Final Report Power Generation from Low Temperature Sources Utilizing a Stirling Engine

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Power Generation from Low Temperature Sources Utilizing a Stirling Engine Department of Mechanical Engineering 10-203 Donadeo Innovation Centre for Engineering, www.mece.ualberta.ca Tel: 780.492.3598 Edmonton, Alberta, Canada, T6G 1H9 Final Report Power Generation From Low Temperature Sources Utilizing A Stirling Engine Date: 1st March 2018 Name: David S. Nobes, Alexander J. Hunt Title: Professor Company: University of Alberta Department Mechanical Engineering Address: 10-281 Donadeo Innovation Centre for Engineering 9211-116 Street NW, University of Alberta Phone: 780 492 7031 Fax: 780 492 2200 Email: [email protected] with financial support from Alberta Innovates and Terrapin Geothermics Inc. Disclaimer Alberta Innovates (“AI”) and her Majesty the queen in right of Alberta make no warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information contained in this publication, nor that use thereof infringe on privately owned rights. The views and opinions of the author expressed herein do not necessarily reflect those of AI or her majesty the Queen in right of Alberta. The directors, officers, employees, agents and consultants of AI and the Government of Alberta are exempted, excluded and absolved from all liability for damage or injury, howsoever caused, to any person in connection with or arising out of the use by that person for any purpose of this publication or its contents. The University of Alberta makes no warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information contained in this publication, nor that use thereof infringes on privately owned rights. The views and opinions of the author expressed herein do not necessarily reflect those of the University of Alberta. The directors, officers, employees, agents, students and consultants of the University of Alberta are exempted, excluded and absolved from all liability for damage or injury, howsoever caused, to any person in connection with or arising out of the use by that person for any purpose of this publication or its contents. i | P a g e Executive Summary (Non-Confidential) A collaboration between the Dynamic Thermal Energy Conversion Laboratory (DTECL) in the Department of Mechanical Engineering and the University of Alberta, Terrapin Geothermics and Alberta Innovates(AI) ) has been established to develop low temperature Stirling engines to extract usable amounts of electricity from low grade heat sources. These low-grade heat sources include geothermal brines and industrial waste heat streams that will have temperatures of Tmax < 100 °C. The work undertaken is directed towards proposing the most promising low temperature Stirling engine configuration that will best succeed with the low-grade heat operation conditions. To accomplish this goal, four different configurations were designed and investigated. A 90° Gamma, an inline Gamma (at two scales), an opposed piston Alpha and a Franchot double acting Alpha were designed and brought to different stages of development at the time of the writing of this report, ranging from extensive experimental testing to assembly. In addition to the design and build process, predictive models were developed, instrumentation systems were tested and several specialized experimental setups were designed and used to characterize seals, piston designs and heat exchangers. A number of challenges delayed the collection of sufficient experimental data to provide a quantified UNIT recommendation. In addressing these challenges, a deeper understanding of rapid prototyping manufacturing process, the impact of forced work on engine performance and manufacturing low-cost piston seals have all been achieved. Many of the initial designs were redesigned to consider these findings and although the goal of the project was not achieved, the project has advanced significantly toward the final goal of extracting useful electrical energy from low temperature sources. Detailed experimental results for the 90° Gamma have been collected and compared with the predictive models that have been developed. This engine, the most advanced configuration in current use, was originally designed as a high temperature (Tmax ~ 650 °C) but was reconfigured to operate at a significantly lower temperature (Tmax > 180 °C). Investigation of the different loss mechanisms for this configuration has highlighted that mechanical losses and ineffective heat transfer are the main important phenomenon when designing Stirling engine for low temperature operation. A conclusion from this work also, is that these two loss mechanisms will also be paramount in the design of any other configuration of Stirling engine. As these two loss mechanisms can be substantial compared to the amount of power generated from a low temperature source, they will remain dominant regardless of the configuration of Stirling engine. Future work in this area will need to pay particular attention to all loss mechanisms and how the interact with each other. This will require the development of a third order, fully couple model of a low temperature Stirling engine. To offset mechanical losses, which would remain relatively constant for a particular mechanism, much larger scale engines should be constructed. Understanding of the fluid mechanics and heat transfer in fully reciprocating systems and how these can be scaled to physically large engines is also limited as requires further, significant investigation. Future work should focus on these to ensure that significant power for a particular engine configuration can be achieved. ii | P a g e Personnel The following is a list of personnel who have undertaken activities in the project. Some of these being directly funded from the project while others have been associated with the project and provided insight. Person Position Shahzeb Mirza CO-OP Student (8 months) Jakub Piwowarczyk CO-OP Student (8 months) Jason Michaud MSc Student Steven Middleton Summer Student (now MSc) David Miller MSc Student Michael Nicol-Seto Summer Student (now MSc) Connor Speer MSc Student Calynn Stumpf MSc Student Dr. Mouhammad El Hassan Research Associate Alexander Hunt Research Engineer Dr. Cagri Ayranci Assistant Professor Dr. C.R. (Bob) Koch Professor Dr. Alexandra Komrakova Assistant Professor Dr. David S. Nobes Professor iii | P a g e Table of Contents Disclaimer ........................................................................................................................................ i Executive Summary (Non-Confidential) ........................................................................................ ii Personnel ........................................................................................................................................ iii 1 Introduction ............................................................................................................................. 1 1.1 Need and Opportunity ...................................................................................................... 1 1.2 Low grade heat opportunities ........................................................................................... 1 1.2.1 Geothermal energy .................................................................................................... 1 1.2.2 Waste heat energy ..................................................................................................... 2 1.3 The Stirling engine ........................................................................................................... 3 1.4 Aim and Scope ................................................................................................................. 5 2 Methods and Materials ............................................................................................................ 7 2.1 Mathematical Modelling of the Stirling Engine Cycle .................................................... 7 2.1.1 Basic physical modeling ........................................................................................... 7 2.1.2 First order model – ideal isothermal analysis ........................................................... 9 2.1.3 First order model - Adiabatic model ....................................................................... 10 2.1.4 Second order models ............................................................................................... 11 2.2 Configurations ................................................................................................................ 13 2.2.1 The 90° Gamma ...................................................................................................... 13 2.2.2 The In-Line Gamma ................................................................................................ 15 2.2.3 The increased scale In-Line Gamma ....................................................................... 16 2.2.4 The Opposed Piston Alpha ..................................................................................... 17 2.2.5 The Franchot Double Acting Alpha ........................................................................ 19 2.3 Engine Test Bed ............................................................................................................. 21 2.3.1 Data acquisition system .......................................................................................... 21 2.3.2 Engine control ........................................................................................................
Recommended publications
  • STIRLOCHARGER POWERED by EXHAUST HEAT for HIGH EFFICIENCY COMBUSTION and ELECTRIC GENERATION Adhiraj B
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2015 STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION Adhiraj B. Mathur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Mathur, Adhiraj B., "STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION" (2015). Open Access Theses. 1153. https://docs.lib.purdue.edu/open_access_theses/1153 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. STIRLOCHARGER POWERED BY EXHAUST HEAT FOR HIGH EFFICIENCY COMBUSTION AND ELECTRIC GENERATION A Thesis Submitted to the Faculty of Purdue University by Adhiraj B. Mathur In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Technology December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Henry Zhang, the advisory committee, my family and friends for supporting me through this journey. iii TABLE OF CONTENTS Page LIST OF TABLES .................................................................................................................... vi LIST OF FIGURES ................................................................................................................. vii LIST OF ABBREVIATIONS ....................................................................................................
    [Show full text]
  • Abstract 1. Introduction 2. Robert Stirling
    Stirling Stuff Dr John S. Reid, Department of Physics, Meston Building, University of Aberdeen, Aberdeen AB12 3UE, Scotland Abstract Robert Stirling’s patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made ‘in house’, form a good platform for investigating some of the thermodynamics governing the performance of engines in general. ---------------------------------------------------------------------------------------------------------------- 1. Introduction 2016 marks the bicentenary of the submission of Robert Stirling’s patent that described heat exchangers and the technology of the Stirling engine. James Watt was still alive in 1816 and his steam engine was gaining a foothold in mines, in mills, in a few goods railways and even in pioneering ‘steamers’. Who needed another new engine from another Scot? The Stirling engine is a markedly different machine from either the earlier steam engine or the later internal combustion engine. For reasons to be explained, after a comparatively obscure two centuries the Stirling engine is attracting new interest, for it has environmentally friendly credentials for an engine. This tribute introduces the man, his patent, the engine and how it is realised in example models readily available on the internet.
    [Show full text]
  • Feasibility Study Into Stirling Engines Application in Ship's Energy Systems
    Transactions on the Built Environment vol 42, © 1999 WIT Press, www.witpress.com, ISSN 1743-3509 Feasibility study into Stirling engines application in ship's energy systems S. Zmudzki, Faculty of Maritime Technology, Technical University of Szczecin, 71- 065 Szczecin, al Piastow 41, Poland E-mail: szmudzkia@shiptech. tuniv.szczecin.pl Abstract The possibility of utilization of solar energy as well as exhaust gas energy from main and auxiliary marine diesel engines for driving Stirling engines has been analysed. The Stirling engines are used for driving current generators. The solar dish Stirling units of 100 kW total effective power may be installed on a board of different type of ships. The system utilizing the exhaust gas energy has been provided with three-way catalyst which may lead to the reduction of emissions below limits established by appropriate regulations. 1 Introduction The Stirling engine belongs to a group of piston engines with so called external supply of heat energy, flowing then through metal walls of engine heater into working gas circulating in the working space. The heat energy supply may be realized or by means of direct effect of the high temperature energy source or by an intermediate heating system i.e. heat pipe or pool-boiler receiver. Thus, the design provides for the possibility of application of different types of heat energy of sufficiently large power. In particular, the advantages of Stirling engines are set off when using the alternative energy sources, especially waste heat energy, the operating costs for which are relatively lower in comparison with capital costs. In case of ship s energy installations, the solar energy available at appropriate geographical latitudes for ships having very large open deck surface / i.e.
    [Show full text]
  • Novel Hot Air Engine and Its Mathematical Model – Experimental Measurements and Numerical Analysis
    POLLACK PERIODICA An International Journal for Engineering and Information Sciences DOI: 10.1556/606.2019.14.1.5 Vol. 14, No. 1, pp. 47–58 (2019) www.akademiai.com NOVEL HOT AIR ENGINE AND ITS MATHEMATICAL MODEL – EXPERIMENTAL MEASUREMENTS AND NUMERICAL ANALYSIS 1 Gyula KRAMER, 2 Gabor SZEPESI *, 3 Zoltán SIMÉNFALVI 1,2,3 Department of Chemical Machinery, Institute of Energy and Chemical Machinery University of Miskolc, Miskolc-Egyetemváros 3515, Hungary e-mail: [email protected], [email protected], [email protected] Received 11 December 2017; accepted 25 June 2018 Abstract: In the relevant literature there are many types of heat engines. One of those is the group of the so called hot air engines. This paper introduces their world, also introduces the new kind of machine that was developed and built at Department of Chemical Machinery, Institute of Energy and Chemical Machinery, University of Miskolc. Emphasizing the novelty of construction and the working principle are explained. Also the mathematical model of this new engine was prepared and compared to the real model of engine. Keywords: Hot, Air, Engine, Mathematical model 1. Introduction There are three types of volumetric heat engines: the internal combustion engines; steam engines; and hot air engines. The first one is well known, because it is on zenith nowadays. The steam machines are also well known, because their time has just passed, even the elder ones could see those in use. But the hot air engines are forgotten. Our aim is to consider that one. The history of hot air engines is 200 years old.
    [Show full text]
  • RECIPROCATING ENGINES Franck Nicolleau
    RECIPROCATING ENGINES Franck Nicolleau To cite this version: Franck Nicolleau. RECIPROCATING ENGINES. Master. RECIPROCATING ENGINES, Sheffield, United Kingdom. 2010, pp.189. cel-01548212 HAL Id: cel-01548212 https://hal.archives-ouvertes.fr/cel-01548212 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Mechanical Engineering - 14 May 2010 -1- UNIVERSITY OF SHEFFIELD Department of Mechanical Engineering Mappin street, Sheffield, S1 3JD, England RECIPROCATING ENGINES Autumn Semester 2010 MEC403 - MEng, semester 7 - MEC6403 - MSc(Res) Dr. F. C. G. A. Nicolleau MD54 Telephone: +44 (0)114 22 27700. Direct Line: +44 (0)114 22 27867 Fax: +44 (0)114 22 27890 email: F.Nicolleau@sheffield.ac.uk http://www.shef.ac.uk/mecheng/mecheng cms/staff/fcgan/ MEng 4th year Course Tutor : Pr N. Qin European and Year Abroad Tutor : C. Pinna MSc(Res) and MPhil Course Director : F. C. G. A. Nicolleau c 2010 F C G A Nicolleau, The University of Sheffield -2- Combustion engines Table of content -3- Table of content Table of content 3 Nomenclature 9 Introduction 13 Acknowledgement 16 I - Introduction and Fundamentals of combustion 17 1 Introduction to combustion engines 19 1.1 Pistonengines..................................
    [Show full text]
  • Recent Stirling Conversion Technology Developments and Operational Measurements at NASA Glenn Research Center
    NASA/TM—2010-216245 AIAA–2009–4556 Recent Stirling Conversion Technology Developments and Operational Measurements at NASA Glenn Research Center Salvatore M. Oriti and Nicholas A. Schifer Glenn Research Center, Cleveland, Ohio August 2010 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • 25 Kw Low-Temperature Stirling Engine for Heat Recovery, Solar, and Biomass Applications
    25 kW Low-Temperature Stirling Engine for Heat Recovery, Solar, and Biomass Applications Lee SMITHa, Brian NUELa, Samuel P WEAVERa,*, Stefan BERKOWERa, Samuel C WEAVERb, Bill GROSSc aCool Energy, Inc, 5541 Central Avenue, Boulder CO 80301 bProton Power, Inc, 487 Sam Rayburn Parkway, Lenoir City TN 37771 cIdealab, 130 W. Union St, Pasadena CA 91103 *Corresponding author: [email protected] Keywords: Stirling engine, waste heat recovery, concentrating solar power, biomass power generation, low-temperature power generation, distributed generation ABSTRACT This paper covers the design, performance optimization, build, and test of a 25 kW Stirling engine that has demonstrated > 60% of the Carnot limit for thermal to electrical conversion efficiency at test conditions of 329 °C hot side temperature and 19 °C rejection temperature. These results were enabled by an engine design and construction that has minimal pressure drop in the gas flow path, thermal conduction losses that are limited by design, and which employs a novel rotary drive mechanism. Features of this engine design include high-surface- area heat exchangers, nitrogen as the working fluid, a single-acting alpha configuration, and a design target for operation between 150 °C and 400 °C. 1 1. INTRODUCTION Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated, and tested five generations of low-temperature (150 °C to 400 °C) Stirling engines that drive internally integrated electric alternators. The fifth generation of engine built by Cool Energy is rated at 25 kW of electrical power output, and is trade-named the ThermoHeart® Engine. Sources of low-to-medium temperature thermal energy, such as internal combustion engine exhaust, industrial waste heat, flared gas, and small-scale solar heat, have relatively few methods available for conversion into more valuable electrical energy, and the thermal energy is usually wasted.
    [Show full text]
  • A Stirling Engine for Automotive Applications Steve Djetel, Sylvie Bégot, François Lanzetta, Eric Gavignet, Wissam S
    A Stirling Engine for Automotive Applications Steve Djetel, Sylvie Bégot, François Lanzetta, Eric Gavignet, Wissam S. Bou Nader To cite this version: Steve Djetel, Sylvie Bégot, François Lanzetta, Eric Gavignet, Wissam S. Bou Nader. A Stirling Engine for Automotive Applications. Vehicle Power and Propulsion Conference, Dec 2017, Belfort, France. hal-02131002 HAL Id: hal-02131002 https://hal.archives-ouvertes.fr/hal-02131002 Submitted on 16 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Stirling engine for automotive applications Steve Djetel, Sylvie Bégot, François Lanzetta, Wissam S. Bou Nader Eric Gavignet Technical center of Vélizy FEMTO-ST Institute PSA Group Univ. Bourgogne Franche-Comté, CNRS 78943 Velizy, France Département ENERGIE [email protected] 90000 Belfort, France [email protected] Abstract — This paper describes a Stirling Engine used as an the fuel and air are combusted under pressure and expanded Auxiliary Power Unit in a Series Hybrid Vehicle. The engine directly to produce work [4-5]. The Stirling technology is modeling is presented, then its integration in the vehicle power interesting for two major raisons: (1) the theoretical train is described.
    [Show full text]
  • The Effects of Combustion Chamber Design On
    THE EFFECTS OF COMBUSTION CHAMBER DESIGN ON TURBULENCE, CYCLIC VARIATION AND PERFORMANCE IN AN SI ENGINE By Esther Claire Tippett B.E.Mech (Hons) University of Canterbury, New Zealand. 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF MECHANICAL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1989 © Esther Claire Tippett, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Mechanical Engineering The University of British Columbia Vancouver, Canada Date: ABSTRACT An experimental program of motored and fired tests has been undertaken on a single cylinder spark ignition engine to determine the influence of combustion chamber design on turbulence enhancement in the achievement of fast lean operation. Flow field measurements were taken using hot wire anemometry in the cylinder during motored operation. On line performance tests and in-cylinder pressure data were recorded for the operation of the engine by natural gas at lean and stoichiometric conditions over a range of speed and loads. Squish and squish jet action methods of turbulence enhancement were investigated for six configurations, using a standard bathtub cylinder head and new piston designs incorporating directed jets through a raised wall, a standard bowl-in-piston chamber and an original squish jet design piston.
    [Show full text]
  • Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste
    Sustainability 2014, 6, 5714-5729; doi:10.3390/su6095714 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste Franco Cotana 1,†, Antonio Messineo 2,†, Alessandro Petrozzi 1,†,*, Valentina Coccia 1, Gianluca Cavalaglio 1 and Andrea Aquino 1 1 CRB, Centro di Ricerca sulle Biomasse, Via Duranti sn, 06125 Perugia, Italy; E-Mails: [email protected] (F.C.); [email protected] (V.C.); [email protected] (G.C.); [email protected] (A.A.) 2 Università degli Studi di Enna “Kore” Cittadella Universitaria, 94100 Enna, Italy; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-075-585-3806; Fax: +39-075-515-3321. Received: 25 June 2014; in revised form: 5 August 2014 / Accepted: 12 August 2014 / Published: 28 August 2014 Abstract: The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered), fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant), funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.
    [Show full text]
  • And High Temperature Differential Stirling Engines
    COMPARISON OF LOW- AND HIGH TEMPERATURE DIFFERENTIAL STIRLING ENGINES S. IWAMOTO*1, F. TODA*1, K. HIRATA*1 M. TAKEUCHI*2 and T. YAMAMOTO*3 *1Department of Mechanical Engineering, Faculty of Engineering, Saitama University, Japan *2Suction Gas Engine MFG. Co., Ltd., Japan *3National Institute for Research and Environment, Japan ABSTRACT Stirling engines can be operated with various heat sources. We have developed several Stirling engines, included a low temperature differential Stirling engine using hot spring heat and a high temperature differential Stirling engine using a combustion gas as the fuel. These engines have different features and characteristics, and have different thermal performance. In this paper, the performances of these difference types of Stirling engines were measured, were compared using the normalized values. INTRODUCTION In the field of the low temperature differential Stirling engines, several small Stirling engines have developed by I. Kolin, J. R. Senft and so on1),2). We have being developed the low temperature differential Stirling engine with several hundreds wattage of an output power3). The engine uses hot spring heat or hot water from industrial waste heat as the fuel. In this paper, we measured heat losses and powers of the engine in order to estimate the engine performance. Then the performance of a prototype of the low temperature differential Stirling engine (LDSE) was compared with that of a high temperature differential Stirling engine (HDSE) after their experimental results had been normalized. Figure 1 Feature of LDSE STRUCTURE OF LDSE Figure 1 and Fig. 2 show the features and structure of LDSE. Table 1 shows specifications of this engine and HDSE5) used to compare the performances.
    [Show full text]
  • Stirling Engines, and Irrigation Pumping
    ,,,SEP-8 ORNLITM-10475 Stirling Engines. and Irrigation Pumping C. D. West a Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A03; Microfiche A01 t I This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment.NeithertheUnitedStatesGovernmentnoranyagency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights, Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United StatesGovernment or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of theunited StatesGovernment or any agency thereof. ORNL/TM-10475 r c Engineering Technology Division STIRLING ENGINES AND IRRIGATION PUMPING C. D. West 8 Date Published - August 1987 Prepared for the Office of Energy Bureau for Science and Technology United States Agency for International Development under Interagency Agreement No. DOE 1690-1690-Al Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract DE-AC05-840R21400 iii CONTENTS Page 'LIST OF SYMBOLS . V ABSTUCT . ..e..................*.*.................... 1 1.STIRLING ENGINE POWER OUTPUT *.............................*.. 1 2.
    [Show full text]