The Complexity of Approximating PSPACE-Complete

Total Page:16

File Type:pdf, Size:1020Kb

The Complexity of Approximating PSPACE-Complete The Complexity of Approximating PSPACEComplete Problems ;; for Hierarchical Sp ecications Madhav V Marathe Harry B Hunt III SS Ravi Department of Computer Science University at Albany State University of New York Albany NY Abstract We extend the concept of p olynomial time approximation algorithms to apply to problems for hier archically sp ecied graphs many of which are PSPACEcomplete Assuming P 6 PSPACE the exis tence or nonexistence of such ecient approximation algorithms is characterized for several standard graph theoretic and combinatorial problems We present p olynomial time approximation algorithms for several standard PSPACEhard problems considered in the literature In contrast we show that unless P PSPACE there is no p olynomial time approximation for any for several other problems when the instances are sp ecied hierarchicall y We present p olynomial time approximation algorithms for the following problems when the graphs are sp ecied hierarchical ly minimum vertex cover maximum SAT weighted max cut minimum maximal matching and bounded degree maximum independent set In contrast we show that unless P PSPACE there is no p olynomial time approximation for any for the following problems when the instances are sp ecied hierarchicall y the number of true gates in a monotone acyclic circuit when al l input values are specied and the optimal value of the objective function of a linear program It is also shown that unless P PSPACE a p erformance guarantee of less than cannot b e obtained in p olynomial time for the following problems when the instances are sp ecied hierarchicall y high degree subgraph k vertex connected subgraph and k edge connected subgraph Classication Hierarchical Sp ecications Approximation Algorithms Computational Complexity Al gorithms and Data structures 1 Email addresses of authorsfmadhavhuntravigcsalbanyedu 2 Supp orted by NSF Grants CCR and CCR 3 An extended abstract of this pap er app eared in the pro ceedings of th International Col loquium on Automata Languages and Programming ICALP Intro duction Hierarchical system design is b ecoming increasingly imp ortant with the development of VLSI technology HLW RH At present a numb er of VLSI circuits already have over a million transistors For example the Intel i chip has ab out million transistors Although VLSI circuits can have millions of transistors they usually have highly regular structures These regular structures often make them amenable to hierarchical design sp ecication and analysis Other applications of hierarchical sp ecication and consequently of hierarchically sp ecied graphs are in the areas of nite element analysis LWb software engineering GJM material requirement planning and manufacturing resource planning in a multistage pro duction system MTM and pro cessing hierarchical Datalog queries Ul Over the last decade several theoretical mo dels have b een put forward to succinctly represent ob jects hierarchically BOW GW Le Le LW Wa Here we use the mo del dened by Lengauer in HLW Le Le LW to describ e graphs Using this mo del Lengauer et al Le LWa Le have given ecient algorithms to solve several graph theoretic problems including minimum spanning forests planarity testing etc Here we extend the concept of p olynomial time approximation algorithms so as to apply to problems for hierarchically sp ecied graphs including PSPACEcomplete such problems We characterize the exis tence or nonexistence assuming P PSPACE of p olynomial time approximation algorithms for several standard graph problems Both p ositive and negative results are obtained see Tables and at the end of this section Our study of approximation algorithms for hierarchically sp ecied problems is motivated by the following two facts (n) n size hierarchical sp ecications can sp ecify size graphs Many basic graph theoretic prop erties are PSPACEcomplete HR LW rather than NP complete For these reasons the known approximation algorithms in the literature are not directly applicable to graph problems when graphs are sp ecied hierarchically What we mean by a polynomial time approximation algorithm for a graph problem when the graph is sp ecied hierarchically can b e b est understo o d by means of an example Example Consider the minimum vertex cover problem where the input is a hierarchical sp ecication of a graph G We provide ecient algorithms for the following versions of the problem The Approximation Problem Compute the size of a nearminimum vertex cover of G The Query problem Given any vertex v of G and the path from the ro ot to the no de in the hierarchy tree see Section for the denition of hierarchy tree in which v o ccurs determine whether v b elongs to the approximate vertex cover so computed The Construction Problem Output a hierarchical sp ecication of the set of vertices in the approximate vertex cover The Output Problem Output the approximate vertex cover computed Our algorithms for and ab ove run in time p olynomial in the size of the hierarchical sp ecication rather than the size of the graph obtained by expanding the sp ecication Our algorithm for runs in time linear in the size of the expanded graph but uses space which is linear in the size of the hierarchical sp ecication This is a natural extension of the denition of approximation algorithms in the at ie nonhierarchical case This can b e seen as follows In the at case the numb er of vertices is p olynomial in the size of the de scription Given this any p olynomial time algorithm to determine if a vertex v of G is in the approximate minimum vertex cover can b e mo died easily into a p olynomial time algorithm that lists all the vertices of G in the approximate minimum vertex cover For an optimization problem or a query problem our algorithms use space and time which are low level p olynomials in the size of the hierarchical sp ecication and thus O pol y log in the size of the sp ecied graph when the size of the graph is exp onential in the size of the sp ecication Moreover when we need to output the subset of vertices subset of edges etc corresp onding to a vertex cover maximal matching etc in the expanded graph our algorithms take essentially the same time but substantially less often exp onentially less space than algorithms that work directly on the expanded graph It is imp ortant to design algorithms which work directly on the hierar chical sp ecication by exploiting the regular structure of the underlying graphs b ecause graphs resulting from expansions of given hierarchical descriptions are frequently to o large to t into the main memory of a computer Le This results in a large numb er of page faults while executing the known algorithms on the expanded graph Hence standard algorithms designed for at graphs are impractical for hierarchically sp ecied graphs We b elieve that this is the rst time ecient approximation algorithms with go o d p erformance guaran 4 tees have b een provided b oth for hierarchically sp ecied problems and for PSPACEcomplete problems Thus by providing algorithms which exploit the underlying structure we extend the range of applicability of standard algorithms so as to apply to a much larger set of instances Tables and summarize our results 4 Indep endently Condon et al CFa CFa have investigated the approximability of other PSPACEcomplete problems Table Performance Guarantees Problem Performance guarantee Best known guarantee in hierarchical case in at case MAX SAT MIN Vertex Cover MIN Maximal Matching Bounded Degree B B B MAX Indep endent Set MAX CUT The results mentioned in the last column of the ab ove table can b e found in GJ Ya Table Hardness Results Problem Hierarchical Flat Case Case Maximum Numb er PSPACEhard Loghard for of True Gates to approximate P to approximate in a circuit for any for any Optimal Value of PSPACEhard Loghard for Ob jective Function for P to approximate of a Linear Program any for any High Degree PSPACEhard Loghard for Subgraph for P to approximate for k Vertex PSPACEhard Loghard for Connectivity for P to approximate for k Edge PSPACEhard Loghard for Connectivity for P to approximate for The results mentioned in the last column of the ab ove table can b e found in AM KSS Se Denitions and Description of the Mo del The following two denitions are from Lengauer Le Denition A hierarchical specication G G of a graph is a sequence of undirected simple 1 n graphs G cal led cel ls The graph G has m edges and n vertices p of the vertices are distinguished i i i i i and are cal led pins The other n p vertices are cal led inner vertices r of the inner vertices are i i i distinguished and are cal led nonterminals The n r vertices are cal led terminals i i Note that there are n p r vertices dened explicitly in G We call these explicit vertices Each pin i i i i of G has a unique lab el its name The pins are assumed to b e numb ered from to p Each nonterminal in i i G has two lab els a name and a type The typ e is a symb ol from G G If a nonterminal vertex v is i 1 i1 of the typ e G then the terminal vertices which are the neighb ors of G are in onetoone corresp ondence j j with the pins of G Note that all the neighb ors of a nonterminal vertex must b e terminals Also a j terminal vertex may b e a neighb or of several nonterminal vertices The size of denoted by siz e is P P m n and the edge numb er M N M where the vertex numb er N i i 1in 1in Denition Let G G be a hierarchical specication of a graph G The expansion E 1 n ie the graph associated with of the hierarchical
Recommended publications
  • Notes for Lecture 2
    Notes on Complexity Theory Last updated: December, 2011 Lecture 2 Jonathan Katz 1 Review The running time of a Turing machine M on input x is the number of \steps" M takes before it halts. Machine M is said to run in time T (¢) if for every input x the running time of M(x) is at most T (jxj). (In particular, this means it halts on all inputs.) The space used by M on input x is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use space T (¢) if for every input x the space used during the computation of M(x) is at most T (jxj). We remark that these time and space measures are worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n), the running time of M is still T . (Average-case notions of complexity have also been considered, but are somewhat more di±cult to reason about. We may cover this later in the semester; or see [1, Chap. 18].) Recall that a Turing machine M computes a function f : f0; 1g¤ ! f0; 1g¤ if M(x) = f(x) for all x. We will focus most of our attention on boolean functions, a context in which it is more convenient to phrase computation in terms of languages. A language is simply a subset of f0; 1g¤.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • When Subgraph Isomorphism Is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble
    When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble To cite this version: Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble. When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research, Association for the Advancement of Artificial Intelligence, 2018, 61, pp.723 - 759. 10.1613/jair.5768. hal-01741928 HAL Id: hal-01741928 https://hal.archives-ouvertes.fr/hal-01741928 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Artificial Intelligence Research 61 (2018) 723-759 Submitted 11/17; published 03/18 When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran McCreesh [email protected] Patrick Prosser [email protected] University of Glasgow, Glasgow, Scotland Christine Solnon [email protected] INSA-Lyon, LIRIS, UMR5205, F-69621, France James Trimble [email protected] University of Glasgow, Glasgow, Scotland Abstract The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph.
    [Show full text]
  • Glossary of Complexity Classes
    App endix A Glossary of Complexity Classes Summary This glossary includes selfcontained denitions of most complexity classes mentioned in the b o ok Needless to say the glossary oers a very minimal discussion of these classes and the reader is re ferred to the main text for further discussion The items are organized by topics rather than by alphab etic order Sp ecically the glossary is partitioned into two parts dealing separately with complexity classes that are dened in terms of algorithms and their resources ie time and space complexity of Turing machines and complexity classes de ned in terms of nonuniform circuits and referring to their size and depth The algorithmic classes include timecomplexity based classes such as P NP coNP BPP RP coRP PH E EXP and NEXP and the space complexity classes L NL RL and P S P AC E The non k uniform classes include the circuit classes P p oly as well as NC and k AC Denitions and basic results regarding many other complexity classes are available at the constantly evolving Complexity Zoo A Preliminaries Complexity classes are sets of computational problems where each class contains problems that can b e solved with sp ecic computational resources To dene a complexity class one sp ecies a mo del of computation a complexity measure like time or space which is always measured as a function of the input length and a b ound on the complexity of problems in the class We follow the tradition of fo cusing on decision problems but refer to these problems using the terminology of promise problems
    [Show full text]
  • Group, Graphs, Algorithms: the Graph Isomorphism Problem
    Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 3 (3303–3320) GROUP, GRAPHS, ALGORITHMS: THE GRAPH ISOMORPHISM PROBLEM László Babai Abstract Graph Isomorphism (GI) is one of a small number of natural algorithmic problems with unsettled complexity status in the P / NP theory: not expected to be NP-complete, yet not known to be solvable in polynomial time. Arguably, the GI problem boils down to filling the gap between symmetry and regularity, the former being defined in terms of automorphisms, the latter in terms of equations satisfied by numerical parameters. Recent progress on the complexity of GI relies on a combination of the asymptotic theory of permutation groups and asymptotic properties of highly regular combinato- rial structures called coherent configurations. Group theory provides the tools to infer either global symmetry or global irregularity from local information, eliminating the symmetry/regularity gap in the relevant scenario; the resulting global structure is the subject of combinatorial analysis. These structural studies are melded in a divide- and-conquer algorithmic framework pioneered in the GI context by Eugene M. Luks (1980). 1 Introduction We shall consider finite structures only; so the terms “graph” and “group” will refer to finite graphs and groups, respectively. 1.1 Graphs, isomorphism, NP-intermediate status. A graph is a set (the set of ver- tices) endowed with an irreflexive, symmetric binary relation called adjacency. Isomor- phisms are adjacency-preseving bijections between the sets of vertices. The Graph Iso- morphism (GI) problem asks to determine whether two given graphs are isomorphic. It is known that graphs are universal among explicit finite structures in the sense that the isomorphism problem for explicit structures can be reduced in polynomial time to GI (in the sense of Karp-reductions1) Hedrlı́n and Pultr [1966] and Miller [1979].
    [Show full text]
  • Complexity, Part 2 —
    EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Description Logics: a Nice Family of Logics — Complexity, Part 2 — Uli Sattler1 Thomas Schneider 2 1School of Computer Science, University of Manchester, UK 2Department of Computer Science, University of Bremen, Germany ESSLLI, 18 August 2016 Uli Sattler, Thomas Schneider DL: Complexity (2) 1 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Goal for today Automated reasoning plays an important role for DLs. It allows the development of intelligent applications. The expressivity of DLs is strongly tailored towards this goal. Requirements for automated reasoning: Decidability of the relevant decision problems Low complexity if possible Algorithms that perform well in practice Yesterday & today: 1 & 3 Now: 2 Uli Sattler, Thomas Schneider DL: Complexity (2) 2 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Plan for today 1 EXPTIME-membership 2 EXPTIME-hardness 3 PSPACE-hardness (not covered in the lecture) 4 Undecidability and a NEXPTIME lower bound ; Uli Thanks to Carsten Lutz for much of the material on these slides. Uli Sattler, Thomas Schneider DL: Complexity (2) 3 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder And now . 1 EXPTIME-membership 2 EXPTIME-hardness 3 PSPACE-hardness (not covered in the lecture) 4 Undecidability and a NEXPTIME lower bound ; Uli Uli Sattler, Thomas Schneider DL: Complexity (2) 4 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder EXPTIME-membership We start with an EXPTIME upper bound for concept satisfiability in ALC relative to TBoxes. Theorem The following problem is in EXPTIME. Input: an ALC concept C0 and an ALC TBox T I Question: is there a model I j= T with C0 6= ; ? We’ll use a technique known from modal logic: type elimination [Pratt 1978] The basis is a syntactic notion of a type.
    [Show full text]
  • The Computational Complexity Column by V
    The Computational Complexity Column by V. Arvind Institute of Mathematical Sciences, CIT Campus, Taramani Chennai 600113, India [email protected] http://www.imsc.res.in/~arvind The mid-1960’s to the early 1980’s marked the early epoch in the field of com- putational complexity. Several ideas and research directions which shaped the field at that time originated in recursive function theory. Some of these made a lasting impact and still have interesting open questions. The notion of lowness for complexity classes is a prominent example. Uwe Schöning was the first to study lowness for complexity classes and proved some striking results. The present article by Johannes Köbler and Jacobo Torán, written on the occasion of Uwe Schöning’s soon-to-come 60th birthday, is a nice introductory survey on this intriguing topic. It explains how lowness gives a unifying perspective on many complexity results, especially about problems that are of intermediate complexity. The survey also points to the several questions that still remain open. Lowness results: the next generation Johannes Köbler Humboldt Universität zu Berlin [email protected] Jacobo Torán Universität Ulm [email protected] Abstract Our colleague and friend Uwe Schöning, who has helped to shape the area of Complexity Theory in many decisive ways is turning 60 this year. As a little birthday present we survey in this column some of the newer results related with the concept of lowness, an idea that Uwe translated from the area of Recursion Theory in the early eighties. Originally this concept was applied to the complexity classes in the polynomial time hierarchy.
    [Show full text]
  • Reduction of the Graph Isomorphism Problem to Equality Checking of N-Variables Polynomials and the Algorithms That Use the Reduction
    Reduction of the Graph Isomorphism Problem to Equality Checking of n-variables Polynomials and the Algorithms that use the Reduction Alexander Prolubnikov Omsk State University, Omsk, Russian Federation [email protected] Abstract. The graph isomorphism problem is considered. We assign modified characteristic polynomials for graphs and reduce the graph isomorphism prob- lem to the following one. It is required to find out, is there such an enumeration of the graphs vertices that the polynomials of the graphs are equal. We present algorithms that use the redution and we show that we may check equality of the graphs polynomials values at specified points without direct evaluation of the values. We give justification of the algorithms and give the scheme of its numerical realization. The example of the approach implementation and the results of computational experiments are presented. Keywords: graph isomorphism, complete invariant, computational complexity 1 The graph isomorphism problem In the graph isomorphism problem (GI), we have two simple graphs G and H. Let V (G) and V (H) denote the sets of vertices of the graphs and let E(G) and E(H) denote the sets of their edges. V (G) = V (H) = [n]. An isomorphism of the graphs G and H is a bijection ' : V (G) ! V (H) such that for all i; j 2V (G) (i; j) 2 E(G) , ('(i);'(j)) 2 V (H): If such a bijection exists, then the graphs G and H are isomorphic (we shall denote it as G'H), else the graphs are not isomorphic. In the problem, it is required to present the bijection that is an isomorphism or we must show non-existence of such a bijection.
    [Show full text]
  • PSPACE-Completeness & Savitch's Theorem 1 Recap
    CSE 200 Computability and Complexity Wednesday, April 24, 2013 Lecture 8: PSPACE-Completeness & Savitch's Theorem Instructor: Professor Shachar Lovett Scribe: Dongcai Shen 1 Recap: Space Complexity Recall the following definitions on space complexity we learned in the last class: SPACE(S(n))def= \languages computable by a TM where input tape is readonly and work tape size S(n)" LOGSPACEdef= SPACE(O(log n)) def c PSPACE = [c≥1 SPACE(n ) For example, nowadays, people are interested in streaming algorithms, whose space requirements are low. So researching on space complexity can have real-world influence, especially in instructing people the way an algorithm should be designed and directing people away from some impossible attempts. Definition 1 (Nondeterministic Space NSPACE) The nondeterministic space NSPACE(S(n))def= • Input tape, read-only. • Proof tape, read-only & read-once. • Work tape size S(n). So, we can define • NLdef= NSPACE(O(log n)). def c • NPSPACE = [c≥1 NSPACE(n ). def Theorem 2 PATH = f(G; s; t): G directed graph, s; t vertices, there is a path s t in Gg is NL-complete un- der logspace reduction. Corollary 3 If we could find a deterministic algorithm for PATH in SPACE(O(log n)), then NL = L. Remark. Nondeterminism is pretty useless w.r.t. space. We don't know whether NL = L yet. 2 Outline of Today Definition 4 (Quantified Boolean formula) A quantified Boolean formula is 8x19x28x39x4 ··· φ(x1; ··· ; xn) def where φ is a CNF. Let TQBF = fA true QBFg. Theorem 5 TQBF is PSPACE-complete under poly-time reduction (and actually under logspace reductions).
    [Show full text]
  • NP-Completeness, Conp, P /Poly and Polynomial Hierarchy
    Lecture 2 - NP-completeness, coNP, P/poly and polynomial hierarchy. Boaz Barak February 10, 2006 Universal Turing machine A fundamental observation of Turing’s, which we now take for granted, is that Turing machines (and in fact any sufficiently rich model of computing) are program- mable. That is, until his time, people thought of mechanical computing devices that are tailor-made for solving particular mathematical problems. Turing realized that one could have a general-purpose machine MU , that can take as input a description of a TM M and x, and output M(x). Actually it’s easy to observe that this can be done with relatively small overhead: if M halts on x within T steps, then MU will halt on M, x within O(T log T ) steps. Of course today its harder to appreciate the novelty of this observation, as in some sense the 20th century was the century of the general-purpose computer and it is now all around us, and writing programs such as a C interpreter in C is considered a CS-undergrad project. Enumeration of Turing machines To define properly the universal Turing machine, we need to specify how we describe a Turing machine as a string. Since a TM is described by its collection of rules (of the form on symbol a, move left/right, write b), it can clearly be described as such a string. Thus, we assume that we have a standard encoding of TM’s into strings that satisfies the following: ∗ • For every α ∈ {0, 1} , there’s an associated TM Mα.
    [Show full text]
  • About a Low Complexity Class of Cellular Automata Pierre Tisseur
    About a low complexity class of Cellular Automata Pierre Tisseur To cite this version: Pierre Tisseur. About a low complexity class of Cellular Automata. Comptes rendus de l’Académie des sciences. Série I, Mathématique, Elsevier, 2008, 17-18 (346), pp.995-998. hal-00711870v2 HAL Id: hal-00711870 https://hal.archives-ouvertes.fr/hal-00711870v2 Submitted on 26 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About a low complexity class of Cellular Automata ∗ Pierre Tisseur 1 1 Centro de Matematica, Computa¸c˜ao e Cogni¸c˜ao, Universidade Federal do ABC, Santo Andr´e, S˜ao Paulo, Brasil † R´esum´e Extending to all probability measures the notion of µ-equicontinuous cellular automata introduced for Bernoulli measures by Gilman, we show that the entropy is null if µ is an invariant measure and that the sequence of image measures of a shift ergodic measure by iterations of such auto- mata converges in Ces`aro mean to an invariant measure µc. Moreover this cellular automaton is still µc-equicontinuous and the set of periodic points is dense in the topological support of the measure µc.
    [Show full text]
  • Some Estimated Likelihoods for Computational Complexity
    Some Estimated Likelihoods For Computational Complexity R. Ryan Williams MIT CSAIL & EECS, Cambridge MA 02139, USA Abstract. The editors of this LNCS volume asked me to speculate on open problems: out of the prominent conjectures in computational com- plexity, which of them might be true, and why? I hope the reader is entertained. 1 Introduction Computational complexity is considered to be a notoriously difficult subject. To its practitioners, there is a clear sense of annoying difficulty in complexity. Complexity theorists generally have many intuitions about what is \obviously" true. Everywhere we look, for every new complexity class that turns up, there's another conjectured lower bound separation, another evidently intractable prob- lem, another apparent hardness with which we must learn to cope. We are sur- rounded by spectacular consequences of all these obviously true things, a sharp coherent world-view with a wonderfully broad theory of hardness and cryptogra- phy available to us, but | gosh, it's so annoying! | we don't have a clue about how we might prove any of these obviously true things. But we try anyway. Much of the present cluelessness can be blamed on well-known \barriers" in complexity theory, such as relativization [BGS75], natural properties [RR97], and algebrization [AW09]. Informally, these are collections of theorems which demonstrate strongly how the popular and intuitive ways that many theorems were proved in the past are fundamentally too weak to prove the lower bounds of the future. { Relativization and algebrization show that proof methods in complexity theory which are \invariant" under certain high-level modifications to the computational model (access to arbitrary oracles, or low-degree extensions thereof) are not “fine-grained enough" to distinguish (even) pairs of classes that seem to be obviously different, such as NEXP and BPP.
    [Show full text]