Virginia Trimble to Speak on "The Universe You Don't See: Existence and Nature of Dark Matter"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
89 Minor Planet Bulletin 47 (2020) LIGHTCURVE PHOTOMETRY
89 LIGHTCURVE PHOTOMETRY OPPORTUNITIES: The SR magnitudes should be used when observing without (or 2021 JANUARY-MARCH with a Clear) filter and typical CCD cameras (e.g., FLI, SBIG, etc.) with a KAF-E chip (blue enhanced) or another chip with Brian D. Warner similar response. This is because those chips have a very good Center for Solar System Studies / MoreData! linear fit of catalog versus instrumental magnitude for the Rc and 446 Sycamore Ave. SR bands and so, if using near-solar color stars, there is no need Eaton, CO 80615 USA for additional reductions such as color term correction. [email protected] Regarding H-G observations, the question of how much data is Alan W. Harris enough is often raised. The answer is, “It depends on the nature of MoreData! the observing project.” To that, we’d add that having just a few La Cañada, CA 91011-3364 USA data points at each observing run places a much greater demand on having accurate magnitudes. If those requirements are on the order Josef Ďurech of 0.02 mag, that stretches the limits even when using the high- Astronomical Institute quality catalogs. Charles University 18000 Prague, CZECH REPUBLIC The H-G system is based on average light at the time of the [email protected] observations, i.e., the amplitude of the lightcurve at the time must be known and, if necessary, those few data points be corrected so Lance A.M. Benner that they correspond to “mid-light” at the time. Since the Jet Propulsion Laboratory amplitude often changes as the asteroid recedes or approaches, it’s Pasadena, CA 91109-8099 USA necessary to obtain enough data points during each observing run [email protected] to establish or reasonably predict the mid-light magnitude. -
The Planetary and Lunar Ephemerides DE430 and DE431
IPN Progress Report 42-196 • February 15, 2014 The Planetary and Lunar Ephemerides DE430 and DE431 William M. Folkner,* James G. Williams,† Dale H. Boggs,† Ryan S. Park,* and Petr Kuchynka* ABSTRACT. — The planetary and lunar ephemerides DE430 and DE431 are generated by fitting numerically integrated orbits of the Moon and planets to observations. The present-day lunar orbit is known to submeter accuracy through fitting lunar laser ranging data with an updated lunar gravity field from the Gravity Recovery and Interior Laboratory (GRAIL) mission. The orbits of the inner planets are known to subkilometer accuracy through fitting radio tracking measurements of spacecraft in orbit about them. Very long baseline interfer- ometry measurements of spacecraft at Mars allow the orientation of the ephemeris to be tied to the International Celestial Reference Frame with an accuracy of 0′′.0002. This orien- tation is the limiting error source for the orbits of the terrestrial planets, and corresponds to orbit uncertainties of a few hundred meters. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of fitting spacecraft tracking data. The orbits of Uranus, Neptune, and Pluto are determined primarily from astrometric observations, for which measurement uncertainties due to the Earth’s atmosphere, combined with star catalog uncertainties, limit position accuracies to several thousand kilometers. DE430 and DE431 differ in their integrated time span and lunar dynamical modeling. The dynamical model for DE430 included a damping term between the Moon’s liquid core and solid man- tle that gives the best fit to lunar laser ranging data but that is not suitable for backward integration of more than a few centuries. -
Homogeneous Internal Structure of CM-Like Asteroid (41) Daphne?,?? B
A&A 623, A132 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833898 & © B. Carry et al. 2019 Astrophysics Homogeneous internal structure of CM-like asteroid (41) Daphne?,?? B. Carry1, F. Vachier2, J. Berthier2, M. Marsset3, P. Vernazza4, J. Grice1,5, W. J. Merline6, E. Lagadec1, A. Fienga7, A. Conrad8, E. Podlewska-Gaca9,11, T. Santana-Ros9, M. Viikinkoski12, J. Hanuš14, C. Dumas15, J. D. Drummond16, P. M. Tamblyn6,17, C. R. Chapman6, R. Behrend18, L. Bernasconi18, P. Bartczak9, Z. Benkhaldoun10, M. Birlan2, J. Castillo-Rogez19, F. Cipriani20, F. Colas2, A. Drouard4, J. Durechˇ 14, B. L. Enke6, S. Fauvaud18,21, M. Ferrais22, R. Fetick4, T. Fusco4, M. Gillon22, E. Jehin22, L. Jorda4, M. Kaasalainen12, M. Keppler13, A. Kryszczynska9, P. Lamy4, F. Marchis23, A. Marciniak9, T. Michalowski9, P. Michel1, M. Pajuelo2,24, P. Tanga1, A. Vigan4, B. Warner25, O. Witasse20, B. Yang26, and A. Zurlo4,27,28 (Affiliations can be found after the references) Received 18 July 2018 / Accepted 7 January 2019 ABSTRACT Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy and numerical modeling of their early thermal evolution. Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations. -
The Minor Planet Bulletin (Warner Et Al., 2015)
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 42, NUMBER 3, A.D. 2015 JULY-SEPTEMBER 155. ROTATION PERIOD DETERMINATION period lightcurve with a most likely value of 30.7 days (737 FOR 1220 CROCUS hours). He noted that periods of 20.47 and 15.35 days (491 hours and 368 hours, respectively) were also compatible with his data. Frederick Pilcher His lightcurves of 1984 Feb 7-9 showed a second period of 7.90 Organ Mesa Observatory hours with an amplitude 0.15 magnitudes. Jacobson and Scheeres 4438 Organ Mesa Loop (2011) describe how, following rotational spin-up and fissioning, Las Cruces, NM 88011 USA an asteroid binary system can evolve by angular momentum [email protected] transfer into a system in which the primary acquires a long rotation period and the satellite has a long orbital revolution period around Vladimir Benishek the primary and short rotation period. Warner et al. (2015) list Belgrade Astronomical Observatory 1220 Crocus as one of eight systems in which a slowly rotating Volgina 7, 11060 Belgrade 38, SERBIA primary may have a satellite. The several authors of this paper agreed to collaborate in a search to confirm the existence of the Lorenzo Franco short period and obtain a reliable value for the large amplitude Balzaretto Observatory (A81), Rome, ITALY long period. A. W. Harris Observers Vladimir Benishek at Sopot Observatory, Lorenzo More Data! Franco at Balzaretto Observatory, Daniel Klinglesmith III and La Canada, CA USA Jesse Hanowell at Etscorn Campus Observatory, Caroline Odden and colleagues at Phillips Academy Observatory, and Frederick Daniel A. -
The Minor Planet Bulletin, 30(3), Pp
1 THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 31, NUMBER 1, A.D. 2004 JANUARY-MARCH 1. ASTROMETRIC PROGRAM FOR JR refers to asteroids nearby to the 3:1 mean motion resonance NEAR-EARTH OBJECT SOURCES with Jupiter, MC are the Mars Crossers, NU are objects in the ν 6 secular resonance. Sergio Foglia UAI Minor Planets Section Recorder References F. Bisleri 11, I-20148 Milano, Italy € [email protected] Morbidelli et. al. (2003). Understanding the distribution on Near Earth Objects. http://www.obs-nice.fr/morby/ESA/ esa.html (Received: 24 September Revised: 6 October) MPC Orbit Database. ftp://ftp-cfa.harvard.edu/pub/MPCORB/ 2003 Sep. 17, Minor Planet Center A new astroometric program is proposed for asteroids located in likely source regions supplying the near-Earth Proper Elements of Minor Planets. http://hamilton.dm object population. .unipi.it/astdys/ 2003 Sep. 17, Asteroid Dynamic Site According to Morbidelli et al. (2003), near-Earth objects (NEOs) come mainly from 5 sources with the following contributions to the population: the ν 6 resonance region at the inner border of the asteroid main belt (37 ± 8 %), the 3:1 resonance region in the middle of the asteroid main belt (23 ± 8 %), the Intermediate Mars-Crossing (IMC) population (25 ± 3 %), the Outer Belt (OB) population€ (8 ± 1 %), and the population of dormant Jupiter Family Comets (JFC) (6 ± 4 %). Astrometric measurements of objects in these source regions would be very useful to increase knowledge about the NEO source population and solar system dynamics. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 1, A.D. 2010 JANUARY-MARCH 1. ASTEROID LIGHTCURVE ANALYSIS AT THE OAKLEY As far as we are aware, these are the first reported observations for SOUTHERN SKY OBSERVATORY: 2009 APRIL – MAY the period of the following asteroids: 2009 Voloshina, 2217 Eltigen, 2610 Tuva, 2665 Schrutka, 3219 Komaki, 3999 Richard Ditteon, Elaine Kirkpatrick Aristarchus, 4154 Rumsey, 4358 Lynn, 4417 Lecar, 5350 Rose-Hulman Institute of Technology CM 171 Epetersen, 5567 Durisen, (5787) 1992 FA1, 5839 GOI, (6073) 5500 Wabash Ave., Terre Haute, IN 47803 1939 UB, (7255) 1993 VY1, and 13018 Geoffjames. One asteroid, [email protected] 255 Oppavia, had a published period of 14.3 ± 0.4 h found by Behrend (2009). Our data for 255 Oppavia could not be made to Katelyn Doering fit this period. Six of the asteroids appear to have long periods, but Avon High School, Avon, IN we did not get enough data to determine a rotational period. These were 1097 Vicia, 1454 Kalevala, 4147 Lennon, (5773) 1989 NO, (Received: 2009 Aug 28) (14720) 2000 CQ85, and (29665) WD24. For seven of the asteroids the lightcurve amplitude was smaller than random Photometric data for 30 asteroids were collected over 23 variation in our data, so no period could be found. This list nights of observing during 2009 April and May at the includes 957 Camelia, 2670 Chuvashia, 2869 Nepryadva, 3432 Oakley Southern Sky Observatory. The asteroids were: Kobuchizawa, 3909 Gladys, 4654 Gor’kavyj, and 8151 255 Oppavia, 957 Camelia, 1097 Vicia, 1454 Kalevala, Andranada. -
Asteroid Phase Curves from ATLAS Dual-Band Photometry Preprint
Asteroid phase curves from ATLAS dual-band photometry Preprint Max Mahlke1,2, Benoit Carry1, and Larry Denneau3 1Universite´ Coteˆ d’Azur, Observatoire de la Coteˆ d’Azur, CNRS, Laboratoire Lagrange, France 2CAB (INTA-CSIC), Campus ESAC (ESA), Villanueva de la Canada,˜ Madrid, Spain 3University of Hawaii, 2680 Woodlawn Dr., Honolulu HI 96822 USA Abstract Asteroid phase curves are used to derive fundamental physical properties through the determination of the abso- lute magnitude H. The upcoming visible Legacy Survey of Space and Time (LSST) and mid-infrared Near-Earth Object Surveillance Mission (NEOSM) surveys rely on these absolute magnitudes to derive the colours and albe- dos of millions of asteroids. Furthermore, the shape of the phase curves reflects their surface compositions, allowing for conclusions on their taxonomy. We derive asteroid phase curves from dual-band photometry ac- quired by the Asteroid Terrestrial-impact Last Alert System telescopes. Using Bayesian parameter inference, we retrieve the absolute magnitudes and slope parameters of 127,012 phase curves of 94,777 asteroids in the ∗ photometric H; G1; G2- and H; G12-systems. The taxonomic complexes of asteroids separate in the observed G1; G2-distributions, correlating with their mean visual albedo. This allows for differentiating the X-complex into the P-, M-, and E-complexes using the slope parameters as alternative to albedo measurements. Further, taxonomic misclassifications from spectrophotometric datasets as well as interlopers in dynamical families of ∗ asteroids reveal themselves in G1; G2-space. The H; G12-model applied to the serendipitous observations is un- able to resolve target taxonomy. The G1; G2 phase coefficients show wavelength-dependency for the majority of taxonomic complexes. -
Density of Asteroids
Density of asteroids B. Carry European Space Astronomy Centre, ESA, P.O. Box 78, 28691 Villanueva de la Ca˜nada,Madrid, Spain Abstract The small bodies of our solar system are the remnants of the early stages of planetary formation. A considerable amount of infor- mation regarding the processes that occurred during the accretion of the early planetesimals is still present among this population. A review of our current knowledge of the density of small bodies is presented here. Density is indeed a fundamental property for the understanding of their composition and internal structure. Intrinsic physical properties of small bodies are sought by searching for relationships between the dynamical and taxonomic classes, size, and density. Mass and volume estimates for 287 small bodies (asteroids, comets, and transneptunian objects) are collected from the literature. The accuracy and biases affecting the methods used to estimate these quantities are discussed and best-estimates are strictly selected. Bulk densities are subsequently computed and compared with meteorite density, allowing to estimate the macroporosity (i.e., amount of voids) within these bodies. Dwarf-planets apparently have no macroporosity, while smaller bodies (<400 km) can have large voids. This trend is apparently correlated with size: C and S-complex asteroids tends to have larger density with increasing diameter. The average density of each Bus-DeMeo taxonomic classes is computed (DeMeo et al., 2009, Icarus 202). S-complex asteroids are more dense on average than those in the C-complex that in turn have a larger macroporosity, although both complexes partly overlap. Within the C-complex asteroids, B-types stand out in albedo, reflectance spectra, and density, indicating a unique composition and structure.