SboilE A|g@tu.

5-19 5.2.18. XFLOW.IOP, XVAULT.IOP, XGEOSP.IOP, XBIOSP.IOP: fZiSe4

oi @gs@ 7ise is, vault, xig 7ii, eii7ii ¥EitiBS¥Ei@ §9e@e n\

3 SIS 90|@. 0|#°| 9@0 INPINT.DAT0IIA1 X|g@S 24EOil °15H 9303. 0|E1«I

7IS0 #3 ami g ^011 @711 4§t ¥ 24E# ¥@@01 oi(H AHSS 9@P|

El SOI Dials 2201 9S01S ¥ 24 El. 9 @21 S 6||@ ¥ECSS¥@ A|gxi7l X|gg

§3#@ C1I0IE1E ¥333.

XFLOW.IOPOII elision si§@S @@P|E1S 59 legOHAiai Sf ES ES0|@.

XVAULT.IOPOII C4IS|01 S109S 9@P|E1S vaultoil @01 24b AH ¥59 vaultO||A19 SIT 94 #@SO|@.

XGEOSP.IOPOII Ell 8|01S X|S71| U1|e^u 1|oj x|S@ X|@#0||A1 feE Eb »@S7l @

7i fi ¥ 24 Ei. oi 7ise @eii7iis¥ei §3 e@# 39971 simi s ah sis 9019. xBiosp.iop@ sesiouis oisei 9901 @e mm xig@@ 24x 1 %e 97 ns

XBIOSP.IOP 990 sjAHEAlS ¥ 84 El.

5.3. 94 0||B1 D|1A|X|

Aieiigs 93 oil A! VANDAL A|sEJ0|| °|5H @0 D||A|X|S0| 9503. OISS 3539 mm 0||A|X| ES S¥9 0||El D||A|X|S0|E1. O|0 0||A|X|SS 3#El S1@0|| @@@71

@ VANDAL.LOG 990 || 7|#@@. 3599 @A|X|S 999¥ 24b VANDAL.CTRL

99 @3019 echos ¥503. 39 94 0||£l o||A|X|§S EXEC_ERRORS.D AT9

VANDAL.MSGOII EW03. @9 UI0|E1 gj@ E§0|| 0)|@7l @X|E|X| %og j_ Al^g

¥b 5395S E9S 71S30I S3. 0| @7||0||Al 713 7IS3 24b 3419 9210 cpu timeOI@ @b¥ Xl35939 SE71 S99b 309 90 SsEl x|@@ ¥901

@. 0||@go| §¥0l|b ESZL@0| ¥¥¥9 @3 0||A|X|@ FORTRAN 0||E1 @A|X|# @

#S1@A1 g@a ¥E 243.

5 -20 6. VANDAL El!5| #711^1 !•'A!

6.1. a I

VANDAL AgHISfH g=E| gsMSSEEH ESg fiE CH|0|EH# ^0|y HEAISSEEH

Sti Site HE HE HAISHSH o|#H z|#A|go||Ai A IEOH me EH 5Ete HSS0||

as @M#@ ISsU S1E. VANDALOI Monte Carlo A|#E1|0|S@ AIISS E*#E

S #71 EV?J Siioil ESHte CH|0|EH°1 HE S#ES 7II7HIS s\0] SI DM 0|E

e ¥H7i sms s eeihs she emis asms aoi sees.

TIME4/VANDALH Nf SHte SASH teg ESS #7HIEEteSSHS AlgSlOH VANT40II Sell gJES *0|| El El 811 EES A||A|E|S# SO) Sl°i4 VANT4te S*H KINSOIlAi 0|g- 71#S1X| s-g- S Ell 01 El. SEHSE S4|gA1g VANT4* MISS10H VANDALS SS 141 SS0|| El El SE ESSI ESSIE ESS S71IESS EAH # ESte 90| M71ESE. SEISE VANISH yg S5H SHHS teES 7|N|# Ete 8121SS VANDAL SHSESEH E7||te#0|| SEEte ESEPJ Al##@ ?Sfi S SI te SIESH SS71 KINS0IIA1 Xlxliass 01SHS1E.

# S0IIA1E VANT4S EES 7|## QXH 6.2S0||AH SEME 0|0HAH 6.3S0||AH KINS

H teESES VANSTAKS ESSE. VANT4# ESSlfe tete S# KINS ESS 7HE

Site CH| ESDI m yomi, ESS SOI a A^HEOH mis $I#EPJ VANDAL @E#

#7I| aESite HSS EE Site CHI ggS 510IE.

6.2. VANT4 7|| o

Ste 7|#

VANT4 #7I|EE teESijg ES Ml 71X| SS ESS teiSN.

6 - I (1) VANDALS TIME4 @74|**0|| *14E @E||g El-gEESE.

(2) #741**34 H2415! Ell 01-yo|| q|fcl| §104 Importance Sampling scheme @10||A4 ufg

VANDAL te-4S A|l7l§ (reweight) 24 E). (3) D|E4 g°j@ *yg* menu-driven USS^E4 XISEi @741 ** 7|@g* E

sen.

(4) *3)g°i m nan® *@4@ yyew.

OIB-IB *M# SAS24 y# #741x434 fifg A1@§104 EM E %!E# Ej04 %E.

EEE ae^oi 7|@#3l #*g batch EE0||A4 y@*og ah *@EE«1 0|g o|| A4SX424 a04* 3JES|°4h4.

24AH VANDALOII* M **@31 Importance Sampling * 7|A|°j *##) 7|£j0| A||g

5104, TIME40II qimo4# til *14*01 §4**5). EB4E5 importance Sampling A1

24124*011 cue *34* AH74#Sf# 7|*0| VANT40II 41*5)04

VANT4* 5)04* E14* E4IEE * ***** 7|*3) **0) SAS&I C424E

(multivariate)*741 7|*E A)@#l * *7l| 5|0) %(E. 0MA4, VANT4* 0|* figgBl

VANDAL C4IOIE4 A)|E A10|0|| **B oie4S)|0|E* A4I#@1# MS *E).

21*11

VANT42) E**°J oj^ejoj E)@3) *Ef.

(1) A|y E# AJS 61EEB4

- (24515474124 E4E04, A|y E@ E* E7|0)| m°)) @5*14, @5 TIME4 @@ E

* fl@E - (A|* E# 5* EI71CH| C116404) Stopping rule, percentile E* SCI1*

- 1454 *#o|| D15404, a|yoil q|* e# *E@ *3in|E4g

- a |you CHS104, *S@ A|g#0||A4 ** E* A|yo)| 0)24 percentile

(2) ** E@

- (*W 94 *BfO|E4 you EH @104) A|y@a TIME4 cumulative 94

6-2 complementary cumulative S#: 3S EE S3E

- 3C-ln| E| 2a0|| C]| 0} cumulative sampled SS SSSS

(3) S3E3^j - (3S EE SSSE1 7/oil qimoD TIME4 #SS S* EE EE: EE 33E3 S - SSSS7-1M 7t£EldE| S7JS2J MS SSSS EE 3333^

(4) Quantile-Quantile EE

- £E 371 g7i0|| ccfS MSS SSn|£joil qimoi TIME4 MSS QQ-plot

- EH 37| #7i0|| ttlE EE01I qiE 3SS QQ-plot - SH37| §7|-0|| tElB 3 SSI E||°l quantileS A|7J EES mean square 30| E

E 3 EOII PI 810| A1 73011 Hj-g quantileS 5|3 mean square 30|

(5) Scatter plot - MSS EE EE EES jrfefa|Efo« qisoi, A|E EE 3Soil §3 A|y EE

S S3 T1ME4 f q2j scatter plot - MSS S3 EE ESS SSSSoil SSOE A | soil §S S3 33 EE S3 TIME4 MSS scatter plot - 33S A|g#0||Aj, E SOI! qiS 3S3S S333S scatter point density plot

(6) 5 S3S MS

- mss sso 1 son mm sss k-s stiis - §qiS (significant) ESiS E

- S3 'U &is sses urn E - JTlSaiEH ESS S3 TIME4 SE ^1 S3 - 33S A|3S0||Ai Stopping ruleS 3.SHE. 11 - SIS scatter point residualEES outlierS EH - Principal component Factor analysis coefficients

6-3 L2iiiti A-|

VANT40II 9B #711505 4# 00 B#33 0W 4" %!0. O|0#5 0$7JO|| 0.

(1) niloIE-1 fia - a# A|y $00 yo 5 E4|01EH ^(interpolation) - 00@ A|0#O||A1 C1|0| El sub-setting - BS a Aims C-|| O | E-| §i - VANDALOil c||s} TIME4 09#9 A|y-7l#B #300 55 EE5 03x|#9 741

(it - 0059 3 01559 59 - 99 A|you 9 001, ysyg Zjayyoil @0 outlier 50 - m3 QJ SIX-1 0@5o|| 7|0iS|fe

(2) 5B0 Ell5E

- A|y Eg 55 371011 n||5101, ie4M SB# E5 percentiles# 00515 g y - A|y-0B@ xlOIS $0515 QQ-plot

- TIME4 Ell 0| El #9 3000 7150 outliers9 $A1 - Ell0|El4° £5&l 03 7|01 005 All74# gg 0305 500011 0°1 (bias) 21 7110 - (non-parametric) 550505501 bootstrap B99 05

(3) 005 500 Importance SamplingOll EH0 00D|E19 7|#

VANDALOilA1 oi05E0g 30 301 5 7lX| 0|#3 tSSP. 0«H5 015 0* 00O|E1@O| VANDAL 01150 050011 30 7|0l51571# EAimog^ A|5

7150 OI6H# B5 0013, B«H5 Importance Sampling 09 B9 05011 cU°| o||U| 3B33A19 9a# 515 0O|0. 905500 BBB VANT49 $5 7|gg 0#0 00.

- a*wa 90s, #55 00piei#0 A15071 090 00010 sb

6-4 MS scatter plot

- cfSS A| 35011x 4 24240154 32/M0|l-| 2|a3S #3A|#o|| a# e4|o|e| ay#

S' 44# scatter plot matrix - SS3@ 242404545011 ysi a 3 (rank) #741 - scatter plot density contour 2f confidence ellipsis# S 3 Si# #3

(4) A|y«aj 74521 S #011 E1|S1 £A1

#74|3 myg #@3EE n ¥A|0|| ##84741 SS£1# a Ail TIME4-VANDAL Ala as 74## 324840404 ep. 0124 ygyoi, vant 4# s#s 64S. s@94 e c4a##a'#as Aiisma - 32451 #a7i °!# b#ms 711## soi# sb

(Oil# #04, principal component 54 factor analysis, sensitivity ranking #)

- data sub-setting 7154

(brushing/marking 7154. cluster analysis, discriminant analysis #)

- 544A1 31454 (regression 54 canonical correlation, parameter grouping)

- 33 ZAf# ys C4IOIE4 C|±#e4|0| 5454

(3xlgj #3 3B443, MB4# 7154-8 743 scatter plot DIIES3 #)

(5) atiES3 #24 °i aaigjEiioiti

- #3E percentileS 8S8MEEA4 3A|| #SSES time history

- aiy24 s# a7ioii a@404, 33#e adji - 33S A|3M04|A4 scatter point density

- Aiy-aea mss 33 time4 @s@ issioi, sa ssms ssss pdf

E# cdf#

- VANDAL01I StElfe a TIME4 *S 2424EJ|e4°4 54 33@ percentile 2/M

S time history - 33@ A|@*0||A4 13B3 #3 24A4PIE4 a#S ^ SSeJXKcorrelation factor)

M

- 24B40IE42] a2/24 aa*l #2424 outlier moment

SSE74 yyy yA|| #E7| 04B S3- #3A|0|| q|g|04 3S3# 30|3 SHE,

6-5 VANDAL Sbb Sit bb °IS£2) mog am^h - 5b VANT4# Sit@

visit @b* 7fA|sf eiiboi yg 7ib§m.

6.3. VANSTAK : VANDAL #^oj hw£ fjE KINS E7

6.3.1. 7|| o

VANSTAK(STAtistical Analysis of VANdal output for KINS)fe VANDAL SS @2]#

S7l|*jo S ¥S@7| ^ 5101 KINS7I 7||^@ g#Ej bfifiS0|E1. 0|

IDLdnteractive Data Language) 7 S§E|%fiD1 IDL bbb?l|010|| o|6|| b 91 ti. Sbi oi ASdag vandal #s§oiiai syou @s ass DioiEiy

CONDOSES.DATS §101 #01 ¥0]S AlE||Sb°| M2] ESS #E0|| afiSb si'ti

SS X1ISBE1.

VANSTAK71 IDL €1g0||A1 b§E|fifi IDLOJI @21 7|gSE A|S# 7|A|fi %Eiy

VANSTAK fi¥ El MCI §¥21 SMB E@ b %!@ g0|E1.

VANSTAK MMZLljg ¥# 20|| SfiEjOl %E1.

VANSTAK# CONDOSES.DAT01I CHE #711 BSB #@01 A1### @7121

(1) Monte Carlo A|#Ef|0|S2J bSS (2) Aiei|yb21 BS}#S

(3) ?2 fi.9Ib.ii (@3, SB, skewness, kurtosis)

(4) 21 bid| ei ygfi

01 bfifiiib E1S21 y# S5-1# OIS5101 S7I @b#oi| cue @71 gg# WSES.

(1) AlE)|yb2| E21M S#S fib Ei|0|E1°1 A|#3||0|S (2) Aiyoj EbM bgoii Ofisib Sti 9! boil @E fisUb

6-6 (3) 95% tiEEM #@0) A|?J0|| 0\B @@ tig,1 HC|| = (4) tiglO|0|E4#y percenlile (5. 25. 50. 75. 95)0|| EE 3013

(5) ziatigw 01 7,x0| #### A|7J

(6) viHtiE# eee vi°ie noi=#

- 5|3 A | @ 0||A3 ES BE hjc #3 (Frequency Distribution)

- 5|3 a IS Oil AH tiEBti'dicoj ESEE (Probability Density)

- 5|3 A|S0||Ai tiyyyjti|#°| (Cumulative Density)

#A| 3S VANDAL @9# SHE# 91 @104 VANSTAKOII ti#33 S!@@||A4# y

ytOfe 7i0\c\. VANDAL 35X139# @@0||X4 ### @0| VANSTAKS #§@lrr 9 tiO| titiSEl.

(1) @0|y A 1^1 yfoil 0|§104 VANDALS! ##011 5>ti 04|td| ##0|| @@@104

EBti# JsltiSI E#3E# ES@H= 01 Al@0d.

(2) EBtiPJ VANDAL ##S! #51# 01|H|y 03 @#@1# 01 ESE#. £l##y

VANDAL @#S| yxlltiti ### 51 y§104 VIE #741 Eti 5||7|X|S) @@0|| I2«l

7LE# smm.

AlOiyf #@0|| %04A4@ VANDAL 3EAI59S] @@5t @@@104 @9@ A|#@oy ti# 74ltiO| ti#B #0|vi. fl= ##o|| 01 @104 d ||@ 9991 E @31 @9@lfe

E#ti53 M71@@1P4 SEE 545 OlMtO. 525453 VANDAL @@011 01 @104 9

X4 VANSTAKS #@@13 SJ##°J @@0|| 01 @1049 ES #711 5||7|X|* #@@1# 510| tt#x)0|q. ES @71| 5H71X13X4 SAS# SPSS #01 E3EH4 STATGRAPHICS + Ll

EXCELS SEE @aS SBtt @ 99. #9, STATGRAPHICS + 9 EXCEL# Al@@l

# #@0||@ VANDALS) @E#oj ##(run) 5|-o|| 01SS1# #711x4# 3 = 5?1|01S4

#9 @71 25633 X4IES95 #0|| @s| @104 01 @1# 0|54@ 9#@17| S)E 590 | @71

3 S5S9.

6-7 6.3.2. VANSTAK

VANSTAK* ***.txt SBS CONDOSES.DAT BS8 84B ?*£§ E|01 °4B. 04 7|A4 **** ¥9S pjAjoi (CONDOSES.DAT) BBS 0|gEEA4 A|gXp| BEE x|g

IDL* VANDAL *#B *24E uiE|L}g BS# ECJIE* E'A-j§W *BE|. BB4EE IDLOI CONDOSES.DAT BBS SB SI ¥ %74|5 SSS B¥E BSE Bmil¥040| SET. 0|#74| B* 7|* yee mwg gx| SERIES BS *A4@S7|# A4g§|04 CONDOSES.DAT* §404 #24 9@ .txt BSE A||E X4BB* BO|B. CONDOSES.DAT* BEE BSE xjffifBfe y 0| 240|| A|*x*| 0| BS0|| q|B04 #7| BEE ESB040I m S* 84 E|.

VANSTAK* SBBSE CONDOSES.DATB* SEE BB ### SB04 XMI9EE 9|7|X| C4|0|E4g CH SEE BEL 0| *74BEE E¥£4* CI|0|E4# 0| EEEtMS VJJ

S ¥*011 A|gx|7| 99 WE* £404 oiq A|gxf7| B9 yo40| m C4|0|e|*

VANSTAK04IA-4 e4e}l|# *A4t44E S74BB £ 6-124 SB.

'.txt' BSBB runs* X4|2]El BBXI S@4 C4|0|E4* ¥049 A^IBfOII BB g# S7| 041* E 99B y°j ¥E8 041## ¥ 84 E}. EE4EE *# $7|0|| 0|*04| cf|B04* S

B ¥4041 011 Aim §£S| yg ¥04 BE *#@H * 9# *# SBE Be|B* eeHEB C4IOIE4* SEB04 EB E4* 24EE ¥SB04 BA| *#@HM* BB0| SESB. VANSTAKB *#041 EBB* A|yo| EBX| #X| SEHE (#9 ¥ * 0|i44) 0*4S 9848 BBB* C4I A|y$4EE E ¥B* 84# B0|04, Vm 2~35| 9EB ¥3BB SB* EEttEe SB @C|.

6-8 it 6-1. VANSTAKO||Ai A|gX|7| ygeiOiOl W 3tBfO|E|M

B|o| y y y m on

75 - gyqim ymm ‘condoses.txt ’

CO.IE-13,IE-12,IE-11, pdf® fmayi ym mm&y 77 levels 1E-10.1E-9.1E-8.1E-7. A| S §1® array : 11711 1E-6.1E-5, IE-43

79 runs VANDAL miS 9)^ 800

95 % mmm®y ymoi gammy 81 y _lower 1.0E-7 pioton a i mmsiy §im

condoses.dat QAilll plot§17| y®l y 83 y _upperl 3.0E-5 Aimmg^iy mm

95 % mmmsy ymy gammy 84 y _upper2 1.0E-6 piotoiiAi mm^y mm

85 y __upper3 percentile plot# ym mmiiiy mm 2.0E-6

6.3.3. VANSTAK

VANSTAK7I- IDL5 mmyya 1DL ASHIig WHA| IDL ®x|E! S3 Oil

Aiy xjshb - oiopg QAH KINSO||Ai VANSTAK® IDL ±^.^n<>\7\ ®x|y g#Ei oil Ay xjsHyoyoi my.

m@@ ysiiA-i® vanstak 5am@(vanstak.pro)oi yym idl yy^y you ?oia Amiyyoii ym yy yy #y yyoi my.

6-9 A]|H ^A]# q#q

(1) idl sus q#ss cm gqaio] idl =gn^@ f ssq.

(2) Main IDL Window^] EH £1011 %# Menu BarB FileO||A] Open# BSjSIO]

vanstak.pro 5|b# openB q. vanstak. proOI|A-| Afgxi?! £7g yO|0I # qq Dioicie oi qgm xiasq.

Main IDL Window# 2B 6-10I|A] M# U\Q\ yo| 27I| 7711 ¥S22 fSBB %

q. £Is!.nrEl Menu Bar, Control Panel, Multiple Document Panel, Output Log,

Variable Watch Window, Command Input Line, Status BarB #A]0|q. (2)0)|A-j

X-m Menu BarO||A] yq# ### 2 BS0| Multiple Document PanelOll qqq

□] 0]7|A] 2 °m.

(3) Main IDL Windows] Command Input LineOII .run vanstak 0|q2 E|0|g8f q

S 5]Ed 7|* x|a gum vanstak 222B0I S##q. Command Input Line#

Main IDL Window?I Xj@ qqB oU cursor71 0]?# EH #5=o|| IDL 22

2| SDHI IDL> SA|7I 5)0] %q. •ysgoiia IDL) SA|7i a a] Til tilfl SEJI2 □]#

Ef7l ##0| #qgd CIA| 51S aho ^ 6012.0A-| cursor71 Command Input Line

EH #5=011 ciai qqyq. y#oi agsipg aiHEie q§ zleh ^soi siqoii # WEIW 510|Ct. ygj oj^B|0|E]S] OB^ 7|E|°| gjpiog 0]|E^7I ^ SI 0 2 BBS s@0| Output Log SSOI! qqqq. FORTRAN E22EHq gq#0|

q #A1SI7I| IDL aSOEIS S#A|0I| 2 7IX| gEHSj OilB]71 qqq#[]| si q# B£S| “Warning ”#^ SS0)|fe # X|gO| BO] BBS EE Tllg EiSqcM, qS qq# SS0| flBBE Command Input LineBE cursor?I HHlX] q2# S S2S Output Log SOI! "Execution halted SS0| ^0]Sq. 0]|B] u|| A|X|q gxiiqoj qgq ag yyoii qsiotfe IDL AigsgA-mo)| qq qq. 4

(4) S#0| #B qsoil# #2011 qq Command Input LineOII SEE Sgqg BB 510] E?ISB SMI Output Log Soil A] 2 Wq.

6-10 Menu Bar

Control Panel

Multiple Document Panel

IDL Version 5,2 (Win32 x86), Research Systems, Inc, Output Log For basic information, enter "IDLInfo" at the IDL> prompt, —

Name Type Variable Watch Window T]\ locals /Params\Common\System , | < | ±J

M------Command Input Line

Ready Status Bar

ZLS 6-1. Main IDL Windows} S§j.

6.3.4. VANSTAK W #^2}

6.3.4.1. 7||o

VANSTAK2] ^ISHOI # 97H°| ALBUMS} 5>g q|0|ElgO| AH

E7I| 0| ZDeM 91 0|ElVANDAL S}L}°J CONDOSES.DATS VANSTAKg #711 X1B1SI71M 5J0|E}. 0| HBH^S} C1|0|E1SS Oisms ^(H a A}ei|°lV-oil Dim If, HS}x}g @7}°| qiaoi s}fe g}A}^q|7|#x}eA|^s} S#S

#7}m# qi sv-s]# eiti §Mis se ^ sw.

6 -11 VANSTAK #P&| OISJl} S 6-22) SO| °°)SP. 0|(>|X|ti P¥ HBOllAi o I soil 9S)Oi tip AKiisi s@EiP.

E 6-2. VANSTAKO||Ai SPPfe PO|Ei2) gipE

y e y E P S 99 3PE tiPE PS

CONDOSES.DAT a All allplots.bmp SSPOIEI 9 All data(i.j) i = HPtiS( timesteps ) j = run 2 surface.bmp S All p 01 El surface

convergence, bm E90 II |os( ysytiS A|3 n_conv(i) tip on nas S0E P P SEE ES

ml (i) ' Aiyy as paaaay(7ipgA)p 3 a pess Aiap see aa cl__lower(i) mlP 95 % SSE 8 )S confidence.bmp 8)01 SUP A|#pO|ap MS) cl_upper(i) mlP 95 % SSE PS yyoii as ay pg

data(ij); A|yo|| pg 5, 25, 50, 75, s_data(i,j) s_data (*, 0.5 "runs) ti percentile.bmp 95 percentileOII 8 H p8 |g g 50 percentile a S2A

peak_dose @3 S|ti aS2A (Sv/yr) -

sasiaasoi titipfe ai peak_time - S (yr) frequency P5LOIIA1 aPHS SE: frequency.bmp S3oiiAi awns ye sa (k) k = y^titiyS(leveIs)

sih011 ai assss s)gy pdf.bmp PHoiiAi anssP ypy E ME pdf(k) E (S)BHE) s|3oiiai awtisp hpdf.bmp E 8 IEE3P P Hon Ai EPS P30!iAi a#ypp say cdf(k) cdf.bmp pyE (ESSE) E ME

6-12 63.4.2. 4^2

(convergence)g ®I®S/A|7J 3dl#7f 90% £# 95% £]£J£E. Ef#0|| E#7lg £A1°10|| °J§H @719#. tiBj| VANDALOIIAig #^0|| °#£J# g# S4I @71

817 1 4H8104 # 7fX| ^f-SjOl 39£19C|. 01 ^-Sigg AhgXWI/ll 9A| X|@og 324&1

04. (93S A19011 die Ajat 0I0IE4S Alg§io4) 4^09 #t»£| #0]| DI8104 a^Elfe

ajsii^o) ^§x|g f^mon simoi ma§i 4^ SJ9.

VANSTAKOflA-|g VANDAL A|@d|0|@ g@g gggffe d| #@ #§&#. 0|9 S VANDAL0IIA-1 “Stopping Rule A" 5 AISEJ# ggRgAI g@#52| non-normality

2j sV|7l 95% confidence limit# 5% 0|A1hL Distort@47| Q0|| R #£|g ®S(Run)2)

MEta'tl.

o| 99011 #39 , #@@@ 971 91 o« S#£I# L9S921 54## ci@2l #0| *§9 9.

2

04 71 A-|,

wz = max (A ± B)

7l(^2- 1) A = 12*(^- 1)

_ B = 1 + 4AW-1) r2 (k3 -3k) ?j(2k3 — 5k) 2A(A-1) 24 36

n = skewness

r2 = kurtosis

2 = 1.05 k = 1.96 (95% normal variate)

DU 6-2# VANSTAK# 0|g°f #*! §99 9 oi|0|Ct. 0| 3.9 # VANSTAK#

#tio| H#@o|| ttiai a|| 9 MU5 si9 oil H## #S9 04## Aiaigcf. o| Dgg convergence .bmp ZfQJg X|@£|S# £19 ?J£HS gS C|ai£901 |A| 0| 39 2}Qjg

540f 99 7||9*135 ciA| # # 9 cl.

6-13 oil a IQ naig 01*001 A130b3 convergence . bmp 2106 Mb 883 4=09 8- 5H93b 801MX1. H0Oi|Al A|*5||0|8 7|03 S7|0||* #O|0 Monte

Carlo A|g30|yo| 4=0 3b CHI Sb3b 659 Eb 81921 4=71 o»8 acffe 06 8 4= 0°PI 3A1IM MOl 60008 018011b 8008 0I8P1 @6 w 4= 03. 8008 819 MMMEi 36* 0| 213Mb 33A1 3*IIM. 60008 o|#3b 4=190 Aie||0b7l 8b 8 88 4=S3 0393 8M8 888 011=882! 8tt 4= 88. 0| §8 0S330 6H 8 xlgA|ido|| my @717188 S7|0|| 8801 (Oil* #8 S7| 188 oil 8801) 81951

tI 87l| beibb 88 8 si# 4" 88 8018. 8 si8 8b 3boil b87l 88 8b 3b #88 AI80 I 388 # Eb 83 00O| @8 3b x|go| m 30|Sb S8¥8 Sfb 71888 4=0 3X| 8b 3b 088 4= 88 3018. 8s 4=09 88 83. 30 8b A|83 Eb 088 A188 oil 0^8 914=011 ti| 511 Sb8b 84=71 8 88 33b #7138 0@o| *71388. 8g #7188 819 #0||* 8A| 4=888 8830101 88.

4=80O|| 38 C1I0JE1* Mb @18 8b B4=b n_conv(i) 0|8. <81 S 88, CONDOSES.DAT8 timestepOl 50080121 83 A|*E1|O|0 7|0O| 5888 3 (#, n__output = 50000/500 = 100) xl*A|0O||Al 8X193# *@0| A|3@ # 28801

338 a10o||A! #88 A|gei|o| 80 | 4=8 3b 3 o#3b 0* Eb 8198 4=6 8 71 8 5H A! * Main IDL Window3 Command Input LineOII XI IDL> print, n__conv(40) 6 88321 8038 3b3, 0| 3 8H0 3b Output Log #0|| Xl|A|g 3. 0171X1 #X1 40b 20000/500S 883. E8 IDL) print, n_conv 01321 083 21 3030 # 1017(13 C1|0|E171 333b3 8 36 H|0|El* xil38 33x| 1007H3 30|El* 30 5OO0OMME1 5000080X1 5000 80 MM #33 A|0O||A1 #@o|| Mb

3b 6S3 4=011 3683. 0| C1|0|E1* EXCEL3 8b BE3 2130 EMM M3 9 JZ37II 2130 #03713 A1S071 83b 83M 7168 4= 06 0O|3.

6-14 US 6-2. VANSTAK il^-1 convergence . bmp.

Ell0|El n__conv(i)0|| g7imW VANDAL A|ge-)|0|^°| ^g0|| S@2| e#

aizisi meg M

6.3.4.3. MStNN ES

maeas Ntetti 7iciws as smamas aAta$H7isas oj gAHaej a as earn khoiis gAiaoig aiaias sya°g mama (uncertainty)e mm ms aoi #7Maa. mmaa #as e@s ate@7ia ama s- asms swam esoiaa m e %a. x^gAia a 7 wi a-i mmaas x4@A|g#a agamon am Mass a a oil 7iei as aegAH, maoism saaa, as saaa, pien aeiia gmaa §°e ae ot a am e %a. VANDALS 0|sm AMIQe a| VANSTAK# 0|gg VANDAL #aS MaoM# Afg a vandal ?iiaon ass aarnei ;ii^as saaaeoi aaas

6-15 Qx-ll^oi MSi-y-y SX| Helix! gaS0 000 97tX|(00 7|M|A|)7t xmit me M 0000 xj £ Eg n AJ5JC -faJa f|gg - °I0. P|e|| 0MI0 S SfA^jg

VANDALOI TIME40 07i|£]%(g. g° VANDAL @0O|| 0@# f 91° Qi, OtgEl TIME4 mSEEfEl oj J7#0| 7[i§m 5J0|Ef.

vanstako)|a-i Mstmg ese ms me sexis 011x10 mss you me sg ximi

«(@3^)2| esse @7tse maa ames. ^, 0# xioims m 95 % 00 am on ee moiEisf nsae em vssife 301m. ILS 6-3 e VANSTAKS 09 §10 Ml 00011 0000 ZLMIEEA1, VANSTAK

0@ foil is VANSTAK7I- 0000 SSEEj °)0|| XtesaE confidence, bmpf Xl g

001 maxi 01 mm smagEi sxi s e ms. E0 01 m.2HE0 source dataVJ ml, cLlower, cLupper® Hg-SOl MM @420 mMI Al ZLW E 9Jt°m SB SMI0 SEE 7t55|fe %E 7Ms# go|0. IDLOIIAi ml, cLlower, cLupper® me 90® SS0 mS.

(1) Main IDL WindowS Command Input LineO||Al IDL> print, ml e 00051 El ems xieoii ate 0110 7icnmoi output Log you mxias. 01 m moise timestep EIS0 A|y 00011 MISSS® Soil ^00001 04. 0m ®S X|g(0|| # *01 , timestep x 10 yr)0 me SLE 6-00 print, ml(10) # m9§tE 00 §10 @0.

(2) 0S 2§2A print, cLlower ® 0^00 X|0O|| CC|g 007|Mim0 95 % 00

e 0em#oi @7100. ®sxis0 me me 00e mirn gem ernes.

(3) me AS EE print, cLupper * 0000 X|0O|| SB 0il7|Mim0 95% 00

E sameoi 07100. ®gA 100 me me 00e mis gea ernes.

011x 10 mme #ESoi Etna AtmmES ® stage oisnse 00 e g men ext. m 0OIIA1 7tSMI S0e E@0 Monte Carlo X|#E||O|00 @ao|0E M0 0S. m. 0 0 me xisonxi xigoii se msse s#sgs 7ismois. oime 00971011 m oise m 00000 me 000 mi so a) mas mssoi m#se msss

6-16 (deterministic) g-AlSliq. OlE|| ggg 7lgCl| gg ^ 4dl* 7|C||&£J 95% SSE stsoil 5IISSS. 0| SSOII cilgsig Sg n giS oily# g ?,ih gg A(D) - 4.472 S/v^V (SE-S-E! 7ig@ g 2ig 41S A(D) - 1.96S///V )E5 S

S@P. 0171 A-| E(D)S 7|C||&(gO|*i A|gjO||A-i 21 BID| E-| &21 7V5| gfiggggEl 7!| gg yv7ii ggsms S3), sg vwii sgsesi sessoiei . nixisog yi °i ^ g gS7|[||SS 95% S5JE SSOII SHSStfl, 0| ggO|| EUggg Sg E S1I 0)|

SS g gig gg £(E) + 4.472 S/VfV (SEgES ggO)|g E(D) + 1.96 S/'/N )

sesn. am, goia AMisgoiiAi eieis go S 7|cu£ig sxii°j @a-sg 9121 01E1I g gSSE g71| 71 goixig ty?l soil ESS 95%2| AljTIEE ESS g 9JE1. SEE, SX1I gg-goi 0| wojg yois S@Eg 5%71 @S.

Meon Dose wHh 95% Confidence Limits

Mean Lower Limit

1.0* 10' 5.0*10

ZLS 6-3. VANSTAK confidence.bmp.

ml (i), cl__lower (i), cl__upper (i) dlO|ElOi| 574 SI01 A|soil SS Si47|qigni j. 95% SSE ESS ulSM.

6-17 6.3.4.4. ea

Bet##M#0| #*#71°! #1,^01 ygo|BB B a* (Sensitivity)'M#* He|e g am a e@#@ atm* eaa mgoiaia @ a %m. ot7|x-i ESI* Bare #B@7|o|| eoj§|* aao|E|(o||* #o|, aexieyuE| tyx|#@jE 3] VtS, A|°4 0lAh ^£)XJEE *)7| g 7| q|M x-H#A|E°| #*0|| 0|x|* # y°| g

El ItsitH, B°E ^oia gBA|es| #*o| aamEj y°| B*o|| ma SDH4 Basixi esi*7i* mamm. AHSAI^ Ste@7^|A-| 0|B4B By* M^oj sxj° H7|| = yx|o|E|. g#, x|gA|^

2| #*oi| SS§ n|x|* gog 2|an|E|ES BBSloj BaE7| E ayn|E|E01l

# 3i^m #*S7|S XIIEM* 90 |E|. A^^iy^-Sj 55710|| ; o|# izfa|n|EiE0|| ge

9ti7| ■S|X| ^z s nr asE-i esoiiah Arjqpj Aiiqf# a§ a* %m. aa Eg S7| SE@7|0||A-|E q|x||5 2|a|D|E|°| y°| @9|# EL oil# @3^0||A| #E|X| eoA| %o@A1 BE# SEE 71#§|0| Monte Carlo A|ge||0|#g A|a§|*# SfE 3

Eiiioii me bse# earn namiEi Bar eaeayEi q# aaoiam# #§§i ot aa ganiasa BB14 ME B#@ BgA |74 7|yx-| yc| asaa @7|y ufol 7H= yoi timysim. Baa earn me e7ixi BaE7i e. ysixie ## @7i°i Bsnyyoii am 7iot§i* aaniaE# aa§i* earn, oi*a a get dies essie flitisit* tiysib aa@ 2Sx Eg easiE# §i* yoim. oi^g a A||S| gyo||A-|* OISI7I AJSA|y §|0jy #E#7|g yy§IEE S|* E7|y #0# E %(@ 3joim.

Bare easi* a Baa aaea vandals ese ayy ea y ys . y BS| y asm.

#E@ essife sa(Objective function)* PB ©IE 0| ®E0|| LUES BEE* P, a o|xi. (D7i oiB ^g e as sins ee sea* assn seoim.) e,

P = P(P, ; X, f)EAj gx||a°E* 7|B| x2| A|y f°| SE0|E|. 0| tqj a#** p.

7| as m D7i bo|ui gsi*7ioii me Esaa seoim. nayey. emaas

(absolute sensitivity)* Sn s dP/dP,E Saaoj 0| XIE* ## 2|E|n|E|2| #*# a Aioi2| exie ax-Hgoy mmem. earn smaaife oibi myniEiES ear

6-18 S AHti ti|g5pHp BBti* SB* pg CHIfe tiPEPP. 01 aj EHpO||A| E|gn|- g0|

ppp* yciiEiy£7f tin pnpi sip.

dD/D d In D d InP,

ms sthioii qioHAie pp gp*# Atgpoi yea ggoi shppes - y

P. zlehp &g ygoiig yyE7i gxipo S ygEiyo^ gp. vandal *gm yoi 5HP5IIB @§ B Site 8 Soil g PSP yg pxpi Aig@ s SUP.

(1) Sti Sib BSP BBn|p/vo|| ttlPOHB 8P BPB BBSS* PSPS PE

bpnieds ong sipb matse-iyy* bp got vandals pspoh eg

~D(Pk;t)m 711*61.11, CONDOSES.DAT* VANSTAKOII PdH EP&IOH D(Pk- t)2\

bb* 8* seep. bp Bppcgii me yo, g^on ae @ti7i mmee 8 SP BppEiEB gqipoj til soil §§§ gg 8 soil g Uniform distribution* Afgpg 80| HIPPPP.

(2) pa* Eseof a* be aipboii mpoh yes saP srg S7|gp. oiyg

confidence.bmp §j source dataP percentile.bmp B' source datati-BEH i§i r BP. Ol* P5i0i gAMOg P* P0| Aig-e * Si P.

o _ 95% 8 PSP ^ 95-5 Percentile PPMPi

q _ 95% 8PSP / cc^ 95-5 Percentile / Median

(3) pppE-iBB urn 7^AH (i), (2) &nm bp-bp.

(4) oigp ps on ah eg yysm* ahs hi a sip yes ep ubig §°e ppp

PP BPS SUSP. tiP EBB SB* PPOH SflP S,S poll AHIAIS Ml 7g| BBtiti tig @7|5iOH gBPES tilHSHti* 80| StiSP.

6 -19 6.3.4.5. Zl VM VANSTAK 5||E

T^s. MEma, bee *a@ be me ebbeai boii b* e zienBE mioie

OMOIIE VANSTAKE 04 A| 7lX| SMS* ?7[5jog XlIBBE. 0|0|| BE A^#0 §> M 5 6-2011 B74EB°D4 a BEOII MIE04 047|Ai #E XW|§| ESEE.

ZLBUE allplots.bmpfe ZL 0|#0| EOIE* 3MB CONDOSES.DATS} Sg MIOIE# ZLMIE EBUBE a SEE surface.bmp* 0|%# EA| B*HE°5 EEBE. 0| 8 ZL EE* ^OE! AMIBEE8E Sg BWMI0IB* EBB oil EA|go 5^ Ai§xf oil All AMEf EBB a All EE EE BEE EE oil BE SMEB EB* Eg# E B E.

percentile.bmpfe aBMIOIESB EE* EE AllA-HEBE M04BE. 7|BE°E 5, 25,

50, 75, 95 percentileOII EE BEE71 X1ISEEE EE BE. 0| BEEOII EE source

data* arrayPJ s_data(i.j)0|E. 017|A-| i# timestepE BE, j* *7|E* *A-|E S

is gs BSOIE. Oil# EE, timestepOl 500BOIE ES 9jE7| 800BB S*0|| 95

percentileOII EIE Ml01 E-| 8 IDL Command LineOII s__data(*, 0.95*800)* EBEA|7i

BS E BE. EE oil SAB A|B(0||, IBB) oil A4 60 percentileOII SHBEE EBB

& s__data(20, 0.6*800)O|| ESSE. »|7|A| 200 10000/500° E-EE 8 3I0|E.

VANSTAK* BE BE E# A|ao||X| EE BB0| fiBE* A|BE SHE BW&8 All

BEE. 047|A4 g2|t B8 EB A|g°g 801 X|# “peak_time”0| #x||2| EEE A|

SCBEEB VANDALOI A|B0|| EEOl HE 718MI 71# *8 BO| EEB

A|@)E BE A | BE S|* E* 01EE* BOIE. peak_timeO| *74 E* MIOIEB

CONDOSES. DAT * SHE *0||A4 EBE EMIE EEE EE* M|0|e48A4 A\§A[y[ Af a oil A|A|E A|B BEES @E@ BEE EOIE. ZLB4HE EX4|2| EE A|BO|

CONDOSES.DAT Ml Oi@ * A|g A10|0|| BEE E BE. “LEE A|#a|0|tiE smooth curveOII BE 0EE EBEE¥E H ExJIE EE7! CONDOSES.DAT7| A|A| e* eee aa tB9 aiboii beee be aam eoiee 7iam * bsm zl EOIE 7IBSH01 CONDOSES.DATE "timestep" SEE* BE * BE. EEA-J, E?HE

6 -20 ME 5MB peak__time# MM A|ME5 E OT. PUJ. 0|Eie MO|MS EEl m(X CONDOSES.DAT M^B BB# m timestepM #@011 BMB # @i2B %ME m%M.

vanstakb mm Aigoii me sj§.g^ emb m emE* *ii§

BM. y M. CH|0|E-| frequency(k)2f MME frequency.bmpB MM0||A-| BUM ij^SJ e gits MMtiiM. o |7|ah se kfe mmmei levels(k)011 msbm. m, e e EBB 117H21 BM5 mb SB, M # ky%H EM EBB HEM. (Ml* BM, k?l

75 1.0E-7(Sv/yr)0« SIIMSIE k7f 85 1.0E-6(Sv/yr)0|| 9|g5Rr §5011 levels(7) = 1.0E-7, frequency (7) = 1.OE-7~ 1.OE-6 A10|2j EMMS MMMIB BSM E

71 @M. 5 yy||5, pdf(k)M pdf.bmpB MM frequency (k)M frequency.bmpO|| MB

MB M55A-] M £3.011 Ad EMM MM yE (relative frequency) EE EB Stf^E

(probability density)* MMtUM. hpdf.bmpB pdf.bmp* SIEBMlti SEB5 Sfif!

MMEMEOIM. Q1AIME5 cdf(k)M cdf.bmpB MM pdf(k)M pdf.bmpOII MBMOi

MM EM EE (relative cumulative frequency) EB BE e E (cumulative density)* M

BieM. oibb MEoiEi eemoiE-iM eem 7-15011 me meb aiissim mmeem y ME* 01 MB c)l D||°

6-21 6-4. VANSTAK percentile.bmp. mom data(i,j)0)1 Monte Carlo A|#B||0|yoi| tttg Aj§t[H|0|Ej°j gif

6 -22 ZL^j 6-6. VANSTAK surface.bmp. data(i.j)oil 274AI04 CONDOSES.DAT2J fl§ d|0|Ei# gjx||*jo 5

6 -23 300

ZL14 6-7. VANSTAK frequency.bmp. frequency(k)0|| 2745|30||X-j 1#CH|0|EHSj MOfgq.

3~6 10"

6-8. VANSTAK pdf.bmp. pdf(k)011 274@^4 2J20IIA-I AjgtDl|0|E-|o| SfSilSS MOfecf.

6 -24 US 6-9. VANSTAK hpdf.bmp. pdf(k)Oil 57H5KM MOM fd&d|0|Ei°| @Aiog MOiecf.

HS 6-10. VANSTAK gS cdf.bmp. cdf(k)0|| 57-19104 MOM 5SC||0|E4S| M045Ef.

6 -25 (2JE*t OiHJj)

6 -26 7. rt i'Mvl

Cl] 2|®t7|Sx|, tJfA^S||7|gx|gA|S °iaS@7l KINS/GR-136, SJA^yg7iea, 1997 . (2) §'XH55HiyAKg5i|7|g xisygy a#7|#7H^(I), KINS/AR-547, y^axiB4yg 7|Soji 1998.

[31 Dames & Moore, Technical Reference Manual for TIME4 Version 2.0, 1994. [41 Z. A. Gralewski (ed), VANDAL Version 2.0 Technical Overview, R. M. Consultants, Ltd., 1993. (5) D. B. Nicholls (ed), VANDAL Version 2.0 User Guide Vol. 1 - Input and Execution, DoE/HMIP/RR/93.018, 1992. C6) D. B. Nicholls (ed), VANDAL Version 2.0 User Guide Vol. 2 - Output and Error Messages, DoE/HMIP/RR/93.030, 1993. (7) L. E. F. Bailey (ed), VANDAL Programmer Manual, DoE/HMIP/RR/93 .020, 1993. (8) L. E. F. Bailey and A. R. Marrison, WOLFNET Version 3.0 and PLOTWOLF Version 1.0 - User Guide, DoE/HMIP/RR/92.114, 1992. [91 S. G. Oldfield, Requirements, Functional and Design Specifications for VANT4, Version 2.0, R. M. Consultants, Ltd., 1994. (10) IAEA Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, IAEA, 1996. (11) Using IDL, IDL Version 5.0, Research Systems, Inc., 1997. (12) STATGRAPHICS Plus User Manual, Version 3, Manugistics, Inc., 1997. (13) (Oil# SOI) R. L. Scheaffer and J. T. McClave, Probability and Statistics for Engineers, 2nd ed., Duxbury Press, 1986.

7 - 1 (°|£$j 01 Uj)

7-2 II 1 : VANDAL ^-A i-r'!

VANDALS FORTRAN EE3Sb MSB SS§ ¥1901 E§S|0| E Si El. KINSb S • S 2fSf7|eeS2j ggog ggg (Environment Agency) EE¥ El Sxl| TIME4/VANDAL EEAI3B8 ESS E Sib aa]2| Olg-Bi @EA| Source 55 3198 T§fi E Sib BB|E EOlBSiEDl, HSnmja -gm pfloilfe 3 SA1| u||Q|g be eg son eespie ekm sm. 01 =sis vandal 33319011 mbs ai

§Xl7l #@°| a^g ¥1901 VANDAL 333398 ^§5fe HI SEBb 899 AH^S

¥S1§ *H 89 b HI MS S9S Ai#@ife 9o|ei. o |98 9E1&I 2.B0IB EB xi

Ails HISS VANDAL DllSMEEl STS 4" SiB.

1. EXECUTIVE E3 #9

EXECUTIVES SUBB ¥2IS HI HI ESB MSS @#E1 E^*B Si§ All 9 9 b 9BB application-free methodOIB. WliS D|B| gsHEJ BA1H13. Eb SS° 3 L1SS B99b bSHIS MS E SiB. AlgxfS EXECUTIVE SSHS ES9b bbs snii- mm01 oieis Hioirn sesfls 4= %B. executives ms mss 8BB EA1HI3 ¥£!§§ ¥5fe 90|B.

A|3I9S BBSS TEH Algxpi AH(S)SSS0|I4 a»S3. %0| SMAIHI 3B3 B SSE5 BBS SHI3 3 3ES EB9b 98 H§SH. HIMSOI, 3 TEb BE SAiS SS@ 4= Si3 SEES 8BBE3 Eb S SB 2E x||71|2j SEE S@@ EE Si El. o | B| S Eb 8SSS XUS BS8 SBM tiSSHI B5H SSBB. BBS VEliS EXECUTIVE? 1 01B 3SB BE1H|0|30|| B6H B3@8 SB9019

SE1. a»3S ¥Ei° 390| EEBHI HIS BElHIOlb X|@# EESBb 98 B¥l 3 £|7I| OIM# E Si El. 3SXI %@ 9b, 3 S El 511013 X|§S ESB901 SB. EXECUTIVE* A lb @101 ¥SS§§ 3x119b S@SS 3 EES# A|0|S| BB5||0|3 71 BB9b SbHIB SSS E SiElb S8 3890101 SB.

A1 - 1 EXECUTIVES S3 SS§ £15101 5|§A|?|fe g^S BSB EB.

(1) aoig ane aansa bsb. aanes ui;ii BB, aaAiia, eaaa bb b. ags ans 01 si 7H°i ##n aaAiia aan#* 7iAis ssa BB. 01 as a# vans a ansi sa be bm ugu.

(2) aanoii ®as uioiei* agsB. a sang sa ssb chioieh* isg g

aoip. n§ 01® sss agn a site sag® san a Ba be use b

3 CHI01eh aaja BBAIS E1E ¥ana¥B ggBfe ®A|(intermediate) &10| b. oi7iAH diaib a ##s as 33 a a 3 an a bb. oi#e sibb san oiiah be aaa soibs hioib sseoib. (3) chi 01 eh 71 33BS a* xiasB. a bioi eh wgoii msioi oia ¥anoi BBS

33BSAI, BB, AIS3°| %IB ## XI3SB. o|BS gag BBS tH|0|Bm|o|

aoii asn a sjb. oias bbs 3@aa B7hb a BB coin 501, 01a hi 01 Ei ssftoi bbb sanoii bsh ggBSxi, bb hioieh sseoi bbb s

anoii B5H aaBSAi, 01a ss-eoi a BEHHioiaoii bs*i, ##). 01 gas

HIB§I §&5iB. BBAH SIBB BBS SBB0101 SIB aS ¥an#0| OIBOII SSBOIOI SB. (4) sanss aa HiaasB. vasts executives aisbb aom a Ba AH a sagaa Eiiaan a bb. (5) EXECUTIVES customize&B. 0|%g BBS ¥SSi§ S@5IS FORTRAN AHM ¥B#B SAHI 0ISS8 a#5|a# EXECUTIVE AHMEB (EXMOD)S edit SIS 2 S HIISB. 0I5JE BBB call® SBS1S BIBB GOTO statements @SHB B. 3 calls vant #B 5IB* SSSB. ¥SiiS BEA| Model Definition FileB Model sectionOIl BS BB BS SAM a 0| 3B0II BBB01 SB. (0|%0| sa SBB vast asS7i bsoh 01a ahmeb* cans a®7i* EXECUTIVE71 01b 3Q0|B.) Model Definition File0| B#0|| SB. 0|3S EXECUTIVE User GuideOlia AH#BB. 0|3S BS HI section* 7lX|a °|B.

- Models sections 3. an B ¥anE3 ZL * 0| a SIS Ufi B7HSB. - Groups sections BSEB BS 7|SS BAHS B7HSB. - Variables section* BB 3BB Ba#(S, 6133 tSB S7|0II EAHBS %

A1 - 2 #)@ STiSH S7|Stmn.

- Constants sectionS P|£J @SjS S¥SS @7HmS E7|£fSm. (6) Command m^@ Sm. @@ ¥SS II BUS] S@g ?H|OfHI A!§# SgOj

if IS§P.

(7) E||¥MSm.

2. AII5S VBISS ¥7|6!# ?!X>

01 sms ah ¥B#o| 7|g°! ¥B1! oil ms CHAHSSOI spHm mSPJ 3So|| mgg

m.

(1) ah eesoi i°g ms DiioiEH* sstm. oneem, mmm aubs GEOSPHERE BBSOI mmams 7|mmx|. j. AH BBSS A||2Jm9 VANDALOH

me ege sum. oimg me ¥£iss am mss mio ieh» mam sss s

g mmsm. em ¥ geosphere ¥bsoii msH turns mioieh® has ms ¥

ess ah ¥ese¥Eie ss hioieis sit moim. wm sme, ah GEOSPHERE ¥fiUS ¥ ¥HS0|| 2|5H tSSElS HS PJE-|7||0|S SS#g

mmoi sm. ah ¥ess ¥ ¥esoii m§n aems eiioiei§ w¥s see mm

ee sum. oiy moim sm#s mss sm*noi¥ A^oiiAi $mm7i

(redundant) B &A|# ¥ SUm. SS0j|, AH ¥E1S VANDALS] ¥43011 S|6H tS

mmxi %s ¥7ims mioiEH« e¥s ee sum. oiy hioieioii mmms a ms

sssoi suoioi sm. oims me ¥ess ee sue (oi ss eesoi em#

ms me sa2iioi±e. mAimee esmmoi sm) e bsoii ahss yms ee

sumcoi gsoii mss moim mm ¥bsoi bse^h m mmsi ahes hi mm s m ¥esoi ^mmmoi sm). (2) AHes ¥fii§ se EH^ssm. emmmoi # ess nm su@ ¥e su

m. executives! ejE-wi^msi ms me om s*fim semms oims me

smoii tdisH me s semxi %m. ahbs bbsoii sish ais@ 7im#m mm#

s me ¥ss#m ¥smmoi sm. (sewi^ ss eeee¥Ei es erne

A1 - 3 7|E OJEJBIIOI^ pO|p» ftA|p7| ppp) AHSS SlEy2||0|9 AyuEBftS EE

E0| MS tE SIP. am Oigoj EftO| ftAHEPB EE 9PP7| PO|Ey #E SE ft*l|p0|0|: ftP. (3) EXECUTIVES pA| customize aP. Sis AH ¥EftO| 9 ¥E1S PAIiaPB E

see pep 9- a ns eh *11 a 9 sip. am 9 ?HP ¥Sftoi gsa poipb All ¥EiS PE 0|#@ i2Z aP. EES Model Definition Fileft EXMODOII ¥7|p0|0| °fp. command fileE PPP ES ft 19 011 S9PE BSS MeypE¥

Esppoi gtp. e ¥sftoi as a# pm on sea 9 ap. use pe 01# S 7IAIHE PE ¥EftO| MPEAIOII PI©H SEE SIP. (4) Command file# £P. AH ¥EftP 9 ¥S1 ft P PE command file# A|gp 04 EE S19Pm5¥P a 19ft 9 SIP. 9 command fileS 9 ¥E1§ ft 19 PE P A|gsj - oiC| oil o|#0| AH 0|#og pxtlft AH5S command fileS AHSE ¥EftO)| PP04 MSM 9 SIP.

(5) e||9MP.

3. El ¥Eii 97IPE Oil poll Ay maa ftftOII pp Aiaaioia timescaleOII Eft SS SEP 8Hg AH9SS E SSIfe AHSS VAULT ¥Ei 97IPE ES 9B4SHEP. 0|EE 7|SP VAULT ¥£I oil pyo S OISE 9 SIP.

(1) AH ¥EftO| ft£E PE P0|Ei# Esap. P*ll VAULT ¥EftP *115 0|<2J0||E VANDALOII PE SEE SIP. SP GEOSPHERE ¥EftE VAULT ¥EftE¥P

EE mas 29ap. nay he. ahes vault ¥EiE 7is°i vault ¥£ftoii P8H ftSPE EE aEy$||0|9 SftSS ftEPPOl ap. £ A1-1E A||ES VAULT ¥SftO|| pa SjEy$||0|9S PPftP. A||5S VAULT ¥EftE 9 VAULT ¥9 ft oil PSH E9PAI mas B9 TIMMAXS 29ftP. 0| B9E CONTRL command blockO||Ay ft7l| 0|§ 7|SPHE 0| pO|Ey SftS X4I5PE PI Ep7| SIP. E 7HP Ays PE VAULT ¥EftO| VANDALOII gga PSOIEE

A1 - 4 redundant P|0|Ei §ae ^y5|A| &#rE|. E&m ygJ AH ¥£1I0| ¥

PI *11 My 0|*|| o ^-ejxi ss E||0|Et liagg VANDAL SEW X||7H£|(»

0\ &E|.

(2) A||£# ¥fii§ EE Et|±EgEt. All # ten ¥S^E)O)0t S SIS WOI 8>{Et. A||S# VAULT ¥£^01 7|#V| ¥E#PI H|oH fly ¥8 P|0|E|g §2

E me 3¥ ahss pre a-imesoi yot# n£7i %tp. (3) EXECUTIVES EfA| customize °FP. AH VAULT ¥E1tiO| sjAH°I EEW SStt

oiisoie erg oigg is^ sekoii, newvau). oi ah ^eioii caiioi EXMOD.FOR AHM¥Sm computed GOTO statementOII ¥7|E|010) EfE|. model definition filePJ DEFMODEL.DATE models sectionOII EUI NEWVAU# EflnlE

# ¥SS A271 ojEL 0| A|| sajg EXEVAU S#2J USEE ¥7lgEL

(4) Command file# #EL ¥ VAULT ¥E^ (EXEVAU)# #@@|7| Wti 7|#£| VANDAL.CTRL HfQJO| A|@# ¥ 2m. AH VAULT ¥£^« #%#7| flSfOt VANDAL. CTRL# NEWVAUE EXEVAU# PI WE# r§l #S7l %(Ef. (5) PIEESER y, ¥ VAULT fiii# 3fg PI EE p|0|EM yP|A-| ##8H#Ef. 0| PI EE# Efg VANDAL.CTRL Eli!## 7l*|fe #S Alg§|Ol sH5|]xj

P.

At 5 S Al-1. AHSS VAULT ¥fiWO|| UIS ojE#|0|^

f E INPUT OUTPUT

AH mg VAULT ^2 #0|| SJ BELT IVAULT §H 2gE|g q|0|Bj ISTEP RINVT IV SALPHA LEGV LVAULT NNUC RINI TIMMAX VV

7IEBI gq ojElnllol^s ALP RLM Ma|?|7| g| oho| AH mg EPT SBETA VAULT ¥H#0|| °|6H 2g GRAIND VRT 5|g ¥7H5j°J C||0|B| HAFLIF VRTOLD RKD

A1 - 6 ',"4 2 : VANSTAK E‘.!. AY'!

VANSTAK (VANdal STatictical Analysis for Kins)b VANDAL §@3| olE|°J CONDOSES.DAT STl^EE g&|g|g @#E1 3E3@0|E|. 0| EE3@g

IDL(Interactive Data Language) 5 3@£|(3EPl IDL EEEflKXOII 2|5|f E 91

C4.

VANSTAKfe CONDOSES.DAT 3|i! 0|2|0|| HE2| %l@ iS5 §1*1 n^oii Ajsyoii gosi. 2|EL|n|E-isoj EEna yoii %i@§iE# 5401

VANSTAKb «0| 3711 01^ ¥bEE M¥|0| %El.

1. EE3i«£| 0|#3l 7|b, VlBfDlE-l s^o| X||A|gnf.

2. AfgX| °J@

A1SX171 5JQ y^SlOiOl tt ¥E0|LL

3. CONDOSES.DAT CONDOSES.DAT* glOIBOlE Sib 3EHE 3BH¥ 4. §H@ A1B1|04^.01| cHufoi E@@ VANDAL (Monte Carlo A|ga||0|ti) #312| ¥ S3 Hi El.

5. MS1ES bifo|| NISI @331 MbKHI CHS §Mf 0|g@|0i b@7|D|gi3| 3&IE# @7121 El. 6. 313

*S| %b 3|3(peak)0|| m§f(H

Tll^joj g^g EMP.

A2 - 1 888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 * $ * VANSTAK - VANdal STatistical Analysis program for Kins * 8 8 $$$888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

$$$$$$8$8$$$$$$$$$$$$$$$$$$$8$8$88888888$8$8$$$$$$$$$88888$8$$8888$8$8$88$888888$8$888$8$8

8 8

* This program analyze the VANDAL outputs (C0ND0SES.DAT) statistically to estimate *

8 $

* - Convergence of the Monte Carlo Simulation *

* - Uncertainty of the Case Study *

* - Sensitivity of Parameters involved *

$ 8

* VANSTAK provides *

$ $

* - All-data plot showing all the simulations from case study : allplots.bmp *

* - Surface plot showing all the simulations as a form of surface : surface, bmp *

* - Number of runs required for convergence : convergence.bmp *

* - Mean doses with 95% confidence limits : confidence, bmp *

* - Percentile plots (95, 75, 50, 25, 5) = percentile.bmp *

* - Peak dose = peak_dose (Sv/yr) *

* - Time at which the peak dose occurs : peak_time (yrs) *

* - Frequency distribution of doses at peak : frequency (.bmp) *

* - Relative fequency distribution (pdf) of doses at peak : pdf (.bmp) *

* - Cumulative relative frequency distribution (cdf) of doses at peak : cdf(.bmp) *

* - Histogram of pdf for doses at peak : hpdf. bmp. *

* *

* VANSTAK uses the following parameters: * t X

* - c_groups : number of critical groups; number of rows for each timestep *

* - c_nuclides : number of nuclides on each chain *

* - cdf : cumulative relative frequency of doses at peak point *

* - C0ND0SES.DAT : name of the VANDAL output file *

* - cl_lower : 95% lower confidence limit of "ml" *

* - cl_upper : 95% upper confidence limit of "ml" *

* - data(i,j) : array of doses, read from C0ND0SES.DAT *

* - f_output = indicator for whether output is linear or logarithmic *

* - frequency = frequency of doses with respect to "levels" at peak point *

A2 - 2 ;* - i output (time point) number *

;* - j run (or simulation) number *

* - levels dose intervals array for constructing "pdf" and "cdf" *

* - line_2 the second line of C0ND0SES.DAT *

* - line_3 the third line of C0ND0SES.DAT *

* - ml,m2,m3,m4 : moments of "j" in "data" - mean, variance, skewness, kurtosis $

* - n_chains number of chains in case study *

* - n_conv number of runs or samples required for convergence of case * * study according to the "stopping rule A" *

* - n_output number of output times for doses *

* - n_pos the element "i" in n_output, at which the "peak_dose" occurs *

* - n_run run number in the simulation *

* - nuclide nuclide name *

* - pdf relative frequency of doses at peak point *

* - peak_dose peak or maximum dose as a mean value [Sv/yr] *

* - peak,time time point at which the ”peak_dose"occurs [yrs] *

* - runs number of runs or simulations in case study *

* - s_data "data" sorted from the smallest to the largest element in "j" *

* - t_start time at the start of the simulation, years *

* - timestep timestep between outputs in C0ND0SES.DAT [yrs] *

* - title the first line of C0ND0SES.DAT (title of case study) * t z tzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

A2 - 3 !EXCEPT = 2 ; This is for identifying, if any, the line(s) where the error happened

;**$******$*$*$*************$*******$$$$***$**$**$***$**** ;* ;* USER INPUT : The following parameters should be inserted by user before running ;* Jill*********************************************** :******* :** *

OpenR, lun, '800.txt', /Get_lun ; insert the name of C0ND0SES.DAT file to be analysed

levels = [0, IE—13,IE-12, IE-11, IE-10, IE-9, IE-8, IE-7, IE-6, IE-5, IE—4] ; 11 elements

runs - 800 ; Insert the number of VANDAL runs (or simulations)

y_lower = 1.0E-07 ; Lower bound for plotting mean dose with 95% confidence limits

y.upperl = 3.0E-05 ; Upper bound for plotting all data

y_upper2 = 1.0E-06 ; Upper bound for plotting mean dose with 95% confidence limits

y_upper3 = 2.0E-06 ; Upper bound for plotting percentiles

******************************************************************************************

title = ' '

line_2 = ' '

line_3 = ' '

nuclide =

n_run

A2 - 4 tXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXXXXXtXX * $ * READ INPUT DATA directly from CONDOSES. DAT file * * $ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ReadF, lun, title

ReadF, lun, line_2

ReadF, lun, line_3

ReadF, lun, t_start, timestep, n_output, c_groups, n_chains, f.output

ReadF, lun, c_nuclides

ReadF, lun, nuclide

runs = Fix (runs)

data = DblArr (n_output + 1, runs + 1)

s_data = DblArr (n_output + 1, runs + 1)

ml = DblArr (n_output + 1)

m2 = DblArr (rvoutput + 1)

m3 = DblArr (n_output + 1)

m4 = DblArr (n_output + 1)

cl_lower = DblArr (n_output + 1)

cl_upper = DblArr (n_output + 1)

n_conv = DblArr (n_output + 1)

X = FIndGen(n_output+l) * timestep

Y = FIndGen(runs + 1)

FOR i = 0, n_output DO data(i,0) = 0.0

FOR j = 0, runs DO data(0,j) = 0.0

FOR j = 1, runs DO BEGIN

ReadF, lun, n_run read the title line of data for each run

A2 - 5 FOR i = 1, n_output DO BEGIN

ReadF, lun, input, Format = '(G20.4)' ; read data for each run

data(i,j) = input ; i = time number, j = run number

ENDFOR

ENDFOR

;All Data Plotting - shows all the data (i.e., simulations) directly.

Window, 0

Plot, X, data(*,0), YRange = [0, y_upperl], XTitle = 'Time (yrs)', $

YTitle = 'Dose (Sv/yr)', Title = 'Plots of All VANDAL Runs'

FOR j = 1, runs DO OPlot, X, data(*,j)

WRITE_BMP, 'allplots.bmp', TVrd()

Surface Plotting - shows all the data as a form of surface

Window, 1

Surface, data, X, Y, XTitle = 'Time (yrs)', YTitle = 'Run Number', $

Title = '!17 Surface Plots of All VANDAL Runs !X'

WRITE_BMP, ' surface, bmp', TVrdO

A2-6 $ 1 * CONVERGENCE ANALYSIS : "95% Stopping Rule A" to estimate the number of * * samples required for convergence * t $ $$$$$$$$$$$$$»$$«$$$$$$$$$$$$$$$$$$$*$$$$$$

FOR i = 1, n_output DO BEGIN

result = Moment(data(i,1:runs), sdev=s) moments evaluating function

sdev = steandard deviation

ml(i) = resultIO] 1st moment - average of each row

m2(i) = result!1] 2nd moment - variance

m3(i) = result[2] 3rd moment - skewness

m4(i) = result[3] 4th moment - Kurtosis

cl_lower(i) = ml(i) - 1.96 * s / sqrt(runs) ; lower 95% confidence limit

cl_upper(i) = ml(i) + 1.96 * s / sgrt(runs) ; upper 95% confidence limit

a = m3(i) * ( 1.96*1.96 - 1.0 ) / ( 12.0 * 1.96 * ( 1.05 - 1.0 ) )

b = 1.0 /( 2.0*1.96*(1.05-1.0) ) $

* Sqrt ( m3(i)*m3(i)*(l.96*1.96-1.0)*(1.96*1.96-1.0)/36.0 $

+ 4.0*1.96*0.05 * ( m4(i)*(l.96*1.96*1.96-3.0*1.96)/24.0 $

- m3(i)*m3(i)*(2.0*1.96*1.96*1.96-5.0*1.96)/36.0 ) )

IF ( Abs(a+b) GE Abs(a-b) ) THEN m = a+b ELSE m = a-b

n_conv(i) = m*m ; number of samples required for convergence

ENDF0R

Convergence Plotting - shows the number of runs required for convergence with time.

Window, 2

A2 - 7 Plot, X, n_conv, YRange = [1E2,1E4], XTitle = ’Time (yrs)', YTitle = 'Number of Runs', $

Title = 'Convergence Test with Stopping Rule A', /YLog

WRITE_BMP, 'convergence,bmp', TVrd()

A2-8 SZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZS*S* Hit...... tZSSZZZtZZZZZZZZZZZtt $ $ * UNCERTAINTY ANALYSIS : Expectations and confidence intervals for mean doses * $ t iiZiiiiiiiiiiiiiiiiiiiiiiiiiiZiiZiiiiiiiiiiiiiiiiiitZiiiittZiitiiZiiZZZZiiittZttittiiiiiit

Uncertainty Plotting - shows mean doses with 95% confidence limits as a function of time.

Window, 3

Plot, X, ml, YRange = [y_lower, y_upper2], XTitle = 'Time (yrs)', $

YTitle = 'Dose (Sv/yr)', Title = 'Mean Dose with 95% Confidence Limits'

OPlot, X, cl_lower, LineStyle = 2, color = 100

OPlot, X, cl_upper, LineStyle = 1, color = 200

XYouts, 0.4, 0.30, /norm, '___ Mean'

XYouts, 0.4, 0.35, /norm, '...... Upper Limit'

XYouts, 0.4, 0.25, /norm, '—Lower Limit'

WRITE_BMP, 'confidence.bmp', TVrdO

Wait, 2 ; Carry out the next lines after 2 seconds !

FOR i = 1, n_output DO BEGIN

s_data(i,*) = Sort(data(i,*)) ; sort data w.r.to runs at a time point

FOR j = 1, runs DO BEGIN

s_data(i,j) = data(i,s_data(i,j)) ; re-arrange the data w.r.to percentiles

ENDF0R

A2 - 9 ENDFOR

FOR i = 0, n_output DO s_data(i,0) = 0.0

FOR j = 0, runs DO s_data(0,j) = 0.0

Percentile Plotting - shows the range over which data distribute.

e.g., s_data(95,10) corresponds to 95 percentile in dose values or runs at 10th output time point

Window, 1

Plot, X, s_data(*,0.05*runs), YRange = [0, y_upper3], XTitle = 'Time (yrs)', $

YTitle = 'Dose (Sv/yr)', Title = '95, 75, 50, 25, 5 Percentiles of Data', /YLog

OPlot, X, s_data(*,0.25*runs)

OPlot, X, s_data(*,0.50*runs)

OPlot, X, s_data(*,0.75*runs)

OPlot, X, s_data(*,0.95*runs)

WRITE_BMP, 'percentile.bmp', TVrdO

A2 -10 £££££££££££££££££££££ £££ ££££*£ ££££££££££££££££££££££££££££££££

* PROBABILISTIC ANALYSIS for PEAK DOSE * £ £ ££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££££

events = FltArr(10)*0.0

pdf = FltArr(10)*0.0

cdf = FltArr(10)*0.0

peaK_dose = Max(ml, n_pos) ; n_pos = the 1-d subscript of the maximum element in ml

peak_time = n_pos * timestep

Print, 'Peak Dose = ', peak_dose, ' Sv/yr at time = ', $

peak_time, ' yr'

FOR i = 1, runs DO BEGIN

FOR j = 1, 10 DO $

IF ( data(n_pos, i) GE levels(j-1) AND data(n_pos, i) LT levels(j) ) THEN $

events(j-1) = events(j-1) + 1

ENDFOR

FOR i = 0, 9 DO pdf(i) = events(i) / runs

FOR i = 0, 9 DO cdf(i) = Total(pdf(0:i))

Frequency Plotting - shows the frequency distribution of doses at peak

frequency = Fix(events)

Window, 0

A2 -11 Plot, levels(l:10), frequency, XTitle = 'Dose (Sv/yr)', YTitle = 'Frequency', $

Title = 'Frequency Distribution of Doses at Peak', /XLog

WRITEJ3MP, 'frequency.bmp', TVrd()

PDF Plotting - shows the relative frequency distribution or pdf of doses at peak

Window, 1

Plot, levels(1:10), pdf, XTitle = 'Dose (Sv/yr)', YTitle = 'Relative Frequency', $

Title = 'Probability Density of Doses at Peak', /XLog

WRITELBMP, 'pdf.bmp', TVrdO

CDF Plotting - shows the cumulative relative frequency dist. or cdf of doses at peak

Window, 2

Plot, levels(l:10), cdf, XTitle='Dose (Sv/yr)', YTitle='Relative Cumulative Frequency', $

Title = 'Cumulative Density of Doses at Peak', /XLog

WRITOMP, 'cdf.bmp', TVrdO

Bar Plotting - shows the histogram of relative frequency distribution of doses at peak

Window, 3

Bar_Plot, pdf, XTitle = 'Dose (Sv/yr)', YTitle = 'Relative Frequency', $

A2 -12 Title = 'Density Histogram of Doses at Peak'

WRITE_BMP, 'hpdf.bmp', TVrdO

END

A2 -13 (OJCTH 01 til)

A2 -14 A1 X| § 51 Ol: Al

9 97|0 =#7|@ snA-iys ^HA-iy 5; Ail 3 . H SJIA-lujS.

KINS/RR-103

Aiio'Aioan7i#^xn7|0 / ^A|^2l|7|#xigA|^ oig&ggs f|«h VANDAL 88 88

9 5099 %l 5A|0 s a- ¥ (i?AH7|#oi^w ^A^aaaf^)

97|oi, a85 , a 85 , 9Seh , s#oi, 30$, 9 sah , 9 EH9, 39a, 899, o|ge, o|5*i, gxiie, SAM#

8 0 9 m s 90710 95 8 A|9 99 7158 99 9 2002 9 29

2|| o| x| 184 p '-{ ) H7| 29 cm

Un A(#

98 oi- \n o, EH 9 w| ( ) 5HAi 95SHA1

0 39 07|0 71199 3:

5# (300 9CH L|]2|)

0| t-AJLAlb S • Ai 5 ¥1 y AI y ill 71E a a AIAJ oil L|| m £}SS3 ?JS 3 0 719501 VANDALS 80 6(31 3 fi5-!i 53 5(fe a99 088 Aif&sm. VANDAL(Variability ANalysis of Disposal ALternatives) R- 0 50119 5X4ISg-§9.5 7H0@ %05A| 06|| ?J x( 9937 H9 A( a(0A(0$||7|g 5All7|5All9 )g Soil 5Ml S§0|| %A|| 9399904 899 S9 3931 1421 59011 nam stmoi 99999 .

§AiE99AH M|7|#Ai^A|a 93 397(9 540S A|i||oj5 -A' ojsi7( 99 A|#o| *=899 9*118 1 910 E99 5(95 9889. 3B4H5 KINS9 85*(7( VANDALS O|g0 A(ei|059 99 9V# 50 0011 90i 0| X| § oil A | A||A|e|b 399 00 8 95 b %0| S589. 0| *|§<8 8(99 EE° 5 N« OH 95# 3.S3515. 500 5 9S° SE 309 #9 oil 3oil 990S 89 0 559 6H0 3*110 #9 64 939 530| Mil 5 9S %0|9.

0Q, 0| 909 Ml h o Si2 A(@x(#9 590 A|S9 99 8 Sell £988 7HS 58 8 125 09.

Ai| 07|85 (1089 lh 2|) 0A|8$||7|gA|5Aia. 9*E3 033 0 7(, VANDAL

TIME4, 0#o|#, Monte Carlo Simulation, Latin Hypercube Sampling BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Standard Report Subject Code Report No. Report No. No.

KINS/RR-103

Title/Subtitle Development of Regulatory Technology for Radioactive Waste / User Guide for VANDAL : A Probabilistic Safety Assessment Code for Radioactive Waste Repository Project Manager and Dept. Jeong, Chan Woo (Regulatory Research Div.)

Researchers and Dept. Ki-ln Kim (Radiation & Waste Safety Evaluation Dept.) el al.

Pub. Place Daejeon Pub. Org. KINS Pub.Date Feb. 2002

Page 184 p Fig. / Tab. Yes(O), No( ) Size 29 cm

Note

Classified Open O. Outside) ) Report Type Research Report Sponsoring Org. Contract No. AbstracHAbout 300 Words)

This report describes the procedures and methods to carry out the VANDAL (Variability ANalysis of Disposal ALternatives) code, which is a probabilistic safety assessment computer program for low- and intermedate-level radioactive waste disposal facilities, and to analyze the outputs. Originally, the VANDAL was developed in the United Kingdom for the regulatory evaluation of disposal safety. Through its research project "Development of Regulatory Technology for Radioactive Waste", the KINS has made some efforts to adapt this code to the Korean circumstances. This report also includes the corresponding results in terms of input and output management.

This report was prepared as a practical guidance which is applicable to case studies and independent regulatory evaluations related to safety assessment of the low- and intermediate-level radioactive waste repository. Therefore, it is desirable that in performing the related activities, the KINS staff follow the procedures and methods presented here. This guidance may provide a consistency in the VANDAL run and the corresponding output interpretation and contribute tc the overall reliability and the quality assurance of the safety evaluations.

Subject Keywords (About 10 Words) Radioactive Disposal Facility, VANDAL, TIME4

Probabilistic Safety Assessment, Monte Carlo Simulation, Latin Hypercube Sampling