On Various Ways to Split a Floating-Point Number
On various ways to split a floating-point number Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann Inria, CNRS, ENS Lyon, Universit´ede Lyon, Universit´ede Lorraine France ARITH-25 June 2018 -1- Splitting a floating-point number X = ? round(x) frac(x) 0 2 First bit of x = ufp(x) (for scalings) X All products are s computed exactly 2 2 X with one FP p 2 2 k a b multiplication a + b ! 2 k + k X (Dekker product) 2 2 X Dekker product (1971) -2- Splitting a floating-point number absolute splittings (e.g., bxc), vs relative splittings (e.g., most significant bits, splitting of the significands for multiplication); In each "bin", the sum is no bit manipulations of the computed exactly binary representations (would result in less portable Matlab program in a paper by programs) ! onlyFP Zielke and Drygalla (2003), operations. analysed and improved by Rump, Ogita, and Oishi (2008), reproducible summation, by Demmel & Nguyen. -3- Notation and preliminary definitions IEEE-754 compliant FP arithmetic with radix β, precision p, and extremal exponents emin and emax; F = set of FP numbers. x 2 F can be written M x = · βe ; βp−1 p M, e 2 Z, with jMj < β and emin 6 e 6 emax, and jMj maximum under these constraints; significand of x: M · β−p+1; RN = rounding to nearest with some given tie-breaking rule (assumed to be either \to even" or \to away", as in IEEE 754-2008); -4- Notation and preliminary definitions Definition 1 (classical ulp) The unit in the last place of t 2 R is ( βblogβ jt|c−p+1 if jtj βemin , ulp(t) = > βemin−p+1 otherwise.
[Show full text]