Phylogenetic Comparative Methods and Machine Learning To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Taxonomy and Biochemical Genetics of Some African Freshwater Fish Species
_________________________________________________________________________Swansea University E-Theses Taxonomy and biochemical genetics of some African freshwater fish species. Abban, Edward Kofi How to cite: _________________________________________________________________________ Abban, Edward Kofi (1988) Taxonomy and biochemical genetics of some African freshwater fish species.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa43062 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ TAXONOMY AND BIOCHEMICAL GENETICS OF SOME AFRICAN FRESHWATER FISH SPECIES. BY EDWARD KOFI ABBAN A Thesis submitted for the degree of Ph.D. UNIVERSITY OF WALES. 1988 ProQuest Number: 10821454 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. - 
												
												Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. - 
												
												Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service - 
												
												View/Download
CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name - 
												
												Comparative Parasitology
January 2000 Number 1 Comparative Parasitology Formerly the Journal of the Helminthological Society of Washington A semiannual journal of research devoted to Helminthology and all branches of Parasitology BROOKS, D. R., AND"£. P. HOBERG. Triage for the Biosphere: Hie Need and Rationale for Taxonomic Inventories and Phylogenetic Studies of Parasites/ MARCOGLIESE, D. J., J. RODRIGUE, M. OUELLET, AND L. CHAMPOUX. Natural Occurrence of Diplostomum sp. (Digenea: Diplostomatidae) in Adult Mudpiippies- and Bullfrog Tadpoles from the St. Lawrence River, Quebec __ COADY, N. R., AND B. B. NICKOL. Assessment of Parenteral P/agior/iync^us cylindraceus •> (Acatithocephala) Infections in Shrews „ . ___. 32 AMIN, O. M., R. A. HECKMANN, V H. NGUYEN, V L. PHAM, AND N. D. PHAM. Revision of the Genus Pallisedtis (Acanthocephala: Quadrigyridae) with the Erection of Three New Subgenera, the Description of Pallisentis (Brevitritospinus) ^vietnamensis subgen. et sp. n., a Key to Species of Pallisentis, and the Description of ,a'New QuadrigyridGenus,Pararaosentis gen. n. , ..... , '. _. ... ,- 40- SMALES, L. R.^ Two New Species of Popovastrongylns Mawson, 1977 (Nematoda: Gloacinidae) from Macropodid Marsupials in Australia ."_ ^.1 . 51 BURSEY, C.,R., AND S. R. GOLDBERG. Angiostoma onychodactyla sp. n. (Nematoda: Angiostomatidae) and'Other Intestinal Hehninths of the Japanese Clawed Salamander,^ Onychodactylns japonicus (Caudata: Hynobiidae), from Japan „„ „..„. 60 DURETTE-DESSET, M-CL., AND A. SANTOS HI. Carolinensis tuffi sp. n. (Nematoda: Tricho- strongyUna: Heligmosomoidea) from the White-Ankled Mouse, Peromyscuspectaralis Osgood (Rodentia:1 Cricetidae) from Texas, U.S.A. 66 AMIN, O. M., W. S. EIDELMAN, W. DOMKE, J. BAILEY, AND G. PFEIFER. An Unusual ^ Case of Anisakiasis in California, U.S.A. - 
												
												Coptodon Zillii (Redbelly Tilapia) Ecological Risk Screening Summary
Redbelly Tilapia (Coptodon zillii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2019 Revised, September 2019 Web Version, 11/18/2019 Photo: J. Hoover, Waterways Experiment Station, U.S. Army Corp of Engineers. Public domain. Available: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=485. (May 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Africa and Eurasia: South Morocco, Sahara, Niger-Benue system, rivers Senegal, Sassandra, Bandama, Boubo, Mé, Comoé, Bia, Ogun and Oshun, Volta system, Chad-Shari system [Teugels and Thys van den Audenaerde 1991], middle Congo River basin in the Ubangi, Uele [Thys van den Audenaerde 1964], Itimbiri, Aruwimi [Thys van den Audenaerde 1964; Decru 2015], Lindi- 1 Tshopo [Decru 2015] and Wagenia Falls [Moelants 2015] in Democratic Republic of the Congo, Lakes Albert [Thys van den Audenaerde 1964] and Turkana, Nile system and Jordan system [Teugels and Thys van den Audenaerde 1991].” Froese and Pauly (2019a) list the following countries as part of the native range of Coptodon zillii: Algeria, Benin, Cameroon, Central African Republic, Chad, Democratic Republic of the Congo, Egypt, Ghana, Guinea, Guinea-Bissau, Israel, Ivory Coast, Jordan, Kenya, Lebanon, Liberia, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sierra Leone, Sudan, Togo, Tunisia, Uganda, and Western Sahara. Status in the United States From NatureServe (2019): “Introduced and established in ponds and other waters in Maricopa County, Arizona; irrigation canals in Coachella, Imperial, and Palo Verde valleys, California; and headwater springs of San Antonio River, Bexar County, Texas; common (Page and Burr 1991). Established also in the Carolinas, Hawaii, and possibly in Florida and Nevada (Robins et al. - 
												
												Monogenea: Ancyrocephalidae
Parasitology Open Endoparasitic Paradiplectanotrema klimpeli sp. nov. (Monogenea: Ancyrocephalidae) from the cambridge.org/pao Greater Lizardfish Saurida tumbil (Teleostei: Synodontidae) in Indonesia Research Article 1 1,2 1 1,3 Cite this article: Theisen S, Palm HW, Stolz H, Stefan Theisen , Harry W Palm , Hendrik Stolz , Sarah H Al-Jufaili Al-Jufaili SH, Kleinertz S (2018). Endoparasitic and Sonja Kleinertz1,4 Paradiplectanotrema klimpeli sp. nov. (Monogenea: Ancyrocephalidae) from the 1 2 Greater Lizardfish Saurida tumbil (Teleostei: Aquaculture and Sea-Ranching, University of Rostock, Rostock, Germany; Centre for Studies in Animal Diseases, 3 Synodontidae) in Indonesia. Parasitology Open Udayana University, Denpasar, Indonesia; Laboratory of Microbiology Analysis, Fishery Quality Control Center, 4 4,e13,1–11. https://doi.org/10.1017/ Ministry of Agriculture and Fisheries Wealth, Al Bustan, Sultanate of Oman and Faculty of Fisheries and Marine pao.2018.8 Sciences, Bogor Agricultural University, Bogor, Indonesia Received: 3 January 2018 Revised: 26 February 2018 Abstract Accepted: 26 February 2018 A new endoparasitic monogenean of Paradiplectanotrema Gerasev, Gayevskaya & Kovaleva, 1987, Paradiplectanotrema klimpeli sp. nov., is described from the southern Balinese coast, Key words: Three-dimensional confocal microscopy; co- Indonesia. The new species is much larger, wider and characterized by the longest dorsal evolution; common grinner; Dactylogyridae; anchors compared with the congeners. Ventral anchors and ventral bars are the smallest in Diplectanotrema group; LSU 28S rDNA the genus, with a distinct ratio of 1:1. This is the first species with a gladiator breast-plate- sequence genotyping; phylogeny; shaped dorsal bar, with a length:width ratio of 1:1. Oesophagi of the Common Grinner Pseudempleurosoma haywardi; zoogeography Saurida tumbil (Bloch, 1795) (Synodontidae) were infected (prevalence = 17%) at an intensity Author for correspondence: of 12 (1–21). - 
												
												A Phylogeny of Cichlidogyrus Spp. (Monogenea, Dactylogyridea)
A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, Jean-François Agnèse To cite this version: Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, et al.. A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology ofthis parasite genus. Parasites and Vectors, BioMed Central, 2015, 8 (1), 10.1186/s13071-015-1181-y. hal-01923290 HAL Id: hal-01923290 https://hal.archives-ouvertes.fr/hal-01923290 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Messu Mandeng et al. Parasites & Vectors (2015) 8:582 DOI 10.1186/s13071-015-1181-y RESEARCH Open Access A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus Françoise D. - 
												
												New Fossils of Cichlids from the Miocene of Kenya and Clupeids from the Miocene of Greece (Teleostei)
The importance of articulated skeletons in the identification of extinct taxa: new fossils of cichlids from the Miocene of Kenya and clupeids from the Miocene of Greece (Teleostei) Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München Vorgelegt von Charalampos Kevrekidis München, 28. September 2020 Erstgutacher: Prof. Dr. Bettina Reichenbacher Zweitgutacher: PD Dr. Gertrud Rößner Tag der mündlichen Prüfung: 08.02.2021 2 Statutory declaration and statement I hereby confirm that my Thesis entitled “Fossil fishes from terrestrial sediments of the Miocene of Africa and Europe”, is the result of my own original work. Furthermore, I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the Ludwig-Maximilians-Universität München. München, 21.09.2020 Charalampos Kevrekidis 3 Abstract Fishes are important components of aquatic faunas, but our knowledge on the fossil record of some taxa, relative to their present diversity, remains poor. This can be due to a rarity of such fossils, as is the case for the family Cichlidae (cichlids). Another impediment is the rarity of well-preserved skeletons of fossil fishes. - 
												
												Helminthological Days 2015
Charles University in Prague, Faculty of Science __________________________________________________________________ 22nd HELMINTHOLOGICAL DAYS 2015 Programme & Abstracts Editors: Terezia Perháčová, Libuše Turjanicová & Vladimír Skála Prague 2015 Conference organizers: Laboratory of Helminthology, Department of Parasitology, Faculty of Science, Charles University in Prague Helminthological Section Czech Society for Parasitology Venue and date of the conference: 22nd Helminthological Days, Recreational facility FTVS UK, Dvorce near Stráž nad Nežárkou, Czech Republic, 4.-8. May 2015 © 2015 Univerzita Karlova v Praze a Česká parazitologická společnost ISBN 978-80-7444-032-8 Programme PROGRAMME OF 22nd HELMINTHOLOGICAL DAYS MONDAY, MAY 4 15.00 - 18.00 Arrival and registration of participants 18.00 - 18.30 Dinner 19.00 - 00.00 Get-together-evening TUESDAY, MAY 5 08.00 - 09.00 Breakfast 09.00 - 09.10 Opening ceremony: H. Dvořáková 09.10 - 09.40 Invited talk: W. Haas: Strategies of parasitic worms to find, recognize and invade their hosts (Chairman: P. Horák) Session I Interactions between Trichobilharzia spp. and their hosts (Chairman: P. Horák) 09.40 - 09.55 V. Skála, P. Horák: Haemocyte extracellular traps in the snail Lymnaea stagnalis (Lymnaeidae): do they occur and are they used as a defence response against trematodes? PhD 09.55 - 10.10 V. Krčmářová, J. Bulantová, P. Horák: Interactions of neurotropic larvae of bird schistosome Trichobilharzia regenti and immune cells of host central nervous system. BSc/MSc 10.10 - 10.25 T. Macháček, L. Panská, P. Horák: Antigens of the neuropathogenic fluke Trichobilharzia regenti elicit nitric oxide and proinflammatory cytokine secretion by glial cells in vitro. BSc/MSc 10.25 - 10.40 L. Vlčková, P. - 
												
												(Platyhelminthes) Parasitic in Mexican Aquatic Vertebrates
Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates Berenit MENDOZA-GARFIAS Luis GARCÍA-PRIETO* Gerardo PÉREZ-PONCE DE LEÓN Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153 CP 04510, México D.F. (México) [email protected] [email protected] (*corresponding author) [email protected] Published on 29 December 2017 urn:lsid:zoobank.org:pub:34C1547A-9A79-489B-9F12-446B604AA57F Mendoza-Garfias B., García-Prieto L. & Pérez-Ponce De León G. 2017. — Checklist of the Monogenea (Platyhel- minthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39 (4): 501-598. https://doi.org/10.5252/z2017n4a5 ABSTRACT 313 nominal species of monogenean parasites of aquatic vertebrates occurring in Mexico are included in this checklist; in addition, records of 54 undetermined taxa are also listed. All the monogeneans registered are associated with 363 vertebrate host taxa, and distributed in 498 localities pertaining to 29 of the 32 states of the Mexican Republic. The checklist contains updated information on their hosts, habitat, and distributional records. We revise the species list according to current schemes of KEY WORDS classification for the group. The checklist also included the published records in the last 11 years, Platyhelminthes, Mexico, since the latest list was made in 2006. We also included taxon mentioned in thesis and informal distribution, literature. As a result of our review, numerous records presented in the list published in 2006 were Actinopterygii, modified since inaccuracies and incomplete data were identified. Even though the inventory of the Elasmobranchii, Anura, monogenean fauna occurring in Mexican vertebrates is far from complete, the data contained in our Testudines. - 
												
												Diversity, Origin and Intra- Specific Variability
Contributions to Zoology, 87 (2) 105-132 (2018) Monogenean parasites of sardines in Lake Tanganyika: diversity, origin and intra- specific variability Nikol Kmentová1, 15, Maarten Van Steenberge2,3,4,5, Joost A.M. Raeymaekers5,6,7, Stephan Koblmüller4, Pascal I. Hablützel5,8, Fidel Muterezi Bukinga9, Théophile Mulimbwa N’sibula9, Pascal Masilya Mulungula9, Benoît Nzigidahera†10, Gaspard Ntakimazi11, Milan Gelnar1, Maarten P.M. Vanhove1,5,12,13,14 1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic 2 Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium 3 Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium 4 Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria 5 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium 6 Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway 7 Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway 8 Flanders Marine Institute, Wandelaarkaai 7, 8400 Oostende, Belgium 9 Centre de Recherche en Hydrobiologie, Département de Biologie, B.P. 73 Uvira, Democratic Republic of Congo 10 Office Burundais pour la Protection de l‘Environnement, Centre de Recherche en Biodiversité, Avenue de l‘Imprimerie Jabe 12, B.P.