Appendices SPECIAL REFERENCE CHARTS
Total Page:16
File Type:pdf, Size:1020Kb
PART IV Appendices SPECIAL REFERENCE CHARTS The next few pages contain six basic reference charts which display the properties of the various examples. The properties of a topological space have been grouped into six nearly disjoint categories: separation, com pactness, paracompactness, connectedness, disconnectedness, and metriza tion. In each category we have listed those spaces whose behavior is par ticularly appropriate. We usually chose any space which represented a counterexample in that category or which exhibited either an unusual or an instructive pathology; occasionally we listed a space simply because it was so well behaved. Entries in the charts are either 1, 0, or -, meaning, respectively, that the space has the property, does not have the property, or that the property is inapplicable. Occasional blanks represent properties which were not dis cussed in the text and which do not appear to follow simply from anything that was discussed. Examples are listed by number, and in a few cases the tables extend beyond one page in length. 185 Special Reference Charts 187 Table I SEPARATION AXIOM CHART -<~ ;.. ..:l ..:l ~ p IZ1 ~ ~ Z Eo< -< ~ ~ ~ ~ -< ~ IZ1 ..:l ..:l ;j ::;l ::;l ..:l 0 ..:l P -< t; ....~ p en Po. ~ ::;l Po. = re g;; ., ::;l g;; ::;l 0 g;; 0 ., .. IZ1 ~ 0 OZIZ1Z E-f E-7 E-<" ~- E-< E-<- E-< E-<'" 00 &'!" P 8~ Z u p.. 4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 17 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 18 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 52 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 57 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 60 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 63 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 66 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 75 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 78 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 79 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 80 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 81 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 82 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 84 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 86 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 88 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 90 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 91 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 92 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 93 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 94 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 100 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 103 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 105 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 126 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 188 Appendix Table II COMPACTNESS CHART Eo< Q -< 00 '"f>;1 ""::>l Z Eo< 0 Eo< Q U Q Eo< p; p; Q ~ Eo< ..1 Q f>;1 p; ::>l ::>l ..1 Z 1%1 Eo< -< f>;1 0 -< Q 0 1%1 ::>l U Eo< -< U -< ..1 ~ 0 Eo< ::>l Eo< III ~ Z Q ..1 0"" -< U ~ p -< ::>l Z Eo< U ..1 "" -< U ..1 0 0 Q P Z f>;1 Eo< ~ 0 0 f>;1 ..1 -< U ""::>l U f>;1 p ..1 ..1 Eo< III 0 ....:I ..1 U 0 III III -< :0 E:: ~ ::l Q '" -< ..1 III U -< 0;,-< ""..1 Eo< Z 0'" ..1 c:> t:l Eo< p; f>;1 f>;1 ::l t:l ..1 -< -< ... ""~ Z ~ Z Il:: Z Eo< Z Il:: 0 t:l P -< P -< '" -< 0 Eo< ~ P 0' f>;1 f>;1 g P f>;1 0 U Z 0 0 .3 '"Il:: 0 I f>;1 '" Eo< I ""f>;1 '"f>;1 U b ~ U CD. ~ p....'" ....:I CD. b CD. CD. ~ u ~ 2 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 6 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 9 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 10 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 15 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 19 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 20 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 21 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 26 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 28 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 30 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 31 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 36 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 42 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 43 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 47 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 48 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 50 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 51 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 52 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 57 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 58 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 60 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 63 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 65 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 Special Reference Charts 189 Table II (continued) Eo< 0 -< Po< '"IZ1 ::iii Z Eo< Eo< 0 8 0 Eo< 0 ~ I>- ~ Eo< ;:;! ..;! )1 0 Eo< ~ Z ~ 0 0 0 -< IZ1 )1 =-< Po< ..;! Q Eo< Eo< -< Q :c! 0 Po< )1 =~ ~ Z 0 ..;! 0 -< Q I>- p ;:;! Z =Eo< Q ..;! -< Q p ..;! 0 ~ 0 0 Z IZ1 Eo< Q )1 Q 0 0 P ..;! 0 ~ -< 0 I>- Q ~ Eo< JO. E:: ~ ..;! ~ 0 0 :0 0 I>- ..;! =-< ~ ..;! = Z ~ 0 ..;! Q Q = N -< ~ Q ..;! -< = ~ ... Po< )1 IZ1 ~ Z 0 ~ Z Eo< 0 f::l z p p -< 0" 0 Z g: )1 p CJ -< IZ1 0 go: -< go: p 0 Q Z 0 IZ1 .3 0 '" IZ1 I IZ1 0 IZ1 IZ1 0 Q b J Q 00 ~ p....'" ~ J3 b 00'" 00 ~ Q ~ 66 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 68 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 70 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 71 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 75 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 76 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 77 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 78 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 79 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 82 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 87 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 98 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 99 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 100 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 101 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 102 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 103 0 0 0 0 0 0 0 0 0 0 0 0 0 105 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 106 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 107 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 111 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 112 0 0 0 1 1 1 0 1 0 1 0 113 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 132 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 136 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 139 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 140 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 Appendix Table III PARACOMPACTNESS CHART e- e- 0 o ~ e- ~ ::;t 0 ::;t 0 0 0 ~ 0 -< e--< ~ 1>1 e- o ~ e- 0 O ~ ::is 0 ::;t i>< i>< i>< I>: fj ~ ~ 0-< 0-< 0-< 0 e- ::;t III III III ~.