2011 Annual Progress Report and Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Photometry and Spectroscopy of the Luminous Red Nova PSNJ14021678+5426205 in the Galaxy M101
CORE Metadata, citation and similar papers at core.ac.uk Provided by Kazan Federal University Digital Repository Astrophysical Bulletin 2016 vol.71 N1, pages 82-94 Photometry and spectroscopy of the luminous red nova PSNJ14021678+5426205 in the galaxy M101 Goranskij V., Barsukova E., Spiridonova O., Valeev A., Fatkhullin T., Moskvitin A., Vozyakova O., Cheryasov D., Safonov B., Zharova A., Hancock T. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia Abstract © 2016, Pleiades Publishing, Ltd.We present the results of the study of a red nova from the observations carried out with the Russian 6-m telescope (BTA) along with other telescopes of SAO RAS and SAI MSU. To investigate the nova progenitor,we used the data from the Digital Sky Survey and amateur photos available on the Internet. In the period between April 1993 and July 2014, the brightness of the progenitor gradually increased by (Formula presented.) in the V- band. At the peak of the first outburst in mid-November 2014, the star reached an absolute visual magnitude of (Formula presented.) but was discovered later, in February 2015, in a repeated outburst at the magnitude of (Formula presented.). The amplitude of the outburst was minimum among the red novae, only (Formula presented.) in V-band. The Hα emission line and the background of a cool supergiant continuum with gradually decreasing surface temperature were observed in the spectra. Such process is typical for red novae, although the object under study showed extreme parameters: maximum luminosity, maximum outburst duration, minimum outburst amplitude, unusual shape of the light curve. This event is interpreted as a massive OB star system components’merging accompanied by formation of a common envelope and then the expansion of this envelope with minimal energy losses. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Opening PANDORA's Box: APEX Observations of CO In
Astronomy & Astrophysics manuscript no. APEX_CO_ArXiv c ESO 2018 November 8, 2018 Opening PANDORA’s box: APEX observations of CO in PNe L. Guzman-Ramirez1; 2, A. I. Gómez-Ruíz3, H. M. J. Boffin4, D. Jones5; 6, R. Wesson7, A. A. Zijlstra8; 9, C. L. Smith10, and Lars-Ake˚ Nyman2; 10 1 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands e-mail: [email protected] 2 European Southern Observatory, Alonso de Córdova 3107, Santiago, Chile 3 CONACYT Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, Puebla, México 4 European Southern Observatory, Karl-Schwarzschild-str. 2, D-85748 Garching, Germany 5 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 6 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 7 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 8 Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, UK 9 Department of Physics & Laboratory for Space Research, University of Hong Kong, Pok Fu Lam Road, Hong Kong 10 Centre for Research in Earth and Space Sciences, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada 11 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile Received xx, 2018; accepted xx, 2018 ABSTRACT Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the circumstellar shells of evolved stars with the aim to estimate their physical parameters. -
Planetary Nebulae
Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies. -
Curriculum Vitae Avishay Gal-Yam
January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award. -
Stats2010 E Final.Pdf
Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
A Blast Wave from the 1843 Eruption of Eta Carinae
1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2]. -
1999-2000 Annual Report
Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 1999 to 30 June 2000 ANGLO-AUSTRALIAN OBSERVATORY PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4800 (international) + 61 2 9372 4800 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE BOARD PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4813 (international) + 61 2 9372 4813 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE/UK SCHMIDT TELESCOPE PriVate Bag, Coonabarabran, NSW 2357, Australia PH (02) 6842 6291 (international) + 61 2 6842 6291 AAT FAX (02) 6884 2298 (international) + 61 2 6884 298 UKST FAX (02) 6842 2288 (international) + 61 2 6842 2288 WWW http://www.aao.gov.au/ © Anglo-Australian Telescope Board 2000 ISSN 1443-8550 COVER: A digital image of the Antennae galaxies (NGC4038-39) made by combining three images from the Tek2 CCD on the AAT (Steve Lee and David Malin). A new wide field CCD Imager (WFI) will come into use in 2000 and will enable many more images like this to be made. COVER DESIGN: Encore International COMPUTER TYPESET AT THE: Anglo-Australian ObserVatory ii The Right Honourable Stephen Byers, MP, President of the Board of Trade and Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland The Honourable Dr David Kemp, MP, Minister for Education, Training and Youth Affairs GoVernment of the Commonwealth of Australia In accordance with Article 8 of the Agreement between the Australian GoVernment and the GoVernment of the United Kingdom to proVide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 1999 to 30 June 2000. -
Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates. -
Constraining the Progenitor and Central Engine of Gamma-Ray Bursts with Observational Data
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data Lu Houjun University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Stars, Interstellar Medium and the Galaxy Commons Repository Citation Houjun, Lu, "Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2366. http://dx.doi.org/10.34917/7645921 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CONSTRAINING THE PROGENITOR AND CENTRAL ENGINE OF GAMMA-RAY BURSTS WITH OBSERVATIONAL DATA by HOUJUN L¨u Bachelor of Science Neijiang Normal University, China 2007 Master of Science Guangxi University, China 2010 A dissertation