1 Counting Complexity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes for Lecture 2
Notes on Complexity Theory Last updated: December, 2011 Lecture 2 Jonathan Katz 1 Review The running time of a Turing machine M on input x is the number of \steps" M takes before it halts. Machine M is said to run in time T (¢) if for every input x the running time of M(x) is at most T (jxj). (In particular, this means it halts on all inputs.) The space used by M on input x is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use space T (¢) if for every input x the space used during the computation of M(x) is at most T (jxj). We remark that these time and space measures are worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n), the running time of M is still T . (Average-case notions of complexity have also been considered, but are somewhat more di±cult to reason about. We may cover this later in the semester; or see [1, Chap. 18].) Recall that a Turing machine M computes a function f : f0; 1g¤ ! f0; 1g¤ if M(x) = f(x) for all x. We will focus most of our attention on boolean functions, a context in which it is more convenient to phrase computation in terms of languages. A language is simply a subset of f0; 1g¤. -
Interactive Proof Systems and Alternating Time-Space Complexity
Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement. -
Complexity Theory Lecture 9 Co-NP Co-NP-Complete
Complexity Theory 1 Complexity Theory 2 co-NP Complexity Theory Lecture 9 As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form: ′ L = x y y <p( x ) R (x, y) { |∀ | | | | → } Anuj Dawar University of Cambridge Computer Laboratory NP – the collection of languages with succinct certificates of Easter Term 2010 membership. co-NP – the collection of languages with succinct certificates of http://www.cl.cam.ac.uk/teaching/0910/Complexity/ disqualification. Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 3 Complexity Theory 4 NP co-NP co-NP-complete P VAL – the collection of Boolean expressions that are valid is co-NP-complete. Any language L that is the complement of an NP-complete language is co-NP-complete. Any of the situations is consistent with our present state of ¯ knowledge: Any reduction of a language L1 to L2 is also a reduction of L1–the complement of L1–to L¯2–the complement of L2. P = NP = co-NP • There is an easy reduction from the complement of SAT to VAL, P = NP co-NP = NP = co-NP • ∩ namely the map that takes an expression to its negation. P = NP co-NP = NP = co-NP • ∩ VAL P P = NP = co-NP ∈ ⇒ P = NP co-NP = NP = co-NP • ∩ VAL NP NP = co-NP ∈ ⇒ Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 5 Complexity Theory 6 Prime Numbers Primality Consider the decision problem PRIME: Another way of putting this is that Composite is in NP. -
The Shrinking Property for NP and Conp✩
Theoretical Computer Science 412 (2011) 853–864 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs The shrinking property for NP and coNPI Christian Glaßer a, Christian Reitwießner a,∗, Victor Selivanov b a Julius-Maximilians-Universität Würzburg, Germany b A.P. Ershov Institute of Informatics Systems, Siberian Division of the Russian Academy of Sciences, Russia article info a b s t r a c t Article history: We study the shrinking and separation properties (two notions well-known in descriptive Received 18 August 2009 set theory) for NP and coNP and show that under reasonable complexity-theoretic Received in revised form 11 November assumptions, both properties do not hold for NP and the shrinking property does not hold 2010 for coNP. In particular we obtain the following results. Accepted 15 November 2010 Communicated by A. Razborov P 1. NP and coNP do not have the shrinking property unless PH is finite. In general, Σn and P Πn do not have the shrinking property unless PH is finite. This solves an open question Keywords: posed by Selivanov (1994) [33]. Computational complexity 2. The separation property does not hold for NP unless UP ⊆ coNP. Polynomial hierarchy 3. The shrinking property does not hold for NP unless there exist NP-hard disjoint NP-pairs NP-pairs (existence of such pairs would contradict a conjecture of Even et al. (1984) [6]). P-separability Multivalued functions 4. The shrinking property does not hold for NP unless there exist complete disjoint NP- pairs. Moreover, we prove that the assumption NP 6D coNP is too weak to refute the shrinking property for NP in a relativizable way. -
Nitin Saurabh the Institute of Mathematical Sciences, Chennai
ALGEBRAIC MODELS OF COMPUTATION By Nitin Saurabh The Institute of Mathematical Sciences, Chennai. A thesis submitted to the Board of Studies in Mathematical Sciences In partial fulllment of the requirements For the Degree of Master of Science of HOMI BHABHA NATIONAL INSTITUTE April 2012 CERTIFICATE Certied that the work contained in the thesis entitled Algebraic models of Computation, by Nitin Saurabh, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. Meena Mahajan Theoretical Computer Science Group The Institute of Mathematical Sciences, Chennai ACKNOWLEDGEMENTS I would like to thank my advisor Prof. Meena Mahajan for her invaluable guidance and continuous support since my undergraduate days. Her expertise and ideas helped me comprehend new techniques. Her guidance during the preparation of this thesis has been invaluable. I also thank her for always being there to discuss and clarify any matter. I am extremely grateful to all the faculty members of theory group at IMSc and CMI for their continuous encouragement and giving me an opportunity to learn from them. I would like to thank all my friends, at IMSc and CMI, for making my stay in Chennai a memorable one. Most of all, I take this opportunity to thank my parents, my uncle and my brother. Abstract Valiant [Val79, Val82] had proposed an analogue of the theory of NP-completeness in an entirely algebraic framework to study the complexity of polynomial families. Artihmetic circuits form the most standard model for studying the complexity of polynomial computations. In a note [Val92], Valiant argued that in order to prove lower bounds for boolean circuits, obtaining lower bounds for arithmetic circuits should be a rst step. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
UNIONS of LINES in Fn 1. Introduction the Main Problem We
UNIONS OF LINES IN F n RICHARD OBERLIN Abstract. We show that if a collection of lines in a vector space over a finite field has \dimension" at least 2(d−1)+β; then its union has \dimension" at least d + β: This is the sharp estimate of its type when no structural assumptions are placed on the collection of lines. We also consider some refinements and extensions of the main result, including estimates for unions of k-planes. 1. Introduction The main problem we will consider here is to give a lower bound for the dimension of the union of a collection of lines in terms of the dimension of the collection of lines, without imposing a structural hy- pothesis on the collection (in contrast to the Kakeya problem where one assumes that the lines are direction-separated, or perhaps satisfy the weaker \Wolff axiom"). Specifically, we are motivated by the following conjecture of D. Ober- lin (hdim denotes Hausdorff dimension). Conjecture 1.1. Suppose d ≥ 1 is an integer, that 0 ≤ β ≤ 1; and that L is a collection of lines in Rn with hdim(L) ≥ 2(d − 1) + β: Then [ (1) hdim( L) ≥ d + β: L2L The bound (1), if true, would be sharp, as one can see by taking L to be the set of lines contained in the d-planes belonging to a β- dimensional family of d-planes. (Furthermore, there is nothing to be gained by taking 1 < β ≤ 2 since the dimension of the set of lines contained in a d + 1-plane is 2(d − 1) + 2.) Standard Fourier-analytic methods show that (1) holds for d = 1, but the conjecture is open for d > 1: As a model problem, one may consider an analogous question where Rn is replaced by a vector space over a finite-field. -
When Subgraph Isomorphism Is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble
When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble To cite this version: Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble. When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research, Association for the Advancement of Artificial Intelligence, 2018, 61, pp.723 - 759. 10.1613/jair.5768. hal-01741928 HAL Id: hal-01741928 https://hal.archives-ouvertes.fr/hal-01741928 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Artificial Intelligence Research 61 (2018) 723-759 Submitted 11/17; published 03/18 When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran McCreesh [email protected] Patrick Prosser [email protected] University of Glasgow, Glasgow, Scotland Christine Solnon [email protected] INSA-Lyon, LIRIS, UMR5205, F-69621, France James Trimble [email protected] University of Glasgow, Glasgow, Scotland Abstract The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph. -
LSPACE VS NP IS AS HARD AS P VS NP 1. Introduction in Complexity
LSPACE VS NP IS AS HARD AS P VS NP FRANK VEGA Abstract. The P versus NP problem is a major unsolved problem in com- puter science. This consists in knowing the answer of the following question: Is P equal to NP? Another major complexity classes are LSPACE, PSPACE, ESPACE, E and EXP. Whether LSPACE = P is a fundamental question that it is as important as it is unresolved. We show if P = NP, then LSPACE = NP. Consequently, if LSPACE is not equal to NP, then P is not equal to NP. According to Lance Fortnow, it seems that LSPACE versus NP is easier to be proven. However, with this proof we show this problem is as hard as P versus NP. Moreover, we prove the complexity class P is not equal to PSPACE as a direct consequence of this result. Furthermore, we demonstrate if PSPACE is not equal to EXP, then P is not equal to NP. In addition, if E = ESPACE, then P is not equal to NP. 1. Introduction In complexity theory, a function problem is a computational problem where a single output is expected for every input, but the output is more complex than that of a decision problem [6]. A functional problem F is defined as a binary relation (x; y) 2 R over strings of an arbitrary alphabet Σ: R ⊂ Σ∗ × Σ∗: A Turing machine M solves F if for every input x such that there exists a y satisfying (x; y) 2 R, M produces one such y, that is M(x) = y [6]. -
Delegating Computation: Interactive Proofs for Muggles∗
Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 108 (2017) Delegating Computation: Interactive Proofs for Muggles∗ Shafi Goldwasser Yael Tauman Kalai Guy N. Rothblum MIT and Weizmann Institute Microsoft Research Weizmann Institute [email protected] [email protected] [email protected] Abstract In this work we study interactive proofs for tractable languages. The (honest) prover should be efficient and run in polynomial time, or in other words a \muggle".1 The verifier should be super-efficient and run in nearly-linear time. These proof systems can be used for delegating computation: a server can run a computation for a client and interactively prove the correctness of the result. The client can verify the result's correctness in nearly-linear time (instead of running the entire computation itself). Previously, related questions were considered in the Holographic Proof setting by Babai, Fortnow, Levin and Szegedy, in the argument setting under computational assumptions by Kilian, and in the random oracle model by Micali. Our focus, however, is on the original inter- active proof model where no assumptions are made on the computational power or adaptiveness of dishonest provers. Our main technical theorem gives a public coin interactive proof for any language computable by a log-space uniform boolean circuit with depth d and input length n. The verifier runs in time n · poly(d; log(n)) and space O(log(n)), the communication complexity is poly(d; log(n)), and the prover runs in time poly(n). In particular, for languages computable by log-space uniform NC (circuits of polylog(n) depth), the prover is efficient, the verifier runs in time n · polylog(n) and space O(log(n)), and the communication complexity is polylog(n). -
Interactive Proofs
Interactive proofs April 12, 2014 [72] L´aszl´oBabai. Trading group theory for randomness. In Proc. 17th STOC, pages 421{429. ACM Press, 1985. doi:10.1145/22145.22192. [89] L´aszl´oBabai and Shlomo Moran. Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes. J. Comput. System Sci., 36(2):254{276, 1988. doi:10.1016/0022-0000(88)90028-1. [99] L´aszl´oBabai, Lance Fortnow, and Carsten Lund. Nondeterministic ex- ponential time has two-prover interactive protocols. In Proc. 31st FOCS, pages 16{25. IEEE Comp. Soc. Press, 1990. doi:10.1109/FSCS.1990.89520. See item 1991.108. [108] L´aszl´oBabai, Lance Fortnow, and Carsten Lund. Nondeterministic expo- nential time has two-prover interactive protocols. Comput. Complexity, 1 (1):3{40, 1991. doi:10.1007/BF01200056. Full version of 1990.99. [136] Sanjeev Arora, L´aszl´oBabai, Jacques Stern, and Z. (Elizabeth) Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. In Proc. 34th FOCS, pages 724{733, Palo Alto CA, 1993. IEEE Comp. Soc. Press. doi:10.1109/SFCS.1993.366815. Conference version of item 1997:160. [160] Sanjeev Arora, L´aszl´oBabai, Jacques Stern, and Z. (Elizabeth) Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. System Sci., 54(2):317{331, 1997. doi:10.1006/jcss.1997.1472. Full version of 1993.136. [111] L´aszl´oBabai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. In Proc.