PSPACE-Completeness & Savitch's Theorem 1 Recap

Total Page:16

File Type:pdf, Size:1020Kb

PSPACE-Completeness & Savitch's Theorem 1 Recap CSE 200 Computability and Complexity Wednesday, April 24, 2013 Lecture 8: PSPACE-Completeness & Savitch's Theorem Instructor: Professor Shachar Lovett Scribe: Dongcai Shen 1 Recap: Space Complexity Recall the following definitions on space complexity we learned in the last class: SPACE(S(n))def= \languages computable by a TM where input tape is readonly and work tape size S(n)" LOGSPACEdef= SPACE(O(log n)) def c PSPACE = [c≥1 SPACE(n ) For example, nowadays, people are interested in streaming algorithms, whose space requirements are low. So researching on space complexity can have real-world influence, especially in instructing people the way an algorithm should be designed and directing people away from some impossible attempts. Definition 1 (Nondeterministic Space NSPACE) The nondeterministic space NSPACE(S(n))def= • Input tape, read-only. • Proof tape, read-only & read-once. • Work tape size S(n). So, we can define • NLdef= NSPACE(O(log n)). def c • NPSPACE = [c≥1 NSPACE(n ). def Theorem 2 PATH = f(G; s; t): G directed graph, s; t vertices, there is a path s t in Gg is NL-complete un- der logspace reduction. Corollary 3 If we could find a deterministic algorithm for PATH in SPACE(O(log n)), then NL = L. Remark. Nondeterminism is pretty useless w.r.t. space. We don't know whether NL = L yet. 2 Outline of Today Definition 4 (Quantified Boolean formula) A quantified Boolean formula is 8x19x28x39x4 ··· φ(x1; ··· ; xn) def where φ is a CNF. Let TQBF = fA true QBFg. Theorem 5 TQBF is PSPACE-complete under poly-time reduction (and actually under logspace reductions). 2 Theorem 6 (Savitch's Theorem [4]) NSPACE(S(n)) ⊆ SPACE(S (n)). Savitch's Theorem has two important direct implications concerning the relationship between deterministic space and nondeterministic space. Surprisingly, nondeterministic poly-space is the same as deterministic poly-space, while nondeterministic logspace can be solved in deterministic logspace square.1. 1 c c Notice L is not defined as [c≥1SPACE(log n) and NL is not defined as [c≥1NSPACE(log n). The log polynomial version def def c is called Steve's Class in honor of Steve Cook: polyL = SC = [c≥1 SPACE(log n) (See the text [1] Page 94 Exercise 4.12). 8-1 Corollary 7 • NL ⊆ SPACE(O(log(n)2)). • NPSPACE = PSPACE. On the other hand, people know the following related results: • UNDIRECTED-PATH (PATH in undirected graphs) is in L (Reingold [2]). • Randomized logspace ⊆ L3=2 (Saks and Zhou [3]). Definition 8 (co-NSPACE(·)) co-NSPACE(S(n))def= fL : Lc 2 NSPACE(S(n))g. Complete problem for co-NL is f(G; s; t): G directed graph, s; t vertices, there is no path s tg. 3 TQBF is PSPACE-Complete Theorem 9 ([5]) TQBF is PSPACE-complete under poly-time reduction. Proof =Q1 =Q2 =Q3 z}|{ z}|{ z}|{ Step #1: TQBF 2 PSPACE. Let = 9 x1 8 x2 9 x38x4 ··· φ(x1; ··· ; xn). Need to compute in def poly-space. Let = Q1x1Q2x2 ··· φ(x1; ··· ; xn) where Qi 2 f9; 8g. For 1 ≤ i ≤ n and values a1; ··· ; ai 2 f0; 1g define fi(a1; ··· ; ai) = Qi+1xi+1 ··· Qnxnφ(a1; ··· ; ai; xi+1; ··· ; xn). We have that • If Qi+1 = 9, then fi(a1; ··· ; ai) = fi+1(a1; ··· ; ai; 0) _ fi+1(a1; ··· ; ai; 1). • If Qi+1 = 8, then fi(a1; ··· ; ai) = fi+1(a1; ··· ; ai; 0) ^ fi+1(a1; ··· ; ai; 1). We want to compute φ = f0 and we know how to compute fn(a1; ··· ; an) = φ(a1; ··· ; an). The intuition is that we will compute f0 by exploring the tree of possible partial assignments by a DFS-like process. Formally, in order to compute fi(a1; : : : ; ai) we need to run two instances of fi+1. Note that we can run them using the same space, and we will need O(log n) overhead to remember indices, etc. So, if we compute fi+1 is space Si+1 then we can compute fi in space Si = Si+1 + O(log n). Overall, we can compute in space O(n log n), which is polynomial space. Step #2: TQBF is PSPACE-hard. Fix any language L 2 PSPACE. Consider its configuration graph G. c The number of nodes in G is N = exp(n ) for some c > 0. We need to know if there is a path vstart vaccept between the start and accept configurations of L. We note that to check if an edge (u; v) 2 G can be expressed by CNF φ(u; v) of size poly(n). A na¨ıve try. To check if there is a path vstart vaccept we write an exponential-sized formula: 9v19v2; · · · 9vN φ(vstart; v1) ^ φ(v1; v2) ^ · · · ^ φ(ui−1; uN ) ^ φ(uN ; vaccept): This is problematic since the formula is of exponential size, and we would like a polynomial size formula. def i Attempt to reduce size. Let reachi(u; v) = "there is a path u v of length ≤ 2 ". Then reachi+1(u; v) = 9w reachi(u; w) ^ reachi(w; v): However, it's still of exponential size. The trick to get polynomial size is to use the 8 quantifier. Polynomial size: We can write reachi+1(u; v) as reachi+1(u; v) = 9w8a8b((a = u ^ b = w) _ (a = w ^ b = v)) ) reachi(a; b): Note that this way, the size of the formula for reachi+1 is only a constant size larger then then of reachi. Apply this log N = nc times, we get a QBF of size O(nc) which is true iff x 2 L. Note that we obviously did a poly-time reduction. A careful examination of the proof shows that the reduction runs in fact in logspace. 8-2 4 Savitch's Theorem We prove Savitch's Theorem: NSPACE(S(N)) ⊂ SPACE(S2(n)). We will prove it for S(n) = O(log n), and it is a simple exercise to see this implies the theorem for all S(n) ≥ log(n). 2 Theorem 10 (Savich's Theorem [4]) NL ⊆ SPACE(log n). Proof Need to show: given a directed graph G on n vertices; s; t are vertices in G; can check if there is 2 def i a path s t using only O(log n) space. Let reachi(u; v) = \there exists a path u v of length ≤ 2 ". As before, we will use the fact that reachi+1(u; v) = 9w reachi(u; w) ^ reachi(w; v): Note that if we can solve reachi in space Si then we can solve reachi+1 in space Si+1 = Si + O(log n), since we need O(log n) memory to enumerate w, and we can run the two instances of reachi sequentially using the same space for both. Formally, to solve reachi+1 we run the following algorithm: • run over all w = 1; ··· ; n. { α = reachi(u; w). { β = reachi(w; v). { If α = β = 1, output \Yes". • Output \No". 2 The total space we use is Slog n = O(log n). References [1] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009. [2] Omer Reingold. Undirected st-connectivity in log-space. In STOC, pages 376{385, 2005. 3/2 [3] Michael E. Saks and Shiyu Zhou. Bp hspace(s) subseteq dspace(s ). J. Comput. Syst. Sci., 58(2):376{ 403, 1999. [4] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences, 4(2):177 { 192, 1970. [5] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time(preliminary report). In Proceedings of the fifth annual ACM symposium on Theory of computing, STOC '73, pages 1{9, New York, NY, USA, 1973. ACM. 8-3.
Recommended publications
  • Notes for Lecture 2
    Notes on Complexity Theory Last updated: December, 2011 Lecture 2 Jonathan Katz 1 Review The running time of a Turing machine M on input x is the number of \steps" M takes before it halts. Machine M is said to run in time T (¢) if for every input x the running time of M(x) is at most T (jxj). (In particular, this means it halts on all inputs.) The space used by M on input x is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use space T (¢) if for every input x the space used during the computation of M(x) is at most T (jxj). We remark that these time and space measures are worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n), the running time of M is still T . (Average-case notions of complexity have also been considered, but are somewhat more di±cult to reason about. We may cover this later in the semester; or see [1, Chap. 18].) Recall that a Turing machine M computes a function f : f0; 1g¤ ! f0; 1g¤ if M(x) = f(x) for all x. We will focus most of our attention on boolean functions, a context in which it is more convenient to phrase computation in terms of languages. A language is simply a subset of f0; 1g¤.
    [Show full text]
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • Probabilistically Checkable Proofs Over the Reals
    Electronic Notes in Theoretical Computer Science 123 (2005) 165–177 www.elsevier.com/locate/entcs Probabilistically Checkable Proofs Over the Reals Klaus Meer1 ,2 Department of Mathematics and Computer Science Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark Abstract Probabilistically checkable proofs (PCPs) have turned out to be of great importance in complexity theory. On the one hand side they provide a new characterization of the complexity class NP, on the other hand they show a deep connection to approximation results for combinatorial optimization problems. In this paper we study the notion of PCPs in the real number model of Blum, Shub, and Smale. The existence of transparent long proofs for the real number analogue NPR of NP is discussed. Keywords: PCP, real number model, self-testing over the reals. 1 Introduction One of the most important and influential results in theoretical computer science within the last decade is the PCP theorem proven by Arora et al. in 1992, [1,2]. Here, PCP stands for probabilistically checkable proofs, a notion that was further developed out of interactive proofs around the end of the 1980’s. The PCP theorem characterizes the class NP in terms of languages accepted by certain so-called verifiers, a particular version of probabilistic Turing machines. It allows to stabilize verification procedures for problems in NP in the following sense. Suppose for a problem L ∈ NP and a problem 1 partially supported by the EU Network of Excellence PASCAL Pattern Analysis, Statis- tical Modelling and Computational Learning and by the Danish Natural Science Research Council SNF. 2 Email: [email protected] 1571-0661/$ – see front matter © 2005 Elsevier B.V.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • When Subgraph Isomorphism Is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble
    When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble To cite this version: Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble. When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research, Association for the Advancement of Artificial Intelligence, 2018, 61, pp.723 - 759. 10.1613/jair.5768. hal-01741928 HAL Id: hal-01741928 https://hal.archives-ouvertes.fr/hal-01741928 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Artificial Intelligence Research 61 (2018) 723-759 Submitted 11/17; published 03/18 When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran McCreesh [email protected] Patrick Prosser [email protected] University of Glasgow, Glasgow, Scotland Christine Solnon [email protected] INSA-Lyon, LIRIS, UMR5205, F-69621, France James Trimble [email protected] University of Glasgow, Glasgow, Scotland Abstract The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph.
    [Show full text]
  • Complexity-Adjustable SC Decoding of Polar Codes for Energy Consumption Reduction
    Complexity-adjustable SC decoding of polar codes for energy consumption reduction Citation for published version (APA): Zheng, H., Chen, B., Abanto-Leon, L. F., Cao, Z., & Koonen, T. (2019). Complexity-adjustable SC decoding of polar codes for energy consumption reduction. IET Communications, 13(14), 2088-2096. https://doi.org/10.1049/iet-com.2018.5643 DOI: 10.1049/iet-com.2018.5643 Document status and date: Published: 27/08/2019 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Simple Doubly-Efficient Interactive Proof Systems for Locally
    Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 18 (2017) Simple doubly-efficient interactive proof systems for locally-characterizable sets Oded Goldreich∗ Guy N. Rothblumy September 8, 2017 Abstract A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time. We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth- blum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds. Contents 1 Introduction 1 1.1 The current work . 1 1.2 Relation to prior work . 3 1.3 Organization and conventions . 4 2 Preliminaries: The sum-check protocol 5 3 The case of t-CLIQUE 5 4 The general result 7 4.1 A natural class: locally-characterizable sets . 7 4.2 Proof of Theorem 1 . 8 4.3 Generalization: round versus computation trade-off . 9 4.4 Extension to a wider class . 10 5 The case of t-SUM 13 References 15 Appendix: An MA proof system for locally-chracterizable sets 18 ∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • Glossary of Complexity Classes
    App endix A Glossary of Complexity Classes Summary This glossary includes selfcontained denitions of most complexity classes mentioned in the b o ok Needless to say the glossary oers a very minimal discussion of these classes and the reader is re ferred to the main text for further discussion The items are organized by topics rather than by alphab etic order Sp ecically the glossary is partitioned into two parts dealing separately with complexity classes that are dened in terms of algorithms and their resources ie time and space complexity of Turing machines and complexity classes de ned in terms of nonuniform circuits and referring to their size and depth The algorithmic classes include timecomplexity based classes such as P NP coNP BPP RP coRP PH E EXP and NEXP and the space complexity classes L NL RL and P S P AC E The non k uniform classes include the circuit classes P p oly as well as NC and k AC Denitions and basic results regarding many other complexity classes are available at the constantly evolving Complexity Zoo A Preliminaries Complexity classes are sets of computational problems where each class contains problems that can b e solved with sp ecic computational resources To dene a complexity class one sp ecies a mo del of computation a complexity measure like time or space which is always measured as a function of the input length and a b ound on the complexity of problems in the class We follow the tradition of fo cusing on decision problems but refer to these problems using the terminology of promise problems
    [Show full text]
  • User's Guide for Complexity: a LATEX Package, Version 0.80
    User’s Guide for complexity: a LATEX package, Version 0.80 Chris Bourke April 12, 2007 Contents 1 Introduction 2 1.1 What is complexity? ......................... 2 1.2 Why a complexity package? ..................... 2 2 Installation 2 3 Package Options 3 3.1 Mode Options .............................. 3 3.2 Font Options .............................. 4 3.2.1 The small Option ....................... 4 4 Using the Package 6 4.1 Overridden Commands ......................... 6 4.2 Special Commands ........................... 6 4.3 Function Commands .......................... 6 4.4 Language Commands .......................... 7 4.5 Complete List of Class Commands .................. 8 5 Customization 15 5.1 Class Commands ............................ 15 1 5.2 Language Commands .......................... 16 5.3 Function Commands .......................... 17 6 Extended Example 17 7 Feedback 18 7.1 Acknowledgements ........................... 19 1 Introduction 1.1 What is complexity? complexity is a LATEX package that typesets computational complexity classes such as P (deterministic polynomial time) and NP (nondeterministic polynomial time) as well as sets (languages) such as SAT (satisfiability). In all, over 350 commands are defined for helping you to typeset Computational Complexity con- structs. 1.2 Why a complexity package? A better question is why not? Complexity theory is a more recent, though mature area of Theoretical Computer Science. Each researcher seems to have his or her own preferences as to how to typeset Complexity Classes and has built up their own personal LATEX commands file. This can be frustrating, to say the least, when it comes to collaborations or when one has to go through an entire series of files changing commands for compatibility or to get exactly the look they want (or what may be required).
    [Show full text]
  • Group, Graphs, Algorithms: the Graph Isomorphism Problem
    Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 3 (3303–3320) GROUP, GRAPHS, ALGORITHMS: THE GRAPH ISOMORPHISM PROBLEM László Babai Abstract Graph Isomorphism (GI) is one of a small number of natural algorithmic problems with unsettled complexity status in the P / NP theory: not expected to be NP-complete, yet not known to be solvable in polynomial time. Arguably, the GI problem boils down to filling the gap between symmetry and regularity, the former being defined in terms of automorphisms, the latter in terms of equations satisfied by numerical parameters. Recent progress on the complexity of GI relies on a combination of the asymptotic theory of permutation groups and asymptotic properties of highly regular combinato- rial structures called coherent configurations. Group theory provides the tools to infer either global symmetry or global irregularity from local information, eliminating the symmetry/regularity gap in the relevant scenario; the resulting global structure is the subject of combinatorial analysis. These structural studies are melded in a divide- and-conquer algorithmic framework pioneered in the GI context by Eugene M. Luks (1980). 1 Introduction We shall consider finite structures only; so the terms “graph” and “group” will refer to finite graphs and groups, respectively. 1.1 Graphs, isomorphism, NP-intermediate status. A graph is a set (the set of ver- tices) endowed with an irreflexive, symmetric binary relation called adjacency. Isomor- phisms are adjacency-preseving bijections between the sets of vertices. The Graph Iso- morphism (GI) problem asks to determine whether two given graphs are isomorphic. It is known that graphs are universal among explicit finite structures in the sense that the isomorphism problem for explicit structures can be reduced in polynomial time to GI (in the sense of Karp-reductions1) Hedrlı́n and Pultr [1966] and Miller [1979].
    [Show full text]