اجلمهورية العربية السورية اجلمهورية العربية السورية وزارة التعليم العالي وزارة التعليم العالي جامعة دمشق اهليئة العامة للتقانة احليوية كلية السراعة

رسالة مقدمة لنيل درجة الدكتوراه يف اهلندسة الزراعية )علوم األغذية (

بعنوان

أمثلة إىتاج الكحول احليوي مً املوالس باستخداو سالالت مً مخرية .Saccharomyces sp وبكترييا Zymomonas mobilis Optimization of bioethanol production from using strains of Saccharomyces sp. yeast and Zymomonas mobilis bacteria

إعداد المهندسة

بإشراف

المشرف المشرف المشارك األستاذ الدكتور عادل سفر األستاذ الدكتور أمحد مسور اإلبراهيه كلية الزراعة كلية اهليدسة الكينيائية والبرتولية

2014 - أتكدً خبالص الشكس إىل األضتاذ الدكتٕز عاده ضفساألضتاذ يف قطي عمًٕ

األغرٖٛ كمٛٗ الصزاعٛ جاوعٛ دوشل دوشل لتفضمْ باإلشساف عمٜ ِرا البحث ٔوساجعتْ

الٍكدٖٛ لْ ٔجلىٗع املطاعدات اليت قدوّا إلمتاوْ.

- عىٗل الشكس لكمٛٗ الصزاعٛ ممثمٛ بعىٗدِا- ٔٔكالّٟا- ٔاقطاوّا كافٛ اليت

احتضٍت أعىالٍا ٔأظّستّا لمٍٕز ٔاخص بالشكس قطي عمًٕ األغرٖٛ ممثمٛ بالعىادٚ ٔأعضاٞ

اهلٛ٠ٗ التدزٖطٛٗ .

- أتٕجْ بالشكس اجلصٖن إىل األضتاذ الدكتٕز أمحد مسٕز االبساِٗي عضٕ اهلٛ٠ٗ

التدزٖطٛٗ بكمٛٗ اهلٍدضٛ الكٗىاٟٛٗ ٔالبرتٔلٛٗ جاوعٛ البعث, الرٙ مل ٖرتك جّداً ٔوطاعدٚ

ٔخربٚ فٍٛٗ ٔعمىٛٗ إال ٔقدوّا.

- كمىات٘ عاجصٚ عَ شكس اهلٛ٠ٗ العاوٛ لمتكاٌٛ احلٖٕٛٗ لكن وا قدوتْ ٔتكدوْ لدعي

البحث العمى٘ , ٔكاٌت حاضٍٛ دافٛ٠ لبحث٘ ِرا ٔلٕالِا ملا ٔصمت هلرٓ الٍتٗجٛ الساٟعٛ.

ٔاخص بالشكس ٔاالوتٍاُ األضتاذ الدكتٕز عصاً قاضي املدٖس العاً لمٛ٠ّٗ العاوٛ لمتكاٌٛ

احلٖٕٛٗ ملا قدوْ وَ دعي ٔتشجٗع لطالب الدزاضات العمٗا ٔإتاحٛ الفسصٛ جلىٗع الباحثني

لالضتفادٚ وَ إوكاٌٗات اهلٛ٠ٗ

- جصٖن الشكس إىل األضتاذ الدكتٕز حمىد فٕاش العظىٛ, أضتاذ أوساض الٍبات ٔالٕباٟٗات

يف كمٛٗ الصزاعٛ جباوعٛ لكن العُٕ ٔالتٕجْٗ الرٙ أغٍٜ بْ ِرا البحث - الشكس ٔاالوتٍاُ الكبري العىٗل لكن أخٕت٘ ٔأصدقاٟ٘ يف اهلٛ٠ٗ الرَٖ كإٌا عٌٕا

ل٘ يف عىم٘ ِرا ً. ضٕوس العم٘, ً . امياُ عصكٕه , الدكتٕزٚ عسٔب املصسٙ,

الدكتٕزٚ شعمٛ خازٔف,

ً. زضٕاُ بدز الدَٖ ٔ ً. زشا العٗد ٔ اآلٌطٛ وّا حداد هلي وين كن احملبٛ

- االوتٍاُ الكبري لكن لمعاومني يف ٛ٠ِٗ الطاقٛ الرزٖٛ ملطاِىتّي جبصٞ وَ ِرا العىن

أخريا اشكس كن وَ قدً ل٘ ٖد العُٕ ٔاملطاعدٚ ٔضاِي يف دعي ِرا البحث ٔإظّازٓ

لمٍٕز .

نسرين نقشو

اىل ٌٕز عٗين وَ غادزتين قبن أُ تسٝ جناح٘ ِرا

إىل أمي

إىل شسٖكٛ زٔح٘ ٔزفٗكٛ دزب٘ إىل وَ ِ٘ أخيت ٔصدٖكيت إىل الغالية نظام

الرَٖ دعىٌٕ٘ ٔاغدقٕ عم٘ وَ احلب ٔاحلٍاُ وا ال تصفْ الكمىات إىل أخوتي وأخواتي ) رنا , رابعة , امحد , حممد (

اىل وَ قضٗت بٍّٗي أمجن األٔقات ٔأحالِا إىل أصدقائي وزمالئي

اىل وَ وٍحٌٕا وَ ٔقتّي ٔجّدِي ٔعمىّي الكثري إىل أساتذتي

لكي مجٗعا حمبيت نسرين جدول المحتويات

الموضوع رقم الصفحة

1 1 3 1 1 1 1 3 1 2 1 1 3 1 -3-1-1-3-1 4 1 1 3 1 5 1 1 3 1 6 1 1 3 1 7 1 1 3 1 1 3 1 1 8- مالءمة الركيزة األولية إلنتاج اإليتانول -9 - 1-1-3 1 -10- 1-1-3 1

قائمة الجداول

الموضوع رقم الصفحة (1

11

قائمة األشكال

الموضوع رقم الصفحة رباعي األوعية

املكدمة Introduction

1

2

3

الفصل األول الدراسة املرجعية LITERATURE REVIEW

4

1

Davis et al., 2005) Biomass

73

Demirbas et al., 2004; Yu et al., CO2

Piccolo and 98 2003

Bezzo, 2009

(Licht et al., 2007; Buckeridge et al., 2010(،

(Hansen et al., 2005; Patil, 1991)

Altintas et al., 2002) Wyman and Hinman, 1990)

5

2005 2000 95

SourceOECD, 2006; Pilgrim,2009 2010 2005

RFA,2011

Proalcool

1975

2008 30

400

Basso and Rosa, 2010; Amorim et al., 2009

2009 10.600 2008 9

2010 13.230

2022 2015 36 20.5

Ingeldew et al., 2009

Bio fuels Platform

6

2009 2004 1992 44

1250 635

465 750

HGCA, 2011 7700 2010

(Licht,

2007)

70

890 2010 470 2009

132 2011

(RFA, 2011)

Bioethanol 1 1

Altintas et al., 2002)

7

Carvalho et al.,

1993

1 1 1

46.07 C2H5OH

0.789 °78 °117

°12.8 °177 °78.5

(Walker, 2010

2 1 1

CO2

CO2

34 1

Walker, 2010

bio

8

EMP

Embden - Meyerhof - Parnas

CO2

C6H12O6 → 2 C2H5OH + 2 CO2 + 2ATP Olsson and Hahn-Hagerdal 1996; Nigam 1999; Martin et al., 2006

5 95

(Ferrari et al., 1992, Beatriz et al., 2005)

3 1 1

1 3 1 1

Saccharum sp.

(Beta vulgaris

9

Leiper et al., 2006

Lin

and Tanaka, 2006

Tao et

al., 2005; Tanaka et al., 1999

Sreenath and Jeffries, 2000; Mohagheghi et al., 2006

95

1 99.9

Davis et al., 2005; Ruanglek et al., 2006 3

2 3 1 1

10

ÜÇÜNCÜ, 2011

oilseed pulp, beet pulp

Salix viminalis

Miscanthusgigantum

Arundodonax Phalarisarundinaceae

Prescott

and Dunn, 2002

Baptista et al., 2006

5

11

Saccharomyces cerevisiae

S.cerevisiae

Kluyveromyces fragilis

Nigam et al., 1998

2 1

Hinkova and Bubnik, 2001

20 80

62 48 60

14.8 16.7

1.5 0.4 8.5

12

Murtagh, 1999)

0.01 1.6 0.5 2 0.5

Huertaz-Díaz et al., 1991

0.02

formic acid acetic acid

melanoids

Borzani et al., 1993

6 - 4

9

13

Hamdy 4

et al., 1992

6.7 pH

% 1.3

1

0.1% %1.5

(Leiper et al., 2006) 30

90 85

pH

Mariam et al., 2009

Cazetta

et al., 2007

14

55

Jiménez et al., 2004

75

Piggot, 2005

Saccharomyces cerevisiae

Abdel-

Fattah et al., 2000; Eden et al., 2001

Cachot and

Pons, 1991

36-30 85 78 Brix

16 10 15 11 7 4 10 6

4.5 2 4 2 2 1

Carvalho et al., 100 5 2

1993

15

7 pH

Borzani, 2001 5.5 5

Cachot and Pons,

1991

A

B, C

16

27 85

Murtagh, 1999) 2.25 15.5 50

1 2 1

Brix

1.416 80

(Kiss et al., 1999) 80

Refractometer

90 85 80

15 10 90 85

Wang et al., 1985

S. cerevisiae

Doelle and Greenfield 1985; Vasconcelos et al., 1998

17

3 1

S.uvarum

Kluyveromyces sp. S.pombe S.virni

S. cerevisiae

Walker et al., 1990; Moreira

et al., 2005

Tao et al., 2005 S. cerevisiae

Saccharomyces cerevisiae 1 3 1

Fungi

Saccharomycetes Ascomycota

Saccharomyces Saccharomycetaceae Saccharomycetales

CAB International, 2005

Ergun and Freda, 2000

α

Cakar et al., 2005

18

Haq and Ali, 2007

S.cerevisiae

Carrascosa, 2006

Fregonesi et al.,

Schizosaccharomyces 2007

Carrascosa, 2006

C6

CO2 C2

(Converti et al., 2003)

CO2

ATP

ATPs Santos et al., 2008

19

PFK ATP

CO2

Ingledew,1999

Rajoka et

al., 2005

Patrascu et al., 2009

Bai et al.,) 2008

Hirasawa et al., 2007; Pham and Wright, 2008

1 1 3 1

20

1 1 1 3 1

Bx

32-14

% 32

Jones and

Ingledew, 1994

93 90

5 2

(Bai et al., 2008)

40 %24 Bx) 60.83

100/ 23.52 100/ 1.28

Laopaiboon et al., 2009

21 12

15

Mariam et al., 2009 14.92 6.49

30 20 10 5

30 100 40

21

Periyasamy et Vasconcelos et al., 1998; Bai et al., 2004

al., 2009

(30 20 15

(10 8

30

Wilkins et al., 2007 Ingledew,1993 20

2 1 1 3 1

pH

5.5 4.5

4.2 pH 5.7 pH (Nigam,1999)

0.15 56.03 59.1

0.4 0.19 0.08

Periyasamy et al., 2009

12 4 8 1

4 pH

Vasconcelos et al.,1998 4.5 4.2 pH

5.5 4 pH S.cerevisiae

22

6.39 5 4 5.5

Mariam et al., 2009

3 1 1 3 1

30 29

Jamai et °2 32 Saccharomyces cerevisiae

S. cerevisiae al., 2003

°45 °40 °35 30 25

°35

Periyasamy et al.,

2009

Mariam et al., 2009 6.42 °30

Nolan et al.,

1994

: 4 1 1 3 1

Saccharomyces spp.

23

Banat et

al., 1998

S. uvarum 17

S.uvarum ATCC26602

S.cerevisiae Y-1500

4 Comberbach and Bu'Lock, 1984

S.cerevisiae

40

S.cerevisiae MTCC174 S.cerevisiae HAU-11 S.cerevisiae 3B

S.cerevisiae MTCC172

61.5 66.7 67 71

Bajaj et al., 2003 Walker et al., 1990

S.cerevisiae MT15

15

Rajoka et al., 2005 40 72

24

Kluyveromyces marxianus

7.2

Banat and Marchant, 1995) 0.44

S.cerevisiae

Converti et al., 2003; Moreira et al., 2005

18

S.cerevisiae

(Balat et al., 2008)

5 1 1 3 1

glycolysis

Vasconcelos et al., 2004

25

Griffith and Ngo, 1994)

S.cerevisiae .(Thomas et al., 1996)

Arshad, 2005)

26

Rolz and De Leon,

2011

(NH4NO3)

1:5.5 0.275 (KH2PH4)

55.89 100 10.41

60 100 3.89

Alkabbashi et al., 2011

150

8.3

Saf-Instant 59.15

8.5 S. cerevisiae

S. cerevisiae Ethanol Red 0.8

8.1

Yalçin

27

and Özbas, 2004

Prescott and Dunn, 2002

6 1 1 3 1

S. Saf-Instant, Ethanol Red

20 cerevisiae

8.4 8.7 53.42 150

Mukhtar et al., 2010

7 1 1 3 1

200 350 300 250 200

4 29 500

. Mariam et al., 2009 12.92

8 1 1 3 1

Uden, 1989

28

(Rehm and Reed, 1995)

15

Uden, 1989 25

(Margaritis and Bajpai, 1982

Casey and Ingledew, 1986

40 95

Casey and Ingledew, 1986

Candida Saccharomyces

Moulin et al., 1980, Jiménez and Benítez, 1986 10

25

.(Jiménez and Benitez, 1986)

Duvnjak et al., 1987

Tubb, 1983) 60 40

14

Rehm and Reed, 1995 Uden, 1989

29

(Palmqvist et al., 1999

Dombek and Ingram, 1986; Rosa et al., 1987

15 Jiménez and Benítez, 1986

Ingram and Buttke, 1985

25 Saccharomyces

Ingram and Buttke, 1985

Jiménez and

Benítez, 1988

Benitez et al., 1983 Park and Sato, 1982)

35

Sharma et al., 70 0

1996

Sharma, 1997

30

9-1-1-3 1

16 12

5 2

D'Amore and Stewart, 1987 7.5

-10-1-1-3-1

Dale, 1987

Zymomonas 2 3 1

Zymomonas

Alphaproteobacteria Proteobacteria

Zymomonas Sphingomonadaceae Sphingomonadales

Z.mobilis

31

6 2

Z. 1.5 1

Bochner et al., mobilis

Panesar et al., 2010

2006

Rogers et al., 2007; Zhao et al.,

Z. mobilis 2009; Behera et al., 2010

Ruanglek

et al., 2006; Bochner et al., 2010

Lawford and Rousseau, 2002; Altintas et al., 2006;

Z. mobilis He et al., 2009

Z. mobilis Rogers et al., 2007

S. cerevisiae

Lin S.cerevisiae

and Tanaka, 2006; Rogers et al., 2007

Z. mobilis

S.cerevisiae

32

Bai et al., 2008

Z. mobilis

120

Bochner et al., 2010

Z.mobilis

Gunasekaran and Raj, 1999

S.cerevisiae

0.73 0.87 S.cerevisiae Z.mobilis

1.38 2.75

1.75 1.66

Nellaiah et al., 1988 5 3.34

Z.mobilis Rye

Lee et S.cerevisiae 5

Z.mobilis al., 1983

Sahm et al., 1994

33

Z.mobilis 1 2 3 1

Z.mobilis

1 1 2 3 1

° 31 25 Z.mobili

15

Lawford and Rousseau, 2002 ° 42 25

38

36 30 40

Deanda 80

Z.mobilis et al., 1996

Panesar et al., 2001b

°30

Panesar et al., 2001a 40 35

2 1 2 3 1

pH

buffer

pH Diez and Yokoya,1996

34

5 3 pH

7.5 3.5 pH Z.mobilis 7 6

De Moraes et al.,1981 7 5

6 5

(Buzato, 1984 Z. mobilis

7.5 3.4 pH Z.anaerobia

7.9 3.5 pH

Sprenger, 1996 3.4 2.5

3 1 2 3 1

10 2 Zymomonas

Rogers et al., 1982, 5.5

Rogers et al., 1997

10 5

Entner-Doudoroff

Lee and Huang ,

2000

Montenecourt, 1985

35

4 1 2 3 1

Zymomonas 4

mobilis

ATCC 12526 ATCC 109888 15

20 15

20 IFO 13756, NRRLB 4286

25

Loos et al.,1994

°30 200 6.5 pH

Cazetta et al., 2007 180

Z.mobilis

2 4 14

Ruijter et al., 2003 40

CP4

Z.mobilis

110 34

135

36

(Diez and Yokoya, 1996)

Z.mobilis BL4 25 20

Ahila et al., 25

1992

18.5

0.39 0.5

Singh and Jain,1994

5 1 2 3 1

Z.mobilis

Doelle et

1 5 al., 1990

0.39 500

500 1 5

(Tiwari et al., 2011) 0.55

6 1 2 3 1

Zymomonas 10 7.5 5

10 mobilis

10.56 11.36

37

(Sulfahri et al., 2011) 7.5 5

48

11.36 10

10.80 72

Zhang

and Feng , 2011

4 1

Batch 1 4 1

Amorim et al., 2009

38 semi- Fed- batch 2 4 1

batch

Hewitt and Nienow, 2007

Continuous 3 4 1

Liden, 2002)

5 1

39

Madigan et al., 2000

40

الفصل الثاني أهنية وأهداف البخث

41

- 2

Saccharomyces sp. 1

Zymomonas 2

mobilis

3

4

5

42

الفصل الثالث مواد وطرائم العنل MATERIALS AND METHODS

43

-3

2 1

(1

YGS

YPS PDA HPLC Anti foam

2

Zymomonas mobilis ITS 4 ITS1 DNA- - DNA (ExoSAP-IT Ladder MgSO4 dNTP – Taq- polymerase- Standard Standard

44

2

BIOTECH- 0.45 4GBR-5 KNAUER HPLC 1.5 ependorff EU SELECTA New Brunswick USA Scientific pH mini spin ependorff DO SHIVAKI 30 SHIVAKI 37 EU BIO AIR HANNA pH meter SCO EU JRAD Bio (merieux API

GENE Amp. PCR PCR system 9700 BIO RAD ABI DNA 310-Gendic Analyzer PRISM innu PREP 0.2µm FG Millipore Life science PCR Pure Kit BOECO METLER TOLEDO JSAC HITACHI U-2900

45

1 3

2008

2009

2 3

5-3

25-20

̊4

Safdistil C-7

FERMENTIS

Bio S1929

Springer

Ethanol Red®

FERMENTIS

46

CWBI Zymomonas mobilis LMG404

10 10 (YPS)

°30 1000 20

3 3

9 1

4-10 3-10

30

Nahvi et al., 2002 48

9 1

5 3 10

1

47

1.5 (Merck

̊4

4 3

1 4 3

(Barnet et al., 2002)

8

10

25

21 14 7 3

4

48

21 14 7 3 ̊25

2 4 3

Bio merieux API

5

3 5 suspension medium

2

100 24

7 c medium

100

100 API

72 24

API

Covadonga et al., 2002)

12 Bx)

0.34 0.12

2N 2N

49

10 5

meter pH 3

12

4.5

500 300

2.5 15 °121

Mariam et al., ̊30 24

̊30 2009

5 200

24

Nahvi et al., 2002

̊20

50

Saccharomyces 3-4-3 cerevisiae

DNA

10 750

Sodium Dodecyl Sulfate 150 20 K

37.5 1 mercaptoethanol 7.7 2 (SDS)

Ethylenediaminetetraacetic 15 1 CTAB

50 Tris 529.8 10 EDTA Acid

1 24 25

70 100 3

Bakri et al., DNA

48 1.5 2010

750

30 60 20

10 60 10 80

10 80

3

3

51

30 400

13000 5

10 1 3

4 1 3

13000 5 15

DNA

15 70

50 DNA

260 DNA

260 DNA

280

U-2900 HITACHI Spectrophotometer

PCR

ITS4 ITS1

5.8 S rDNA

5` TCC GTA GGT GAA CCT GCG G 3` ITS1

5` TCC TCC GCT TAT TGA TAT GC 3` ITS4

Bakri et al., 2010 CWBI

52

3 1.5

7 50

Taq-polymerase 0.4 5 DNA

32.1 2.5 MgSo4 2 dNTP 1

Amplification

3 °95

Denaturation DNA

30 94

Annealing

50 DNA

45

Extension

DNA

1 72

35

5 72

53

20 1.5 PCR

4

30 DNA-Ladder

DNA

USB ExoSAP-IT

PCR DNA

Taq ABI

ABI

DNA

PCR

2 PCR 1 ExoSAP-IT

15 37

15 80

54

1 6

1

1 1

10 96 PCR

30 60 5 50 innu

PREP PCR Pure Kit

Life science

DNA

DNA

5 3

0.45 1.5 ependorff mini spin ependorff

NH2 HPLC

EH- (RI Refractive Index Detector

55

254 UV 002

1

1 5 4 3 batch 2 1 AC AK pH 7 6 rpm 9 C H ̊C 8 ml 11 ml 10 ml 13 ml 12

56

750

2.5 15 121

500 5

50 1.2

200 24

T24 T0 30

ependorff

HPLC

Davis et al., 2.4 30 15 HPLC 85

57

0.4 2006

2

Raposo et al., 2009

LMG 404 6 3

Zymomonas mobilis

1 6 3

pH -1 1 6 3

14 750 4

0 12

0 34

5.5 5 4.5 4

15 ̊121

2.5

pH

5.5 5 4.5 4

5 °30

58

50 1.2 500

200 24

Davis et al., 2006 30

3000 ependorff T24 T0

10

pH

-2 1 6 3

°20 5 pH

°35 °30 °25

Bx 3 1 6 3

5 pH

28 24 20 16

°30

.T24 20 16 Bx

28 24 20 Bx

59

T48

Bx

4 1 6 3

5 pH

0.06 16 Bx

0.34 0.12 0.17

0.68 0.24

1.36 0.48

̊30

24

5 1 6 3

16 Bx 5 pH

0.34 0.12

1.25

7.5 5 2.5

60

̊30

24

2 6 3

16 5.5 5 4.5 4 pH 1-2 6 3

35 30 25 20 2-2 6 3

16

28 24 20 16 Bx -3-2 6 3

0.34 0.12 -4-2 6 3

0.68 0.24

1.36 0.48

2.72 0.96

7.5 5 2.5 1 25 -5-2 6 3

0.68 0.24

61

3-6-3

7.5 7 6.5 6 pH 1 3-6-3

16 750 4

0.17 0.06

7 6.5 6

7.5

15 ̊121

10

5

24 1000 3 10 pH 37

7.5 7 6 6

5 30

50 1.2 500

Davis et al., 30 200 24

T24 T0 2006

62

10 3000 ependorff

pH

2 3-6-3

6.5 pH

̊40 ̊35 ̊30 ̊25

Bx 3 3-6-3

6.5 pH

28 24 20 16

̊30

T24 20 %16 Bx

T48 28 24 20 Bx

Bx

63

4 3-6-3

6.5 pH

0.06 16 Bx

0.34 0.12 0.17

0.68 0.24

1.36 0.48

°30 LMG 404

24

5 3-6-3

6.5 pH

16 Bx

0 17 0 06

17.5 15 12.5 10

24 ̊30

64

4-6-3

7.5 7 6.5 6 pH -1 4-6-3

̊40 ̊35 ̊30 ̊25 -2 4-6-3

28 24 20 16 Bx -3 4-6-3

0.12 -4 4-6-3

0.68 0.24 0.34

1.36 0.48

2.72 0.96

17.5 15 12.5 10 -5 4-6-3

0.34 0.12

7 3

1 7 3

65

750 3

5 16

0.34 1.2

5 2.5

1.2 500

50

30 200 24

T30 T24 T12 T6 T0

2 7 3

0.24

0.68

3 7 3

66

750 3

0.06 6.5 16

0 17

5 10

50 1.2 500

24

°30 200

T30 T24 T12 T6 T0

4 7 3

0 12

0 34

67

8 3

ANOVA

LSD General Linear Model

(P≤ 0.05 5

Correlation Coeficient

SPSS 18

68

الفصل الثالث النتائج و املنـاقـشـة RESULTS and DISCUSSION

69

- 4

ICUMSA Bartens, 2005 GS4-13 1994 ICUMSA

. (3 Bartens, 2005 GS4/7-1 1994

100 3

70.63 79.5 Brix 57.1 47.4 27.4 17.5 7.6 15.1 0.93 0.61 Ca 0.57 1.8 Na 0.58 2.7 K 0.11 1.43 N 0.004 0.004 P 173 112 ppm Fe) 3 7 ppm Mn) 4 13 ppm Zn) 3 3 ppm Cu) 3

1 4 56

70

Saccharomyces 20

API

2 4

1 2 4

Barnet

Barnet, 2002 Saccharomyces

API 2 2 4

API

2

S.cerevisiae API

2

71

API 2

72

API 4

4

GLU : D- MDG- Methyl-a D- Glucopyranoside GLY: Glycerol NAG: N-Acetyl-Glucosamine 2KG: Calcium 2 Keto-Gluconate CEL: D- Cellobiose ARA: L- Arabinose LAC: D- XYL: D- MAL: D- GAL: D- SAC: D- Sacchrose() ADO: Adonito TRE: Trihalose XLT: Xylitol MLZ: D-Melezitose SOR:D- Sorbitol RAF: D-Raeeinose API 4

RAF MLZ TRE SAC MAL LAC CEL NAG MDG SOR INO GAL XLT ADO XYL ARA 2KG GLY GLU

- - + -

Saccharomyces cerevisiae

73

5

24 5

4 SA1 1 4.5 BR3 2 4 SG1 3 4.2 SH1 4 3.7 SR5 5 4.3 BR2 6 4 SR6 7 4.5 BR1 8 3.9 SR4 9 3.8 SB1 10 3.9 NR7 11 3.8 CD1 12 4.1 CC1 13 4 JE1 14 4.1 JF1 15 3.8 JN2 16 3.7 JN4 17 3.5 JN5 18 4 JN6 19 4.1 JN7 20

74

24 5

4.5 BR3 BR2 BR1

3.5 JN5

Elander and Chang,1979

Wang et al.,1979) Phenotype

BR3 BR2 BR1 DNA 3 2 4

DNA

280 260

280 260

DNA

6 260

75

DNA 6

611 1.04 BR1 90.5 1.53 BR2 206.5 1.56 BR3

PCR

PCR

76

a

b

ITS1 PCR :a 3 ITS4 PCR b BP100DNA marker BP100 DNA marker

77

DNA

PCR DNA

R BRI: Saccharomyces cerevisiae 92% CCTCCTGATTTGTTGTCAACTTTAAGACATTGTTCGCCTAGACGCTCTCTTCTT ATCGATAACGTTCCAATACGCTCAGTATAAAAAAGATTAGCCGCAGTTGGTA AAACCTAAAACGACCGTACTTGCATTATACCTCAAGCACGCAGAGAAACCTC TCTTTGGAAAAAAAAAATATCCAATGGGAAAGGCCAGCCAATTTCAAGTTAA CTCCAAAAAGTTTCCCCCCCTACCAAACAAAAGGTTTGAAAAGGAAATGACC CTCAAACAGGGATGCCCCCGGGAAAACCAAGGGGGGCAAGGGGGGTTCAAA AATTCCATGATTCCCGGAATTCTTGCAATTCCCATTACGTATCCCATTTCCCTG GGTTCTTCATCGAATGCGAGAAACCAAGAAAATCCGTTGTTGAAAGTTTTTAA AATTTTAAAATTTCCAGTTACAAAAATTCTTGTTTTTGACAAAAATTTAAGGA ATAAATAAAATTG F BR1:Saccharomyces cerevisiae 99% TTTATAATTTTGAAATGTTTTTTTTTGTTTTGGCAAGAGCATGAGAGCTTTTAC TGGGCAAGAAGACAAGAGATGGAGAGTCCAGCCGGGCCTGCGCTTAAGTGC GCGGTCTTGCTAGGCTTGTAAGTTTCTTTCTTGCTATTCCAAACGGTGAGAGA TTTCTGTGCTTTTGTTATAGGACAATTAAAACCGTTTCAATTACAACACACTG TGGAGTTTTCATATCTTTGCAACTTTTTCTTTGGGCATTCGAGCAATCGGGGCC CAGAGGTAACAAACACAAACAATTTTATTTATTCATTAAATTTTTGTCAAAAA CAAGAATTTTCGTAACTGGAAATTTTAAAATATTAAAAACTTTCAACAACGG ATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATG TGAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCCGCCCC TTGGTATTCCAGGGGGCAT CONTIG BR1: ATGCCCCCGGGAAAACCAAGGGGCGGCAAGGGGCGTTCAAAAATTCCATGAT TCACGGAATTCTTGCAATTCACATTACGTATCCCATTTCCCTGCGTTCTTCATC GAATGCGAGAAACCAAGAAAATCCGTTGTTGAAAGTTTTTAAAATTTTAAAA TTTCCAGTTACAAAAATTCTTGTTTTTGACAAAAATTTAAGGAATAAATAAAA TTG

R BR2: Saccharomyces cerevisiae 99% TTTCAACTTTAAGACATTGTTCGCCTAGACGCTCTCTTCTTATCGATAACGTTC CAATACGCTCAGTATAAAAAAAGATTAGCCGCAGTTGGTAAAACCTAAAACG ACCGTACTTGCATTATACCTCAAGCACGCAGAGAAACCTCTCTTTGGAAAAA AAACATCCAATGAAAAGGCCCAGCAATTTCAAGTTAACTCCAAAGAGTATCA CTCACTACCAAACAGAATGTTTGAGAAGGAAATGACGCTCAAACAGGCATGC CCCCTGGAATACCAAGGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACG GAATTCTGCAATTCACATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGC

78

GAGAACCAAGAGATCCGTTGTTGAAAGTTTTTAATATTTTAAAATTTCCAGTT ACGAAAATTCTTGTTTTTGACAAAAATTTAATGAATAGATAAAATTGTTTGTG TTT F BR2: Saccharomyces cerevisiae 99% TTTTGAAATGTTTTTTTTTGTTTTGGCAAGAGCATGAGAGCTTTTACTGGGCAA GAAGACAAGAGATGGAGAGTCCAGCCGGGCCTGCGCTTAAGTGCGCGGTCTT GCTAGGCTTGTAAGTTTCTTTCTTGCTATTCCAAACGGTGAGAGATTTCTGTG CTTTTGTTATAGGACAATTAAAACCGTTTCAATTACAACACACTGTGGAGTTT TCATATCTTTGCAACTTTTTCTTTGGGCATTCGAGCAATCGGGGCCCAGAGGT AACAAACACAAACAATTTTATCTATTCATTAAATTTTTGTCAAAAACAAGAAT TTTCGTAACTGGAAATTTTAAAATATTAAAAACTTTCAACAACGGATCTCTTG GTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGC AGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCGGCCCCTTGGTATT CCAGGGGGCATG

CONTIG BR2: Saccharomyces cerevisiae 99% CATGCCCCCTGGAATACCAAGGGGCCGCAATGTGCGTTCAAAGATTCGATGA TTCACGGAATTCTGCAATTCACATTACGTATCGCATTTCGCTGCGTTCTTCATC GATGCGAGAACCAAGAGATCCGTTGTTGAAAGTTTTTAATATTTTAAAATTTC CAGTTACGAAAATTCTTGTTTTTGACAAAAATTTAATGAATAGATAAAATTGT TTGTGTTT

R BR3: Saccharomyces cerevisiae 94% CTGATTTGTTGCAACTTTAAGACATTGTTCGCCTAGACGCTCTCTTCTTATCGA TAACGTTCCAATACGCTCAGTATAAAAAAGATTAGCCGCAGTTGGTAAAACC TAAAACGACCGTACTTGCATTATACCTCAAGCACGCAGAGAAACCTCTCTTTG GAAAAAAAAACATTCCAAGGAAAAGGGCCAGCAATTTCAAGTTAACCCCAA AGGAGTTTCCCCCCCTACCAAACAAAAGGTTTGAAAAGGAAATGACCCTCAA ACAGGCATGCCCCCGGGAAAACCAAGGGGGGCAAGGGGGGTTCAAAAATTC GATGATTCCCGGAATTCTGCAATTCCCATTACGTATCGCATTTCCCTGGGTTCT TCATCGATGCGAGAACCAAAAAATCCGTTGTTGAAGGTTTTTAATATTTTAAA ATTTCCAGTTACGAAAATTCTTGTTTTTGACAAAAATTTATGAATAAATAAAA TTG F BR3: Saccharomyces cerevisiae 99% TGTTTTTTTTTGTTTTGGCAAGAGCATGAGAGCTTTTACTGGGCAAGAAGACA AGAGATGGAGAGTCCAGCCGGGCCTGCGCTTAAGTGCGCGGTCTTGCTAGGC TTGTAAGTTTCTTTCTTGCTATTCCAAACGGTGAGAGATTTCTGTGCTTTTGTT ATAGGACAATTAAAACCGTTTCCAATACAACACACTGTGGAGTTTTCATATCT TTGCAACTTTTTCTTTGGGCATTCGAGCAATCGGGGCCCAGAGGTAACAAACA CAAACAATTTTATTTATTCATTAAATTTTTGTCAAAAACAAGAATTTTCGTAA CTGGAAATTTTAAAATATTAAAAACTTTCAACAACGGATCTCTTGGTTCTCGC

79

ATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCC GTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCC CONTIG BR3: Saccharomyces cerevisiae 97% GGAAAACCAAGGGGCGCAAGGGGCGTTCAAAAATTCGATGATTCACGGAATT CTGCAATTCACATTACGTATCGCATTTCCCTGCGTTCTTCATCGATGCGAGAA CCAAAAAATCCGTTGTTGAAAGTTTTTAATATTTTAAAATTTCCAGTTACGAA AATTCTTGTTTTTGACAAAAATTTAATGAATAAATAAAATTG

DNA F Forward DNA R Reverse 3 4

1 3 4

7

7

T24 T24 T0 T24 55 3.6 6.5 0.6 7.1 1 53 3.5 6.6 0.5 7.1 2 58.7 3.7 6.3 0.8 7.1 3

3.7 24

100 6.3

100 58.7

80

2 3 4

8

8

T24 T24 T24 59.8 4.4 7.36 0.9 8.26 BR1 55.4 4 7.22 1.04 8.26 BR2 55.1 4 7.26 1 8.26 BR3

BR1

24

6.5 S. cerevisiae 43

%59.8 15

7.36

Amutha and 15

Monte et al., 2003) Gunasekaran, 2001

BR1 3 3 4

9

BR1 9

T24 T24 T24 T0 53.4 3.9 7.3 1 8.3 57.7 4.2 7.28 1.02 8.3 3 60 4.5 7.5 0.8 8.3 BR1

81

BR1

BR1

S. cerevisiaeBR1 4 4

4 10 pH 1 4 4

BR1

BR1 pH 10

30

pH 100 100 100 100 100

1.45 ± 0.19b 35.33 ± 2.90c 4.43 ± 0.58b 12.53 ± 0.75 1.5 ± 0.1a 14.033 ± 0.15 4

2.49 ± 0.23a 57.61 ± 1.96a 7.6 ± 0.7a 13.19 ± 0.7 0.94 ± 0.05d 14.13 ± 0.15 4.5

2.63 ± 0.19a 61.66 ± 1.19a 8.0 ± 0.6a 13.03 ± 0.51 1.05 ± 0.08c 14.1 ± 0.1 5

2.25 ± 0.14a 52.66 ± 0.37b 6.86 ± 0.45a 13.0 ± 0.52 1.26 ± 0.05b 14.26 ± 0.05 5.5 %5 0.365 3.503 1.112 0.81 0.144 0.172 LSD

5

82

BR1 pH 4

100 13.03 5 pH

5 pH 100 1.5 4 pH

5.5 5 4.5 0.84

5 pH

4.43 4 8

5 4.5 100

100 61.66 5 pH

83

100 35.33 4 pH

5 pH 5.5 5 4.5 pH

4 2.63

1.45

pH

6.39 4.5 5.5-4

Amutha and Kourkoutas et al.,2004 100/ 13.59

Gunasekaran, 2001

(Nigam,1999 Vasconcelos et al.,1998 4.5 4.2 pH

4 S.cerevisiae

4.5 4 5.5 5.5

Mariam et al., 2009 6.39

5 pH

S.cerevisiae BR1

84

BR1 5 11 2 4 4

5 pH BR1 11

100 100 100 100 100 0.90 ± 0.15d 29.5 ± 0.96d 2.76 ± 0.47d 9.4 ± 0.7b 4.73 ± 0.55a 14.13 ± 0.7 20 1.77 ± 0.06c 40.7 ± 2.61c 5.4 ± 0.2c 13.3 ± 0.55a 0.76 ± 0.28b 14.06 ± 0.61 25 2.58 ± 0.11a 59.43 ± 1.26a 7.86 ± 0.35a 13.23 ± 0.41a 0.93 ± 0.15b 14.16 ± 0.3 30 1.99 ± 0.05b 46.86 ± 2.12b 6.06 ± 0.15b 12.96 ± 0.6a 0.98 ± 0.18b 13.93 ± 0.40 35 0.198 3.506 0.602 1.088 0.627 0.31 %5 LSD

5

85

BR1 (5

º25 100 4.73 20

100 0.76

º 35 30 25

º20 100 13.23 º30

100 9.4

7.86 º30

100 2.76 º20 100

86

59.43 º30 100

29.5 º20 100

º30 100

0.90 º20 2.58

(40-25

6.42 30

Mariam et al.,2009 /100 14.79

7.86 BR1 º30

6 12 Bx 3 4 4

BR1

87

30 5 pH BR1 Bx 12

(Bx 100 100 100 100 100 2.14 ± 0.13a 60.33 ± 2.15a 6.53 ± 0.40c 11.03 ± 0.30c 0.63 ± 0.03b 11.8 ± 0.62d 16-24h 2.33 ± 0.21a 50.3 ± 2.05a 7.1 ± 0.65b 14.36 ± 0.87bc 1.13 ± 0.05a 15.46 ± 0.86bc 20-24h 1.31 ± 0.09b 58.76 ± 2.51a 8.64± 0.60ab 14.7 ± 0.41bc 0.76 ± 0.15b 15.46 ± 0.65bc 20-48h 1.38 ± 0.1b 50.93 ±0.94a 8.4 ± 1.08a 16.26 ± 0.97b 0.96 ± 0.11a 17.23 ± 1.95ab 24-48h 1.26 ± 0.07b 40.00 ± 2.1b 7.7 ± 0.31b 19.83 ± 1.85a 1.33 ± 0.23a 21.17 ± 1.63a 28-48h 0.330 16.125 0.530 3.520 0.470 2.958 %5 LSD

5

88

BR1 Bx (6

100 21.17 28

100 11.8 16

100 1.33 48 28

BR1

100 0.63 24 16

48 28

100 19.83

89

100 11.03 24 16

48 24

24 16 8.4

6.53

100 60.33 24 16

100 40 28

24 20

48 28 2.33

1.26

40 %24 Bx 60.83

100/ 23.52 /100 1.28

Laopaiboon et al., 2009

BR1

12

15 21

Mariam et al., 2009 14.92 6.49

6.53

11.03

7.1 14.36

90

BR1 7 13 4 4 4 16 30 5 pH BR1 13

100 100 100 100 100 %0.17 0.06 2.34 ± 0.09ab 60.63 ± 2.10 7.13 ± 0.30ab 11.76 ± 0.55ab 0.9 ±0.1b 12.66 ± 0.65

%0.34 0.12 2.45 ± 0.02a 61.23 ± 1.07 7.46 ± 0.05a 12.2 ± 0.26 a 0.36 ± 0.11c 12.56 ± 0.25

0.68 0.24 2.30 ± 0.0b 59.66 ± 1.42 7 ± 0.2b 11.73 ± 0.25ab 0.43 ± 0.11c 12.16 ± 0.35

1.36 0.48 2.17 ± 0.05c 58.6 ± 0.86 6.6 ± 0.17c 11.26 ± 0.46b 1.16 ± 0.15a 12.26 ± 0.25

0.124 3.2 0.384 0.759 0.230 1.3 %5 LSD

5

91

BR1 7

100 61.23

100 0.36

100 1.16 1.36 0.48

12.2

100

7.46

92

2.45

2.17

Saf-Instant S. cerevisiae

8.3 150

8.5

Red-Ethanol 59.15

8.1

.)Prescott and Dunn, 2002)

93

BR1 (8 14 5 4 4

0.34 0.12 16 Bx 30 5 pH BR1 14

100 100 100 100 100 b a 2.39 ± 0.01 59.6 ± 2.40 7.26 ± 0.05 12.2 ± 0.4 0.4 ± 0.1 12.6 ± 0.50 1.25% a a 2.45 ± 0.02 61.23 ± 0.25 7.46 ± 0.05 12.2 ± 0.1 0.4 ± 0.1 12.6 ± 0.1 2.50% ab a 2.44 ± 0.04 60.93 ± 1.60 7.43 ± 0.11 12.2 ± 0.17 0.53 ± 0.15 12.73 ± 0.25 5% c b 2.29 ± 0.04 57.56 ± 0.65 6.96 ± 0.15 12.1 ± 0.26 0.66 ± 0.15 12.76 ± 0.40 7.50% 15.35 3.78 14.46 0.11 2.93 0.19 F 0.001 0.059 0.001 0.951 0.099 0.901 Sig. %5 0.063 3.72 0.195 0.42 0.61 0.64 LSD

5

94

BR1 8

7.5

100 0.4 2.5 1.25) 100 0.66

100 0.4

12.2 100 12.2 100 12.2 5 2.5 1.25

100 12.1 7.5 100

100 61.23) 2.5

100 45.4 7.5

95

7.5 7.46 2.5

2.5 6.96

2.29 7.5 2.45

Ethanol-Red Saf-Instant 20

8.7 8.4 S. cerevisiae

Mukhtar et al.,

2010

S. cerevisiae BR1 5 4

9 15 pH 1 5 4

BR1

BR1 pH 15

pH 100 100 100 100 100 c c c 2 ± 0 48.17 ± 1.93 6.1 ± .01 12.33 ± 0.35 0.5 ± 0.46 12.83 ± 0.15 4 b b b 2.29 ± 0.01 55.07 ± 1.5 6.93 ± 0.05 12.6 ± 0.26 0.26 ± 0.15 12.85 ± 0.13 4.5 a a a 2.5 ± 0 63.2 ± 0.17 7.57 ± 0.05 11.96 ± 0.05 0.47 ± 0.05 12.43 ± 0.05 5 b b b 2.33 ± 0.05 57.33 ± 1.5 7.07 ± 0.11 12.33 ± 0.51 0.46 ± 0.35 12.78 ± 0.14 5.5 %5 0.056 2.713 0.163 1.2 0.75 0.9 LSD

5

96

BR1 pH (9

100 0.5 4 pH

100 0.26 4.5 pH

100 12.6 4.5 pH

100 11.96 5 pH

6.1 4 pH 7.57 5 pH

5 pH

97

100 48.17 4 pH 100 63.2

2.5 5 pH

2 4 pH

5 pH 59.1

24 100 10.4

Alkabbashi et al., 6.15

2011

(10 16 2 5 4

BR1

5 pH BR1 16

100 100 100 100 100

c c c c a 1.03 ± 0.05 44.56 ± 2.02 3.1 ± 0.17 6.96 ± 0.41 5.46 ±0.41 12.43 ±0.42 20 b b b b b 1.93 ± 0.25 59.5 ± 2.36 5.9 ± 0.65 9.9 ± 0.72 2.7 ± 0.65 12.6 ± 0.1 25 a a a a c 2.5 ± 0 63.36 ± 1.17 7.59 ± 0.1 12.00 ± 0.35 0.83 ± 0.21 12.83 ±0.15 30 a b a a c 2.36 ± 0.0 59.13 ± 1.46 7.13 ± .11 12.07 ± 0.38 0.66 ± 0.32 12.73 ±0.06 35 %5 0.248 3.417 0.654 0.920 0.815 0.31 LSD

5

98

BR1 (10

̊20

0.66 º35 100 5.46

º35 100

100 6.96 º20 100 12.07

7.59 º30

%3.1 º20

63.36 ̊30

º30 100

99

1.03 ̊20 2.5

40 25

6.42 30

100/ 14.79

12 7.59

24

(Mariam et al.,2009)

64.9 6.5

36 30 10.6

(Alkabbashi et al., 2011)

Bx 3 5 4

(11 17

30 5 pH BR1

100

5 pH BR1 17

30

100 100 100 100 100 a a c d 2.53 ± 0.03 62.43 ± 1.06 7.7 ± 0.1 12.33 ± 0.06 0.78 ± 0.27 13.1 ± 0.2 16-24h a b c c 2.33 ± 0.28 52.23 ± 6.04 7.06 ±0.92 13.76 ± 3.16 1.87 ± 2.29 15.63 ± 1.0 20-24h b b bc c 1.23 ± 0.01 50.13 ± 4.10 7.53 ±0.05 15.16 ± 1.35 0.46 ± 0.38 15.63 ± 1.01 20-48h b c b b 1.25 ± 0.0 43.13 ± 0.60 7.6 ± 0.00 17.63 ± 0.25 0.77 ± 0.23 18.4 ± 0.5 24-48h b d a a 1.25 ± 0.0 36.83 ± 1.89 7.6 ± 0.00 20.66 ± 1.02 1.96 ± 1.06 22.63 ± 0.1 28-48h %5 0.236 6.219 0.757 2.922 2.106 1.242 LSD

5

BR1 (11

101

48 28

20 100 1.96

100 0.46 48

24 16

24 20 7.7

7.06

16 100 22.63 28

100 13.1

100 20.66 48 28

100 12.33 24 16

24 16

100 62.43

100 29.03 48 28

24 16

48 20 2.53

1.23

Ethanol (Saf-instant) S. cerevisiae

102

15 13 7.5 7.7 Red

72 100 0.90 0.99

(Mukhtar et al., 2010) 24

72 30 53

24 100 52.23

Bai et al., 2004 100 13.76

(12 18 4 5 4 pH BR1

16 Bx 30 5

103

BR1 18

16 Bx 30 5 pH

100 100 100 100 100 0.12 a ab 2.47 ± 0.00 58.4 ± 2.26 7.5 ± 0.0 12.85 ± 0.49 0.12 ± 0.0 12.95 ±0.4 0.34

0.24 ab a 2.43 ± 0.11 63.86 ± 4.02 7.4 ± 0.34 11.64 ± 1.23 0.10 ±0.01 11.74 ±1.23 0.68

0.48 a ab 2.51 ± 0.04 60.23 ± 1.2 7.53 ±0.25 12.5 ± 0.34 0.24 ±0.22 12.73 ±0.11 1.36

0.96 b b 2.3 ± 0.00 55.6 ± 2.25 7 ± 0.0 13.63 ± 0.49 0.23 ±0.11 12.83 ± 0.4 2.72

0.143 5.796 0.98 1.92 0.42 0.83 %5 LSD

5

104

BR1 (12

100 0.24

100 0.10

100 13.63

7.53

7

100 63.86

105

100 55.6

2.51

2.3

S. cerevisiae Ethanol-Red Saf-Instant

32.5

7.1 7.5

7.9 42.74

7.5

Vasconcelos et al.,2004

(13 19 5 5 4

BR1

5 pH BR1 19 0.68 0.24 16 Bx 30

100 100 100 100 100 a b a c 2.45 ± 0.04 59.23 ± 0.92 7.46 ±0.11 12.6 ± 0.00 0.21 ± 0.15 12.8 ± 0.00 1.25% a a a b 2.4 ± 0.03 61.56 ± 1.41 7.3 ± 0.1 11.96 ± 0.25 0.18 ± 0.02 12.13 ± 0.3 2.50% a ab a a 2.46 ± 0.06 60.16 ± 0.35 7.5 ± 0.2 12.46 ± 0.3 0.2 ± 0.00 12.65 ±0.28 5% b c b a 2.27 ± 0.03 55.2 ± 0.1 6.9 ± 0.1 12.5 ± 0.2 0.26 ± 0.05 12.76 ± 0.25 7.50% %5 0.082 1.628 0.255 0.417 0.062 0.459 LSD

5

106

BR1 (13

2.5 100 0.26 7.5

100 0.18

1.25

100 11.96 2.5 100 12.6

7.5 5

%6.9 7.5

100 61.56 2.5

100 55.2 7.5

107

2.27 7.5 2.46 5

15 10 5

8.1 7.4 7 S. cerevisiae

(Arshad,2005) 5

Z. mobilis LMG 404 6 4

(14 20 pH 1 6 4

LMG 404

LMG 404 20

pH 100 100 100 100 100 b b b a b 2.23 ± 0.06 67.53 ± 0.4 6.8 ± 0.2 10.06 ± 0.35 0.8 ± 0.2 10.86 ± 0.55 6 a a a a b 2.37 ± 0.04 72.73 ± 0.92 7.2 ± 0.1 9.9 ± 0.1 0.66 ± 0.05 10.56 ± 0.11 6.5 ab b ab a b 2.28 ±0.04 68.66 ± 1.25 6.93 ±0.15 10.1 ± 0.43 0.7 ± 0.17 10.73 ± 0.66 7 c b c b a 1.94 ± 0.05 64.45 ± 0.42 5.93 ± 0.11 9.2 ± 0.2 1.7 ± 0.2 10.9 ± 0.2 7.5

0.097 4.260 0.277 0.567 0.317 0.842 %5 LSD

5

108

LMG 404 (14

7.5 pH

6.5 pH 100 3.3

6 pH 100 0.66

100 7.9 7.5 pH 100 10.06

7.2 6.5 pH

5.93 7.5 pH

100 72.73 6.5 pH

100 67.53 6 pH

109

7.5 pH 2.37 6.5 pH

7.3 1.97

40 21 5 pH

Karuppaiya et al., 2009)

(15 21 2 6 4

6.5 pH LMG 404

LMG 404 21

100 100 100 100 100 b b b a 2.23 ± 0.06 63.4 ± 2.95 6.8 ± 0.2 10.73 ± 0.25 0.86 ± 0.057 11.4 ± 0.2 25 a a a ab 2.45 ± 0.04 70.56 ± 1.04 7.43 ± 0.11 10.53 ± 0.25 0.8 ± 0.17 11.33 ± 0.15 30 b b b ab 2.16 ± 0.06 62.3 ± 0.43 6.66 ± 0.15 10.7 ± 0.3 0.76 ± 0.05 11.46 ± 0.25 35 b b b b 2.20 ± 0.06 62.43 ± 1.53 6.7 ± 0.17 10.73 ± 0.05 0.56 ± 0.15 11.3 ± 0.1 40 %5 0.112 3.312 0.307 0.442 0.231 0.348 LSD

5

110

LMG 404 (15

100 10.73 ̊25

º30

º40 100 0.86 º25

º30 100 0.56

6.66 º35 7.43

º30

62.3 º30 100 70.56

111

º30 100

2.16 º35 2.45

̊30 7.6

45 22

Panesar et al., 2006

Bx 3 6 4

16 22

LMG 404

LMG 404 %BX 22

30 6.5 pH

100 100 100 100 100 24

a a b d b d 2.31 ± 0.05 70.33 ± 0.55 7.03 ± 0.15 10 ± 0.17 0.76 ± 0.05 10.76 ± 0.11 16-24h

a c b c b c 2.32 ± 0.04 56.23 ± 1.02 7.06 ± 0.11 12.56 ± 0.15 0.96 ± 0.2 13.53 ± 0.11 20-24h c b b c b c 1.15 ± 0.0 55.1 ± 1.44 7.03 ± 0.2 12.76 ± 0.05 0.76 ± 0.15 13.53 ± 0.11 20-48h b c a b b b 1.24 ± 0.01 49.13 ± 0.51 7.56 ± 0.05 15.4 ± 0.1 0.96 ± 0.05 16.36 ± 0.11 24-48h b d a a a a 1.25 ± 0.03 43.8 ± 2.02 7.6 ± 0.2 17.36 ± 0.37 1.33 ± 0.3 18.7 ± 0.17 28-48h 0.065 2.275 0.286 0.373 0.332 0.235 %5 LSD

5

112

LMG 404 %BX (16

100 18.7 28

100 10.76 16

48 28

24 16 100 1.33

100 0.76

100 17.36 48 28

24 16

28 100 10

113

7.6 48

7.03 24 16

24 16

48 28 100 70.33

100 34.56

24 20

24 24 2.32

7.07 1.15

48 15

7.6

24 100 10.76

. (Behera et al., 2012)

17 23 4 6 4

LMG 404

16 Bx 30 5 pH

114

100 100 100 100 100 0.06 a a a 2.45 ± 0.02 69.56 ± .47 7.46 ± 0.05 10.73 ± 0.05 0.73 ± 0.32 11.46 ± 0.28 0.17

0.12 ab b ab 2.31 ±0.07 64.73 ± 0.87 7.03 ± 0.23 10.83 ± 0.49 0.93 ± 0.47 11.76 ± 0.05 0.34

0.24 b b b 2.13 ±0.13b 62.66 ± 3.52 6.46 ± 0.45 10.36 ± 1.2 1.3 ± 1.3 11.66 ± 0.15 0.68

0.48 b b b 2.15 ± 0.1 61.66 ± 2.3 6.56 ± 0.32 10.66 ± 0.85 1 ± 0.86 11.66 ± 0.15 1.36

0.176 4.070 0.567 1.469 1.572 0.344 %5 LSD

5

115

LMG 404 (17

100 0.73 100 1.3

100 10.83

100 10.36

7.46

6.46

116

100 69.56

100 61.66

2.45

2.13 1

5

500 1

1 10 0.39

0.28 500

Tiwari et al., 2011

(18 24 5 6 4

LMG 404

LMG 404 24 16 Bx 30 6.5 pH

100 100 100 100 100 a a a b 2.69 ± 0.01 70.83 ± 0.4 8.18 ± 0.05 11.56 ± 0.05 0.46 ± 0.05 12.03 ± 0.11 10.00% b b b b 2.58 ± 0.03 67.6 ± 0.6 7.86 ± 0.1 11.63 ± 0.05 0.46 ± 0.15 12.1 ± 0.1 12.50% c c c a 2.46 ± 0.01 66.26 ± 0.85 7.48 ± 0.05 11.3 ± 0.17 0.93 ± 0.25 12.23 ± 0.11 15.00% c d c b 2.45 ± 0.06 64.86 ± 0.65 7.45 ± 0.2 11.5 ± 0.2 0.6 ± 0.17 12.1 ± 0.1 17.50% 0.073 1.227 0.224 0.260 0.326 0.203 %5 LSD

5

117

LMG 404 (18

15 100 11.63 12.5

100 11.3

7.73 10

7 17.5

100 66.83 10

100 60.86 17.5

2.54 10

8.61 2.3 17.5

118

10 9.9

12.03 7.73

et al., 2011) 10

(Sulfahri

Z. mobilis LMG 404 7 4

19 25 pH 1 7 4

LMG 404

LMG 404 25

pH 100 100 100 100 100 b b b ab 2.43 ± 0.0 66.65 ± 2.22 7.39 ± 0.15 11.1 ± 0.6 1.46 ± 0.73 12.56 ± 0.15 6 a a a a 2.62 ± 0.03 70.25 ± 0.28 7.96 ± 0.11 11.33 ± 0.11 0.9 ± 0.26 12.4 ± 0.26 6.5 b b b a 2.45 ± 0.02 66.01 ± 0.51 7.46 ± 0.05 11.3 ± 0.01 1.1 ± 0.3 12.4 ± 0.3 7 c b c b 2.28 ± 0.03 65.78 ± 0.49 6.93 ± 0.1 10.5 ± 0.17 1.46 ± 0.25 11.96 ± 0.15 7.5 0.067 2.219 0.210 0.605 0.824 0.427 %5 LSD

5

119

LMG 404 19

100 0.9 6.5 pH 100 1.46 6 pH

pH

100 10.5 7.5 pH 100 11.33 6.5

7.96 6.5 pH

6.93 7.5 pH

100 70.25 6.5 pH

120

100 65.78 7.5 pH

7.5 pH 2.62 6.5 pH

pH 7.4 2.28

44 31 5.13

6.5

Maiti et al., 2011

(20 26 2 7 4 LMG 404

LMG 404 26

6.5 pH

100 100 100 100 100 b b b b 2.18 ± 0.12 66.2 ± 0.55 6.23 ± 0.37 10.03 ± 0.63 1.93 ± 0.68 11.96 ± 0.48 25 a a a a 2.61 ± 0.01 70.89.3 ± 0.79 7.53 ± 0.05 11.2 ± 0.1 0.9 ± 0.1 12.1 ± 0.1 30 b bc b a 2.31 ± 0.03 64.14 ± 0.81 6.6 ± 0.1 10.93 ± 0.3 1.13 ± 0.15 12.06 ± 0.2 35 b c b ab 2.24 ± 0.03 62.71 ± 2.11 6.4 ± 0.1 10.86 ± 0.55 1.26 ± 0.51 12.13 ± 0.15 40 0.125 2.318 0.384 0.847 0.821 6.114 %5 LSD

5

121

LMG 404 20

100 1.93 ̊25

100 0.9 ̊30

100 11.2 º30

100 10.03 º25

7.53 º30

6.23 º25

100 67.3 º30

122

100 58.96 º40

º25 2.48 º30

6.95 2.05

Cazetta et al., 2007) 48 º30

17 º32 7

24 7.53 º30

Bandaru et al., 2006)

21 27 Bx 3 7 4

LMG 404

LMG 404 %Bx 27

30 6.5 pH

100 100 100 100 100 b a b d c d 2.32 ± 0.04 69.96 ± 0.65 7.06 ± 0.11 10.1 ± 0.1 0.73 ± 0.2 10.83 ± 0.11 16-24h a c b bc b c 2.38 ± 0.05 60.56 ± 0.23 7.26 ± 0.15 12 ± 0.25 1.56 ± 0.4 b 13.56 ± 0.15 20-24h c c a b bc c 1.24 ± 0.02 61.03 ± 0.5 7.56 ± 0.11 12.4 ± 0.2 1.16 ± 0.28 13.56 ± 0.15 20-48h c b a c a b 1.24 ± 0.01 64.23 ± 1.69 7.53 ± 0.11 11.73 ± 0.32 3.23 ± 0.15 14.96 ± 0.25 24-48h c d a a a a 1.26 ± 0.01 49.8 ± 1.15 7.66 ± 0.05 15.4 ± 0.36 3.46 ± 0.25 18.86 ± 0.11 28-48h 0.059 1.805 0.210 0.484 0.499 0.301 %5 LSD

5

123

LMG 404 %Bx (21

28

100 10.83 16 100 18.86

48 28

16 100 3.46

100 0.73 24

48 28

24 16 100 15.4

124

100 10.1

7.66 48 28

24 16

7.06

100 69.96 24 16

39.26 48 28

24 20 100

2.38

1.24 24 24

20 5.07

Panesar et al., 2006

125

(22 28 4 7 4

LMG 404

28

100 100 100 100 100 0.12 a a a 2.31 ± 0.01 73.56 ± 1.98 7.03 ± 0.05 9.56 ± 0.25 0.9 ± 0.1 10.46 ± 0.15 0.34

0.24 b b b 2.02 ± 0.02 64.13 ± 1.36 6.13 ± 0.11 9.56 ± 0.35 1.1 ± 0.2 10.66 ± 0.15 0.68

0.48 bc bc bc 1.97 ± 0.05 62.63 ± 1.43 5.96 ± 0.15 9.53 ± 0.45 1 ± 0.45 10.53 ± 0.11 1.36

0.96 c c c 1.93 ± 0.05 60.96 ± 0.32 5.83 ± 0.15 9.56 ± 0.2 1.13 ± 0.15 10.7 ± 0.1 2.72

0.076 2.656 0.236 0.619 0.501 0.249 %5 LSD

5

126

LMG 404 (22

100 1.13

100 0.9

100 9.56

100 9.53

7.03

127

5.83

73.56

100

100 60.96

2.31

0.05 1.93

500 0.55 0.39

Pradeep and Reddy,2010

(23 29 5 7 4 LMG 404

pH LMG 404 29 16 Bx 30 6.5

100 100 100 100 100 a a a ab b 2.62 ± 0.03 70.13 ± 0.73 7.96 ± 0.05 11.35 ± 0.2 0.96 ± 0.05 12.66 ± 0.15 10.0% a ab a a b 2.58 ± 0.03 68.35 ± 0.49 7.86 ± 0.15 11.5 ± 0.17 0.93 ± 0.25 12.83 ± 0.11 12.5% b b b b a 2.39 ± 0.01 66.85 ± 0.23 7.26 ± 0.05 10.86 ± 0.05 1.6 ± 0.2 12.96 ± 0.15 15.0% c ab c c a 2.3 ± 0.03 67.66 ± 0.15 7.01 ± 0.1 10.36 ± 0.35 1.8 ± 0.3 12.66 ± 0.05 17.5% 0.056 3.094 0.188 0.417 0.417 0.236 %5 LSD

5

128

LMG 404 (23

17.5

100 0.93 12.5 100 1.8

11.5 12.5

100 10.36 17.5 100

7.96 10

7.01 17.5

15 100 70.13 10

100 66.85

129

2.3 17.5 2.62 10

10 11 6.84

°30

Puspita et al., 2010 11.35 %7.96

8 4 S.cerevisiae BR1 1 8 4

BR1 24 30 S. cerevisiae

S. cerevisiae BR1 30

%5 LSD 30 24 12 6 0 BR1 Mean ± SD Mean ± SD Mean ±SD Mean ± SD Mean ± SD

c c b a a 1.663 1.2 ± 0.6 1.32 ± 0.73 5.02 ± 1.37 12.31 ± 0.83 12.91 ± 0.85 100

c c b a a 1.080 11.71 ± 0.56 11.59 ± 0.7 7.29 ± 0.98 0.6 ± 0.05 0 ± 0

a a b c c 0.519 7.2 ± 0.4 7.2 ± 0.4 2.1 ± 0.2 0 ± 0 0 ± 0

a a b c c 2.462 61.46 ± 1.87 62.13 ± 1.23 29.57 ± 2.03 0 ± 0 0 ± 0 a a b c c 0.173 2.37 ± 0.15 2.37 ± 0.15 0.7 ± 0.06 0 ± 0 0 ± 0

5

130

S. cerevisiae BR1 (24

100 11.71 11.59 30 24

24

7.2 30

61.46 62.13 30 24

2.37 30 24

S. cerevisiae

131

24

100 46.9 15

0.25 24 58.3 20

0.31

Raposo et 30 30

al., 2009

BR1 31

100

Pearson Correlation 1 -.939-** .957** .960** .969** .960**

Pearson Correlation .957** -.989-** 1 .943** .980** .943**

Pearson Correlation .960** -.916-** .943** 1 .979** 1.000**

Pearson Correlation .969** -.964-** .980** .979** 1 .979**

Pearson Correlation .960** -.916-** .943** 1.000** .979** 1

31

0.943

. 0.980

0.943

132

S. cerevisiae BR1 2 8 4 25 32 S.cerevisiae BR1

S. cerevisiae BR1 32

%5 LSD 30 24 12 6 0

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

a a b c c 0.791 0.867 ± 0.06 1.167 ± 0.38 4.8± 0.51 12.72 ± 0.5 13.4 ± 0.49 100 a a b c d 0.461 12.54 ± 0.44 12.24 ± 0.25 7.91 ± 0.25 0.68 ± 0.06 0 ± 0 a a b c c 0.067 7.67 ± 0.06 7.67 ± 0.06 2.29 ± 0.01 0 ± 0 0 ± 0 a a b c c 2.457 61.21 ± 2.53 62.67 ± 1.4 28.99 ± 0.89 0 ± 0 0 ± 0 a a b c c 0.02 2.52 ± 0.02 2.52 ± 0.02 0.757 ± 0.01 0 ± 0 0 ± 0

5

133

S. cerevisiae BR1 (25

100 12.54 12.24 30 24

24 7.67 30 61.21 62.67 30 24

2.52 30 24

Saccharomyces cerevisiae 22 24 Caylak and 1.01 100 55.8

134

15 Sukan,1998 24 0.26 100 43.1 )Raposo et al., 2009(

BR1 33

100

Pearson Correlation 1 -.944-** .959** .962** .970** .962** Pearson Correlation .959** -.995-** 1 .939** .982** .939** Pearson Correlation .962** -.917-** .939** 1 .985** 1.000** Pearson Correlation .970** -.970-** .982** .985** 1 .985** Pearson Correlation .962** -.918-** .939** 1.000** .985** 1

33

0.939

0.982

0.939

135

Z. LMG 404 3 8 4 26 34 mobilis Z. mobilis LMG 404

Z. mobilis LMG404 34

انزمن بكتريا مىالس %5 LSD شىندر 0 6 12 24 30 Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD كميةانسكر 0.414 e d c b a )غ/100 مم( 0.29 ± 12.06 0.29 ± 11.46 0.26 ± 4.8 0.12 ± 1.36 0.1 ± 0.9 a a b c d انسكرانمستههك 0 ± 0 0.04 ± 0.6 0.41 ± 6.66 0.36 ± 10.7 0.38 ± 11.17 0.541 a a b c c نسبةاإليتانىل 0 ± 0 0 ± 0 0.03 ± 2.27 0.1 ± 7.6 0.1 ± 7.6 0.116 b a c d d انمردود 0 ± 0 0 ± 0 2.17 ± 34.27 1.88 ± 71.06 1.67 ± 68.09 2.699 a a b c c اإلنتاجية 0 ± 0 0 ± 0 0.01 ± 0.75 0.03 ± 2.5 0.03 ± 2.5 0.035

5

Z. mobilis LMG 404 (26

136

100 11.17 10.7 30 24

24

7.6 30

71.06 24

30 24

2.5

LMG 404 35

100

Pearson Correlation 1 -.952-** .963** .962** .969** .962** Pearson Correlation .963** -.997-** 1 .946** .986** .946** Pearson Correlation .962** -.927-** .946** 1 .981** 1.000** Pearson Correlation .969** -.979-** .986** .981** 1 .981** Pearson Correlation .962** -.927-** .946** 1.000** .981** 1

35

0.946

0.986

0.946

137

Z. LMG 404 4 8 4 27 36 mobilis Zymomonas mobilis LMG 404

Z. mobilis LMG404 36

%5 LSD 30 24 12 6 0 Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD d d c b a 0.347 0.50 ± 0.10 0.80 ± 0.00 3.87 ± 0.16 10.57 ± 0.21 12.13 ± 0.32 100 a b c d 0.468 11.63 ± 0.32 11.33 ± 0.32 a 6.70 ± 0.32 1.57 ± 0.15 0.00 ± 0.00 a a b c c 0.066 7.73 ± 0.06 7.73 ± 0.06 2.30 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 a b c c 2.051 66.50 ± 1.33 68.26 ± 1.41 a 34.44 ± 1.61 0.00 ± 0.00 0.00 ± 0.00 a a b c c 0.019 2.54 ± 0.02 2.54 ± 0.02 0.76 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

5

138

Z. mobilis LMG 404 (27

100 11.63 11.33 30 24

24 7.73 30 66.5 68.26 30 24

2.54 30 24

139

LMG 404 37

100

Pearson Correlation 1 -.955-** .983** .962** .968** .962** Pearson Correlation .983** -.989-** 1 .955** .988** .955** Pearson Correlation .962** -.907-** .955** 1 .976** 1.000** Pearson Correlation .968** -.972-** .988** .976** 1 .976** Pearson Correlation .962** -.908-** .955** 1.000** .976** 1

37

0.955

0.988

0.955

9 4

LMG 404 BR1 38

%5 LSD

24 Mean ± SD Mean ± SD Mean ± SD Mean ± SD

0.96 0.80 ± 0.00 1.37 ± 0.12 1.17 ± 0.38 1.32 ± 0.73 100 bc c a ab 0.836 11.33 ± 0.32 10.70 ± 0.36 12.24 ± 0.25 11.59 ± 0.70 0.91 7.73 ± 0.06 7.60 ± 0.10 7.67 ± 0.06 7.20 ± 0.40 a a b b 2.822 68.26 ± 1.41 71.07 ± 1.88 62.67 ± 1.40 62.13 ± 1.23 100 0.08 2.54 ± 0.02 2.50 ± 0.03 2.52 ± 0.02 2.37 ± 0.15

5

140

28

141

29

LMG 404 BR1

29 28 38

100 1.37

100 1.32

100 1.17

100 0.80

142

100 11.59 100 12.24

100 11.33

100 10.70

7.73

7.20

62.67 68.26 71 07

100 62.13

2.54

2.37

143

الفصل اخلامس االستنتاجات واملكرتحات CONCLUSION AND RECOMMENDATIONS

144

1 5

1

Saccharomyces cerevisiae 2

API 3

4

Zymomonas mobilis 5

Saccharomyces cerevisiae

ITS4 ITS1 6

7

2.5 16 ̊30 5 pH

0.34 0.12

0.68 0.24

8

10 16 ̊30 6.5 pH

145

0.17 0.06

0.34 0.12

9

24 10

146

2 5

147

املراجــــــــع References

148

Abdel-Fattah, W., Fadil, M., Nigam, P. & Banat, I., 2000. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnology and bioengineering, 68, 531-535. Ahila, V., Bakthavatsalam, S. & Swaminathan, K., 1992. Increased ethanol production by genetically improved Zymomonas mobilis strains in batch and immobilized bioreactors. Journal of Microbial Biotechnology, 7, 1-8. Alkabbashi, A., Alam, M.Z. & Abdullah, N.R.B., 2011. Media optimization for bioethanol production from molasses. ACT-Biotechnol Res Communicat, 1(1), 20-27. Altintas, M., Ülgen, K.Ö., Kırdar, B., Önsan, Z.I. & Oliver, S.G., 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme and Microbial Technology, 31, 640-647. Altintas, M.M., Eddy, C.K., Zhang, M., Mcmillan, J.D. & Kompala, D.S., 2006. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnology and bioengineering, 94, 273-295. Amorim, H.V., Basso, L.C. & Lopes, M.L., 2009. “Sugar can juice and molasses, beet molasses and sweet sorghum: composition and usage”. In W. Ingledew, D. Kelsall, G. Austin & C. Kluhspies (eds.) The Alcohol Textbook. 5th Edition ed.: Nottingham University Press, 39-46. Amutha, R. & Gunasekaran, P., 2001. Production of ethanol from liquefied cassava starch using co-immobilized cells of< i> Zymomonas mobilis and< i> Saccharomyces diastaticus. Journal of bioscience and bioengineering, 92, 560-564. Arshad, M., 2005. Optimization of fermentation conditions for enhanced ethanol production from blackstrap molasses at industrial scale. M. Phil. thesis, University of Agriculture, Faisalabad, Pakistan. Bai, F., Chen, L., Zhang, Z., Anderson, W. & Moo-Young, M., 2004. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of biotechnology, 110, 287-293. Bai, F., Anderson, W & .Moo-Young, M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology advances, 26, 89-105. Bajaj, B., Taank, V. & Thakur, R., 2003. Characterization of yeasts for ethanolic fermentation of molasses with high sugar concentrations. Journal of Sientific and Industrial Research, 62, 1079-1085. Bakri, Y., Masson, M. & Thonart, P., 2010. Isolation and identification of two new fungal strains for xylanase production. Applied biochemistry and biotechnology, 162, 1626-1634. Balat, M., Balat, H. & ÖZ, C., 2008. Progress in bioethanol processing. Progress in energy and combustion science, 34, 551-573. Banat, I. & Marchant, R., 1995. Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World Journal of Microbiology and Biotechnology, 11, 304-306. Banat, I., Nigam, P., Singh, D., Marchant, R. & Mchale, A., 1998. Review: Ethanol production at elevated temperatures and alcohol concentrations: Part I–Yeasts in general. World Journal of Microbiology and Biotechnology, 14, 809-821. Bandaru, V.V.R., Somalanka, S.R., Mendu, D.R., Madicherla, N.R. & Chityala, A., 2006. Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of< i> Zymomonas mobilis using response surface methodology. Enzyme and Microbial Technology, 38, 209-214.

149

Baptista, C., Coias, J., Oliveira, A., Oliveira, N., Rocha, J., Dempsey, M.J., Lannigan, K.C. & Benson, P.S., 2006. Natural immobilisation of microorganisms for continuous ethanol production. Enzyme and Microbial Technology, 40, 127-131. Barnet , J.A., Payne , R.W. & Yarrow , D., 2002. Yeast:characteristics and,identification, 3rd edition ed. Camridge: University press. Bartens, A., 2005. International Commission for Uniform Methods of Sugar Analysis Methods Book 2005. Dr. Albert Bartens KG, Berlin, 431. Basso, L.C. & Rosa, C.A., 2010. “Sugar cane for portable and fuel ethanol”. In G. Walker & P. Hughes (eds.) Distilled Spirits - New Horizons :Energy, Environment and Enlightenment. Nottingham University Press, 1-7. Beatriz, P.-A., Mats, G. & Guido, Z., 2005. Pretreatment of barley husk for bioethanol production. Journal of Chemical Technology and Biotechnology, 80, 85-91. Behera, S., Mohanty ،R.C. & Ray, R.C., 2010. Ethanol fermentation of mahula (Madhuca latifolia) flowers using free and immobilized bacteria Zymomonas mobilis MTCC 92. Biologia, 65, 416-421. Behera, S., Mohanty, R.C. & Ray, R.C., 2012. Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices. Brazilian Journal of Microbiology, 43, 1499-1507. Benítez, T., Del Castillo, L., Aguilera, A., Conde, J. & Cerdáolmedo, E., 1983. Selection of wine yeasts for growth and fermentation in the presence of ethanol and sucrose. Applied and environmental microbiology, 45, 1429-1436. Bochner, B., Gomez, V., Ziman, M., Yang, S. & Brown, S.D., 2010. Phenotype microarray profiling of Zymomonas mobilis ZM4. Applied biochemistry and biotechnology, 161, 116-123. Borzani, W., Gerrab, A., De-La-Higuera, M.H., Pires, R. & Piplovic, N., 1993. Batch ethanolfermentation or molasses: a correlation between the time necessary to complete the fermentation and the initial concentration of sugar and yeast cells.World. J. Microbiol.Biotechnol, 9, 265-268. Borzani, W., 2001. Variation of the ethanol yield during the oscillatory concentrations changes inundisturbed continuous ethanol fermentation of sugarcane blackstrap molasses. World. J.Microbiol. Biotechnol,174,253-258. Buckeridge, M.S., Santos, W.D. & Souza, A.P., 2010. As rotas para o etanol celulósico no Brasil. In L.A.B.C. (Org.) (ed.) Bioetanol da cana-de-açúcar: P&D para produtividade e sustentabilidade. 365-380. Buzato, J., 1984. Estudo de alguns fatores e condições que afetam a fermentação alcoólica por Zymomonas mobilis CP4 . CAB International, 2005. Crop Protection Compendium. Wallingford, UK. Cachot, T. & Pons, M.-N., 1991. Improvement of alcoholic fermentation on cane and beet molasses by supplementation. Journal of fermentation and bioengineering, 71, 24- 27. Cakar, Z.P., Seker, U.O., Tamerler, C., Sonderegger, M. & Sauer, U., 2005. Evolutionary engineering of multiple―stress resistant Saccharomyces cerevisiae .FEMS yeast research, 5, 569-578. Carrascosa, A., 2006. Production of ethanol under high osmotic pressure conditions comprises a microorganism for fermentation of molasses must. Patent ES2257206. Carvalho, J.C.M., Aqarone, E., Sato, M.L., Brazzach, D.A., Moraes, A. & H.Borzani, 1993. Fedbatch alcoholic fermentation of sugarcane blackstrap molasses: influence of feeding rate on yeast yield and productivity. Appl. Microbiol. Biotechnol. , 38, 596-598. Casey, G.P. & Ingledew, W.M., 1986. Ethanol tolerance in yeasts. Critical reviews in microbiology, 13, 219-280.

150

Çaylak, B. & Vardar Sukan, F., 1998. Comparison of different production processes for bioethanol. Turkish Journal of Chemistry, 22, 351-360. Cazetta, M., Celligoi, M., Buzato, J. & Scarmino, I., 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 98, 2824-2828. Comberbach, D.M. & Bu'lock, J.D., 1984. Continuous ethanol production in the gas-lift tower fermenter. Biotechnology letters, 6, 129-134. Converti, A., Arni, S., Sato, S., De Carvalho, J.O.C.M. & Aquarone, E.N., 2003. Simplified modeling of fed―batch alcoholic fermentation of sugarcane blackstrap molasses. Biotechnology and bioengineering, 84, 88-95. Covadonga, R., Arias, K., Lorrie, M. & Renee, M., 2002. Yeast species associated with orange juice : Evaluation of different identification methods. Applied and Environmental Microbiology Journal., 68, 1955- 1961. D'Amore, T. & Stewart, G.G., 1987. Ethanol tolerance of yeast. Enzyme and Microbial Technology, 9, 322-330. Dale, B.E., 1987. Lignocellulose conversion and the future of fermentation biotechnology. Trends in Biotechnology, 5, 287-291. Davis, L., Jeon, Y.-J., Svenson, C., Rogers, P., Pearce, J. & Peiris, P., 2005. Evaluation of wheat stillage for ethanol production by recombinant< i> Zymomonas mobilis. Biomass and Bioenergy, 29, 49-59. Davis, L., Jeon, Y., Svenson, C., Rogers, P., Pearce, J. & Peiris, P., 2006. Evaluation of Zymonas mobilis -bassed ethanol production from a hydrolysed waste starch stream. Biomass and bioenergy, 30, 809-814. De Moraes, J.F., Araújo, J. & Rios, E., 1981. Fermentação alcoólica de mosto de melaço em escala semi industrial por Zymomonas mobilis. Rev. Instit. Antibiot, 20, 3-10. Deanda, K., Zhang, M., Eddy, C. & Picataggio, S., 1996. Development of an arabinose- fermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and environmental microbiology, 62, 4465-4470. Demirbas, M.F., Bozbas, K & .Balat, M., 2004. Carbon dioxide emission trends and environmental problems in Turkey. Energy, Exploration & Exploitation, 22, 355- 365. Diez, J. & Yokoya, F., 1996. Efeito da temperatura e pH na produção de etanol e levana durante a fermentação de sacarose por Zymomonas mobilis. Arq. Biol. Tecnol, 39, 129-137. Doelle, H.W. & Greenfield, P.F., 1985. The production of ethanol from sucrose using Zymomonas mobilis. Applied microbiology and biotechnology, 22, 405-410. Doelle, M., Greenfield, P. & Doelle, H .1990 ،.Effect of mineral ions on ethanol formation during sugar cane molasses fermentation using Zymomonas mobilis ATCC 39676. Process Biochemistry, 25, 151-156. Dombek, K. & Ingram, L., 1986. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Applied and environmental microbiology, 52, 975-981. Duvnjak, Z., Houle, C. & Mok, K., 1987. Production of ethanol and biomass from various carbohydrates byKluyveromyces fragilis. Biotechnology letters, 9, 343- 346. Eden, A.L., Nederveld, V., Drukker, M., Benvenisty, N. & Debourg, A., 2001. “Involvement of branched chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast,”. Applied Microbiology and Biotechnology, 55, 296-300. Elander , R.P. & Chang, L., T., 1979. Microbial culture Selection. In H.J. Peppler & D. Perlman (eds.) Microbial Technology. New York.: Acadimic press.

151

Ergun, M. & Freda, M.S., 2000. Application a statistical technique to the production of ethanol from molasses by Saccharomyces cerevisiae. Bioresourc. Technol., 73, 251-255. Ferrari, M., Neirotti, E., Albornoz, C. & Saucedo, E., 1992. Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnology and ، bioengineering.759-753 ،40 Fregonesi, A., Moran-Paulo, J., Joekes, I., Augusto, J., Rodrigues, R., Tonella, E. & Althoff, K., 2007. Continuous fermentation of sugar cane using immobilized yeast cells. Bioresourc. Bioengin., 97, 48-52. Griffith, E.J. & Ngo, T.M., 1994. Method to increase anaerobic fermentation rates. Google Patents. Gunasekaran, P. & Raj, K.C., 1999. Ethanol fermentation technology- Zymomonas mobilis. Current Science, 77, 56-68. Hamdy, M.K., Kim, K. & Rudtke, C.A., 1992 .Continuous ethanol production by yeast immobilized on to channeled alumina beads. . J. Biomass, 21, 189-206. Hansen, A.C., Zhang, Q. & Lyne, P.W., 2005. Ethanol–diesel fuel blends––a review. Bioresource Technology, 96, 277-285. Haq, I.-U.-. & Ali, S., 2007. Kinetics of invertase production by Saccharomyces cerevisiae in batch culture. Pakistan Journal of Botany, 39, 907-912. He, M., Feng, H., Bai, F., Li, Y., Liu, X. & Zhang, Y., 2009. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr. J. Microbiol. Res, 3, 721-726. Hewitt, C.J. & Nienow, A.W., 2007. The Scale-Up of Microbial Batch and Fed-Batch Fermentation Processes. Advances in applied microbiology, 62, 105-135. HGCA, 2011. Home-Grown Cereals Authority [online]. http://www.hgca.com/content.output/2398/2 398/Markets/Market%20News/Biofuel%20and%20Industrial%20News.mspx [Accessed Access Date Hinkova, A. & Bubnik, Z., 2001. Sugar beet as a raw material for bioethanol production. Czech journal of food sciences, 19, 224-234. Hirasawa, T., Yoshikawa, K., Nakakura, Y., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H. & Shioya, S., 2007 .Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of biotechnology, 131, 34-44. Huertaz-Díaz, H., Cacho, C.L. & Bernard, L., 1991. Fermentation of and blackstrap molasses by Zymomonas mobilis. J. Agric. Univ.P.R,, 75, 43-50. Ingledew, W., 1993. Yeast for production of fuel ethanol. In H.J. Rose Ah (ed.) The Yeasts. London: Academic Press, 245-291. Ingledew, W., 1999. Alcohol production by Saccharomyces cerevisiae: a yeast primer. The alcohol textbook, 3, 49-87. Ingeldew, W.M., Austin, G.D., Kelsall, D.R. & Kluhspies, C., 2009. “The alcohol industry: how has it changed and matured?”. In W. Ingledew, D. Kelsall, G. Austin & C. Kluhspies (eds.) The Alcohol Textbook. 5th Edition ed.: Nottingham University Press., 1-6. Ingram, L. & Buttke, T.M., 1985. Effects of alcohols on micro-organisms. Advances in microbial physiology, 25, 253-300. Jamai, L., Sendide, K., Ettayebi, Y., K.M., , Rosenfield, C.L & .Knipple, D.C., 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol, 69, 499-503. Jiménez, A.M., Borja, R. & Martı́ N, A., 2004. A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochemical engineering journal, 18, 121-132.

152

Jiménez, J. & Benítez, T., 1986. Characterization of wine yeasts for ethanol production. Applied microbiology and biotechnology, 25, 150-154. Jiménez, J. & Benítez, T., 1988. Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Current genetics, 13, 461-469. Jones, A.M. & Ingledew ،W., 1994. Fuel alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochemistry, 29, 483-488. Karuppaiya, M., Sasikumar, E., Viruthagiri, T. & Vijayagopal, V., 2009. Optimization of process conditions using response surface methodology (RSM) for ethanol production from waste cashew apple molasses by Zymomonas mobilis. Chem Eng Commun, 196, 1425-1435. Kiss, M., Venyige, T., Stefanovits-Banyai, E., Sisak, C. & Boross, L., 1999. Extractive fermentation of ethanol using alginate gel co-entrapped yeast cells (Saccharomyces bayanus) and lipase enzyme. Acta alimentaria, 28, 49-57. Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R. & Koutinas, A.A., 2004. Immobilization technologies and support materials suitable in alcohol beverages production. J.Food Microbiol 21, 377-397. Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P. & Laopaiboon, P., 2009. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technology, 100, 4176-4182. Lawford, H.G. & Rousseau, J.D., 2002. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Biotechnology for Fuels and Chemicals. Springer, 429-448. Lee, J., Pagan, R. & Rogers, P., 1983. Continuous simultaneous saccharification and fermentation of starch using Zymomonas mobilis. Biotechnology and bioengineering, 25, 659-669. Lee, W.-C. & Huang, C.-T., 2000. Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and . Biochemical engineering journal, 4, 217-227. Leiper, K.A., Schlee, C., Tebble, I. & Stewart, G.G., 2006. The fermentation of beet sugar syrup to produce bioethanol. Journal of the Institute of Brewing, 112, 122- 133. Licht, A.N., Goldschmidt, C. & Schwartz, S.H., 2007. Culture rules: The foundations of the rule of law and other norms of governance. Journal of Comparative Economics, 35, 659-688. Licht, F., 2007. World ethanol production growth may slow in 2008. World Ethanol and Biofuels Report, 6, 61-66. Liden, G., 2002. Understanding the bioreactor. Bioprocess and biosystems engineering, 24, 273-279. Lin, Y. & Tanaka, S., 2006. Ethanol fermentation from biomass resources: current state ،and prospects. Applied microbiology and biotechnology, 69 ،627 - 642 Loos, H., Krämer, R., Sahm, H. & Sprenger, G.A., 1994. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Journal of bacteriology, 176, 7688-7693. Madigan, M., Martinko, J. & Parker, J., 2000. Nutrition and metabolism. Brock biology of microorganisms, 9th ed. Prentice-Hall, Upper Saddle River, NJ, 113. Maiti, B., Rathore, A., Srivastava, S., Shekhawat, M & .Srivastava, P., 2011. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Applied microbiology and biotechnology, 90, 385-395.

153

Margaritis, A & .Bajpai, P., 1982. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Applied and environmental microbiology, 44, 1039-1041. Mariam, I., Manzoor, K., Ali, S. & Ulhaq, I., 2009. Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak. J. Bot, 41, 821-833. Martin, C., Lopez, Y., Plasencia, Y. & Hernandez, E., 2006. Characterization of agricultural and agro-industrial residues as raw materials for ethanol production. Chem.Biochem.Eng, 20, 443-447. Mohagheghi, A., Ruth, M. & Schell, D.J., 2006. Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochemistry, 41, 1806-1811. Monte Alegre, R., Rigo, M. & Joekes, I ., 2003 .Ethanol fermentation of a diluted molasses medium by Saccharomyces cerevisiae immobilized on chrysotile. Brazilian Archives of Biology and Technology, 46, 751-757. Montenecourt, B., 1985. In Biology of Industrial Microorganisms. Editors: AL Demain and NA Solomon. Benjamin-Cummings Publishing Co, Menlo Park, California. Moreira, N., Mendes, F., Hogg, T. & Vasconcelos, I., 2005. Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. International journal of food microbiology, 103, 285-294. Moulin, G., Boze, H.L.N. & Galzy, P., 1980. Inhibition of alcoholic fermentation by substrate and ethanol. Biotechnology and bioengineering, 22, 2375-2381. Mukhtar, K., Asgher, M., Afghan, S., Hussain, K. & Zia-Ul-Hussnain, S., 2010. Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. Journal of Biomedicine and Biotechnology, 2010. Murtagh, T.E., 1999. “Molasses as a feedstock for alcohol production”. In K.A. Jacques, T.P. Lyons & D.R. Kelsall (eds.) The Alcohol Textbook. 2nd edition ed. London: Nottingham University Press. Nahvi, I., Emtiazi, G. & Alkabi, L., 2002. Isolation of a flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol. Biomass and bioenergy, 23, 481-486. Nellaiah, H., Karunakaran, T. & Gunasekaran, P., 1988. Ethanol fermentation by an efficient strain, NRRL B-4286, of Zymomonas mobilis. Journal of fermentation technology, 66, 219-223. Nigam, J., Gogoi, B. & Bezbaruah, R., 1998. Alcoholic fermentation by agar- immobilized yeast cells. World Journal of Microbiology and Biotechnology, 14, 457-459. Nigam, J., 1999. Continuous ethanol production from pineapple cannery waste. Journal of biotechnology, 72, 197-202. Nolan, A., Barron, N., Brady, D., Mcaree, T., Smith, D., Mchale, L. & Mchale, A., 1994. Ethanol production at 45 by an alginate-immobilized, thermotolerant strain of Kluyveromyces marxianus following growth on glucose-containing media. Biotechnology letters, 16, 849-852. Olsson, L. & Hahn-Hagerdal, B., 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18, 312-331. Palmqvist, E., Grage, H., Meinander, N.Q. & Hahn―Hã¤Gerdal, B.R., 1999. Main and interaction effects of acetic acid, furfural, and p―hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and bioengineering, 63, 46-55. -Panesar, P., Marwaha, S., Gill, S. & Rai ،R., 2001a. Screening of Zymomonas mobilis strains for ethanol production from molasses. Indian Journal of Microbiology, 41, 187-189.

154

Panesar, P., Marwaha, S., Panesar, R. & Bera, M., 2001b. Performance of Zymomonas mobilis strain on glucose and molasses medium. Asian J Microbiol Biotechnol Environ Sci 3, 283-285. Panesar, P.S., Marwaha, S.S. & Kennedy, J.F., 2006. Zymomonas mobilis: an alternative ethanol producer. Journal of Chemical Technology and Biotechnology, 81, 623- 635. Park, Y. & Sato, H., 1982 .Fungal invertase as an aid for fermentation of cane molasses into ethanol. Applied and environmental microbiology, 44, 988-989. Patil, S., 1991. Novel additives activate alcoholic fermentationed.^eds. Yeast, Molecular Biology and Biotechnology: Proceedings of the International Symposium on Molecular Biology of Yeast in Relation to Biotechnology, New Delhi, India, January 1990Omega Scientific Publishers, 217. Patrascu, E., Rapeanu, G. & Hopulele, T., 2009. Current approaches to efficient biotechnological production of ethanol. Innovative Romanian Food Biotechnology, 4, 1-11. Periyasamy, S., Venkatachalam, S., Ramasamy, S. & Srinivasan, V., 2009. Production of Bio-ethanol from Sugar Molasses Using Saccharomyces Cerevisiae. Modern Applied Science, 3, 32-37. Pham, T.K. & Wright, P.C., 2008. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Journal of proteome research, 7, 4766-4774. Piccolo, C. & Bezzo, F., 2009. A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy, 33, 478- 491. Piggot, R., 2005. “Treatment and fermentation of molasses when making rum-type spirits,”. The Alcohol Textbook. London: Nottingham University Press. Pilgrim, C., 2009. Status of the worldwide fuel alcohol industry. The Alcohol Textbook. 5th Edn., WM Ingledew, DR Kelsall, GD Austin and C. Kluhspies, Eds., Nottingham University Press: Nottingham, 7-17. Pradeep, P. & Reddy, O., 2010. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients. Indian Journal of Microbiology, 50, 82-87. Prescott, S.C. & Dunn, C.G., 2002. Industrial Microbiology: Agrobios (India). Puspita E. M., Silviana, H. & T., I., 2010. Fermentasi Etanol dari Molasses dengan Zymomonas mobilis A3 yang diamobilisasi pada к-karaginan. Seminar Rekayasa Kimia dan Proses, 1411-4216 Rajoka, M., Ferhan, M. & Khalid, A., 2005. Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor―controlled bioreactor. Letters in applied microbiology, 40, 316- 321. Raposo, S., Pardão, J.M., Díaz, I. & Lima-Costa, M.E., 2009. Kinetic modelling of bioethanol production using agro-industrial by-products. Int J of Energy Env, 3, 8. Rehm, H. & Reed, G., 1995. Biotechnology, 2nd ed ed. Weinheim: VCH Verlagsgesellschaft mbH. RFA, 2011. Annual world ethanol production by country [online]. Renewable Fuel Association. Available from: http://www.ethanolrfa.org/pages/statistics/ [Accessed Access Date Rogers, P., Lee, K., Skotnicki, M. & Tribe, D., 1982. Ethanol production by Zymomonas mobilis. Microbial reactions. Springer, 37-84. Rogers, P., Joachimsthal, E. & Haggett, K., 1997. Ethanol from lignocellulosics: potential for a Zymomonas-based process. Australasian Biotechnology, 7, 304-309. Rogers, P., Jeon, Y., Lee, K. & Lawford, H., 2007. Zymomonas mobilis for fuel ethanol and higher value products. Biofuels. Springer, 263-288.

155

Rolz, C. & De Leon, R., 2011. Ethanol fermentation from sugarcane at different maturities. Industrial Crops and Products, 33, 333-337. Rosa, M., Correia, I.S. & Novais, J., 1987. Production of ethanol at high temperatures in the fermentation of Jerusalem artichoke juice and a simple medium byKluyveromyces marxianus. Biotechnology letters, 9, 441-444. Ruanglek, V., Maneewatthana, D. & Tripetchkul, S., 2006. Evaluation of Thai agro- industrial wastes for bio-ethanol production by Zymomonas mobilis. Process Biochemistry, 41, 1432-1437. & .Ruijter, G.J ،.Bax, M., Patel, H., Flitter, S.J., Van De Vondervoort, P.J., De Vries, R.P Visser, J., 2003. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell, 2, 690-698. Sahm, H., Loos, H., Rehr, B. & Sprenger, G., 1994. Production of sorbitol and gluconic acid by Zymomonas mobilis. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen. Universiteit Gent, 59. .، Santos, J., Sousa, M.J., Cardoso, H., Inácio, J., Silva, S., Spencer-Martins, I. & Leão, C .2008 Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations. Microbiology, 154, 422-430. Sharma, S.C., Raj, D., Forouzandeh, M. & Bansal, M.P., 1996. Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Applied biochemistry and biotechnology, 56, 189-195. Sharma, S.C ،.1997 .A possible role of in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS microbiology letters, 152, 11-15. Singh, A. & Jain, V., 1994. Fermentation kinetics of Zymomonas mobilis on sucrose and other substrates-a comparative study. Indian Journal of Microbiology, 34, 205-212. Source OECD, 2006. World energy outlook: OECD/IEA. Sprenger, G.A., 1996. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS microbiology letters, 145, 301-307. Sreenath, H.K. & Jeffries, T.W., 2000. Production of ethanol from wood hydrolysate by yeasts. Biores .Technol, 72, 253-260. Sulfahri, M.S., Sunarto, E., Irvansyah, M.Y., Utami, R. & Mangkoedihardjo, S., 2011. Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Basic Appl Sci Res, 1, 589-593. Tanaka, K., Hilary, Z.D. & Ishizaki, A., 1999. Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. Journal of bioscience and bioengineering, 87, 642-646. Tao, F., Miao, J., Shi, G. & Zhang, K., 2005. Ethanol fermentation by an acid-tolerant< i> Zymomonas mobilis under non-sterilized condition. Process Biochemistry, 40, 183-187. Thomas, K., Hynes, S. & Ingledew, W., 1996 .Effect of nitrogen limitaton on synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnology letters, 18, 1165-1168. Tiwari, K., Jadhav, S. & Tiwari, S., 2011. Studies of Bioethanol Production from Some Carbohydrate Sources by Gram Positive Bacteria. Journal of Sustainable Energy & Environment 2, 141-144. Tubb, R., 1983. Genetics of ethanol-producing microorganisms. Critical Reviews in Biotechnology, 1, 241-261. Üçüncü, C., 2011. Chemical composition analysis of agroindustrial waste and their potential usage in bio-ethanol production . Uden, N., 1989. Alcohol toxicity in yeasts and bacteria: CRC press. Vasconcelos, J.D., Lopes, C. & Franã§a, F.D., 1998. Yeast immobilization on cane stalks for fermentation. International Sugar Journal (Cane Sugar Edition), 100, 73-75.

156

Vasconcelos, J.D., Lopes, C. & Franã§a, F.D., 2004. Continuous ethanol production using yeast immobilized on sugar-cane stalks. Brazilian Journal of Chemical Engineering, 2,1, 357-365. Walker, G.M., Maynard, A.I. & Johns, C.G., 1990. The importance of magnesium ions in yeast biotechnology. Fermentation technologies: industrial applications, 28, 233- 240. Walker, G.M., 2010. Bioethanol: Science and technology of fuel alcohol: Bookboon. Wang, D.I., Cooney, C.L., Demain, A.L., Dunnill, P., Humphrey, A. & Lilly, M., 1979 . Fermentation and enzyme technology: John Wiley & Sons New York. Wang, L.H., Hsie, M.C., Chang, Y.C., Kuo, S.L., Sang, K. & Hsiao, H.D., 1985. Improvement of ethanol productivity from cane molasses by a process using a high yeast cell concentration. J.Bioengin., 28, 270-284. Wilkins, M.R., Suryawati, L., Maness, N.O. & Chrz, D., 2007. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World Journal of Microbiology and Biotechnology, 23, 1161- 1168. Wyman, C.E. & Hinman, N.D., 1990. Ethanol: Fundamentals of ethanol production from renewable feedstocks and use as a transportation fuel. Appl. Biochem.Biotechnol, 24:25, 735-753. Yalçin, S.K. & Özbas, Z., 2004. Effects of different substrates on growth and glycerol production kinetics of a wine yeast strain< i> Saccharomyces cerevisiae Narince 3. Process Biochemistry, 39, 1285-1291. Yu, J., Corripio, A., Harrison, D. & Copeland, R., 2003. Analysis of the sorbent energy transfer system (SETS) for power generation and CO< sub> 2 capture. Advances in Environmental Research, 7, 335-345. Zhang, K. & Feng, H., 2011. Fermentation potentials of Zymomonas mobilis and its application in ethanol production from low-cost raw sweet potato. African Journal of Biotechnology, 9, 6122-6128. Zhao, X., Xue, C., Ge, X., Yuan, W., Wang, J. & Bai, F., 2009. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self- flocculating yeast in continuous ethanol fermentation. Journal of biotechnology, 139, 55-60.

157

Saccharomyces sp. Batch

API 20

BR1,BR2,BR3

PCR

(Ethanol Red® S1929 Safdistil C

BR1

BR1

5 4.5 4 pH 35 30 25 20

28 24 20 16 BX 5 5

0.48 0.24 0.12 0.06

1.36 0.34 0.17

62.13 7.5 5 2.5 1.25

158

º30 5 pH

0.34 0.12 16 Bx

2.37 24 2.5

0.68 0.24

2.52 62.67

Zymomonas mobilis LMG 404

7 6 6 pH º 40 35 30 25

0.06 28 4 0 16 BX 7

1.36 0.68 0.34 0.17 0.48 0.24 0.12

17.5 15 12.5 10

2.5 71.06

0 06 16 Bx ̊30 6.5 pH

24 10 0 17

0 34 0 12

68.26

2.54

159

F spss

3

0.05

Zymomonas mobilis

Saccharomyces cerevisiae

BR1

160

Abstract: Optimization of bioethanol production from molasses using strains of Saccharomyces sp. yeast and Zymomonas mobilis bacteria

The production of bioethanol from sugar beet molasses (produced in AL-raqa sugar company) and from the molasses by-produced by raw sugar refining(Homs Sugar Company), by batch method using local isolates of Saccharomyces sp., was studied. Twenty local isolates were obtained and screened to test their ability to produce ethanol. They were classified by morphological and biochemical (API) methods. Three isolates named BR1, BR2 and BR3 were superior over the others in ethanol production.Their classification was confirmed through molecular protocol (PCR). Secondary screening of the last three isolates along with three imported isolates (Safdistil C, S1929 and Ethanol Red ®) and the strain of ethanol factory in Homos, was realized. Isolate named BR1 showed superiority in ethanol production over the other isolates and strains. The isolate BR1 was optimized in bioethanol production on the two molasse substrates with different variables: temperature (20, 25, 30 and 30° C), pH (4, 4.5, 5 and 5.5), total solid concentration (BX) (16, 20, 24 and 28%), nutrient additions: urea (0.06, 0.12, 0.24 and 0.28% W/V) and diammonium phosphate (0.17, 0.34 and 0.68% W/V), and inoculum volume of 1.25, 2.50, 5 and 7.5%. The maximum productivity value was 62.13% (V/W) on beet molasse substrate at pH=5, temperature of 30° C, Bx 16%, nutrient addition: 0.12% urea, 0.34% diammonium phosphate (W/V), inoculum volume of 2.5%,and fermentation time period of 24 h. The productivity value

161 was 2.37 g/l/h. When the molasse of refining raw sugar substrate was used, at the same parameters except for nutrient addition (0.24% urea and 0.68 diammonuim phosphate), the maximum yield was 62.67% (V/W) and the productivity 2.52 g/l/h. The optimization of bioethanol using the strain LMG 404 of the species Zymomonas mobilis was studied to evaluate the productivity and bioethanol yield using two molasse substrates. The studied variables were: temperature (25, 30, 35 and 40° C), pH (6, 6.5, 7 and 7.5), Bx% (16, 20, 24 and 28), nutrient addition: urea ( 0.06, 0.12, 0.24 and 0.48%), and diammonium phosphate( 0.17, 0.34, 0.685 and 1.36%) (W/V), and inoculum volume (10, 12.5, 15 and 17.5%). The maximum yield was 71.06% (V/W) and the maximum productivity 2.5 g/l/h, at pH=6.5, temperature 30° C, Bx 16%, nutrient addition 0.06% urea and 0.17% diammonium phosphate and inoculate volume 10% after 24 h. when sugar refining molasse was used in the same conditions except for the nutrient additions (0.12% urea and 0.34% diammonium phosphate), the maximum yield was 68.26% (V/W), and the productivity value was 2.54 g/l/h . All results were analyzed using SPSS program, where the value of F and confidence in the presence of more than 3 variables, then lesser significant differences(LSD) were calculated at p ≤ 0.05. These results indicate the superiority of Zymomonas mobilis bacteria for bioethanol production in the above-mentioned conditions. Concerning yeast strains of Saccharomyces cerevisiae, our experiments proved the superiority of the local strains BR1.

162

املــــلخل

163