Application of Genomic Analyses on Local Animal Genetic Resources

Martino Cassandro Outline

Introduction

Genomic Assisted CONSERVATION Scheme for Local AnGR

Genomic Assisted CHARACTERIZATION of local AnGR

Genomic Assisted TRACEABILITY for local Animal Products

2 Introduction

• Why Animal Biodiversity is so important and large in Italy:

1. Area refuge after last glaciation

2. Large variety of environments (Alps, Hills, Plains, Coasts, Islands)

3. A rich history of migrations of human and animals populations

4. Animal biodiversity as tool and to valorize animals products, local/niche markets, preserve territory and culture, and population history

5. Over 57,000 animal species (and 8,000 plant species) are the numbers that make the Italy as the European nation's richest biodiversity.

3 Introduction

• Why Genomic Approach is useful for “Local” Animal Biodiversity

1. No pedigree information are available

2. Absence of studies on performances/characterization

3. No reliable information within and among breeds/populations

4. Scarce economic interest to preserve original “genome”

4 Introduction

An important strategy to INCREASE Add Value for Animal Products to PRESERVE Environment and Biodiversity to ORIENTATE Tourism & Food Consumptions might be to “PROMOTE” the LINK

LOCAL BREED TERRITORY

PRODUCT 5 Farmer

Animal

Traditional Yield Chain Modern Integrated Chain Grassland-Pastures -Meat

Environment - Landscape Processed Products

Commercial and Marketing Tourism/quality of life

Economy 6 Farmer

Animal Modern Integrated Chain Traditional Yield Chain Environmental Chain Grassland-Pastures Milk-Meat

Environment - Landscape Processed Products

Commercial and Marketing Tourism/quality of life

Local Economy 7 Farmer

Animal Modern Integrated Chain Traditional Product Chain Environmental Chain Grassland-Pastures Milk-Meat

Local breeds – Landscape Processed Products

Commercial and Marketing Tourism/quality of life

Local Economy 8 Introduction

Chianina- Consortium 5R - Italian Meat

Reggiana Parmigiano Pitina Sheep Reggiano 9 di razza Reggiana (37 euro/kg) Breeds Introduction

BREED-PRODUCT LINK

Cinta Senese Lardo di Colonnata Cheese Rendena

Valdostana Fontina Padovana Chicken Pro Avibus breed Nostris 10 Conservation of Local Poultry Breeds Genomic Conservation of AnGR

• COVA Project, since 2000. 11 Chicken local breeds (+ other 3 avian species)

• An In situ conservation scheme based on 3 breeding units/breed

• Each nucleus breed, within breeding unit, is based on 20 M + 34 F

• Males are divided in 2 families

• Females of the same breed, within breeding unit, are reared all together

• Individuals are genotyped extracting genomic DNA by whole blood

• Individuals are selected in order to: – phenotypic standard breeding – family origin – individual contribution at overall genomic diversity

12 MARKER ASSISTED CONSERVATION SCHEME BIANNUAL CHANGE OF ALL ANIMALS

10 old males 17 old females

20 males 34 females 0 months

210 eggs by first family – period 1 0,5 months 210 eggs by second family –period 2

420 eggs in 6 weeks 4 months 50% N/I

210 chicks born alive 5 months

105 males 105 females 6/7 months 5 males/family 8/9 females/family

10 young males 17 young females 8/12 months Genomic Characterization of AnGR

Breed Alleles/ HE (nb) HO Breed FIS fij breed Code breed ±SD ±SD Brown Layer BL 3.80 0.559 0.141 0.622 0.233 -0.117*** 0.439

Ermellinata di Rovigo ER 3.14 0.420 ±0.175 0.384 ±0.248 0.089*** 0.573

Pèpoi PP 2.51 0.243 ±0.239 0.240 ±0.236 0.018* 0.769 Robusta Lionata RL 2.43 0.367 ±0.229 0.317 ±0.264 0.131*** 0.657 Robusta Maculata RM 2.17 0.293 ±0.225 0.292 ±0.226 0.003 0.721 Polverara Bianca PB 3.01 0.436 ±0.190 0.366 ±0.201 0.161*** 0.577 Polverara Nera PN 3.45 0.463 ±0.177 0.413 ±0.170 0.109*** 0.559

Padovana Camosciata PC 2.27 0.305 ±0.257 0.287 ±0.271 0.062 0.704

Padovana Dorata PD 2.66 0.340 ±0.199 0.329 ±0.230 0.034 0.689

PB (36) PN (52) RL (43) RM (45) ER (45) PD (24) PC (26) PP (45)

14 Genomic Characterization of AnGR

Structure analysis of six Italian local chicken breeds assuming K = 6, 7, 8, 9, 10. Only most probable solutions for each K are shown.

) ) ) ) ) ) ) ) ) 1 5 5 3 5 6 2 6 4 2 4 (4 (4 4 3 5 (2 2 ( ( ( ( ( ( L R P L M B N C D B E P R R P P P P

15 Genomic Characterization of AnGR

16 N-J tree drawn by Dk distances among nuclei Genomic Characterization of AnGR

Alpagota Lamon

Foza Brogna

Bergamasca Fiemmese Suffolk 17 Genomic Characterization of AnGR

■ ▲ , ▲ , ● , ■ , ■ , ● Alpagota, Bergamasca Brogna 3 2 Foza Lamon Suffolk Fiemmese8 0 6

1 2 31 2 2 7 4 2 7 2

P 2 2 P P 9 P P 3 2 3 6

L L L P P 1 L L 1 5 P 2 3 6 LP 6 L L A A 3 A E A A L P 4 E 2 0 I P A 5 I UPGMA dendrogram using A “pairwise”A distances 0 P L A 2 F L P 0

F L 2 7

14

ALP1 A

L P 2 A 1 B A P 2 5 3 A L P B L 2 E P 4 0 8 B A L B E A L P P 2 0 3 E R A 4 1 B R L L P 2 E R 3 A 2 0 2 B E A A P R 2 4 L 2 2 9 E 1 L P B B R 3 4 A L P 2 0 5 R 6 A 2 2 4 B E E 3 5 A L P 3 B 2 0 L P 2 1 R R 6 A 2 4 E E 0.2 A L P B B 2 6 A L O 1 1 R R 2 R 1 2 B E E 1 5 A M P 2 3 B E R R B A 2 7 L L P 2 4 B B E R 1 9 A L 2 7 B RO E R 2 2 A P 2 0 R 2 0 L P 2 9 R A L 3 B O 2 1 5 A P P 0 B R 2 3 0 L L 4 3 B O 3 7 A P 1 R R 3 A L P 7 B O O 8 A L 1 8 R 7 2 A P 1 B 24 2 L P 8 BR R O 1 A L 3 1 O 8 A LP 1 B O 7 1 A P2 9 BR R 24 1 L P1 1 B O O 4 A L 4 R 1 59 A P 53 B O 4 AL P 0 B R 24 2 L 21 1 B RO O 2 A P 2 R 2 74 AL P2 5 B O 4 L P2 2 R 23 0 A L 20 BR O 5 A P 5 B O 76 AL LP B RO 69 A P8 B RO 6 AL 55 R 23 2 LP 9 B O2 9 A P2 RO 38 AL 30 BR 7 LP 2 B O 6 8 A P3 RO 8 AL 33 BR 67 ALP 9 B O 7 LP RO 3 A 21 BRO 58 ALP 0 BR 94 LP2 BR O 93 A LP 6 O26 A 16 BRO 2 ALP 6 BR 79 LP21 O 95 A 34 B RO 8 A LP BE 5 ALP51 R 33 P215 AL 2 A LP5 A LP10 A LP42 S UF26 AL P218 S UF30 BR O 236 S UF25 A LP47 SU F4 A LP54 S UF18 A LP56 S UF32 ALP 4 S UF29 A LP24 SU F7 ALP213 S UF31 S UF23 F28 S U 5 S UF1 UF11 S U F9 S 14 SU F 3 SUF U F1 S F8 SU 7 UF1 0 S UF1 S F27 SU 13 UF 16 S UF 2 S O 9 BR

B F F

O E

F O

F

R

F

Z

F O O

Z

F

O 1

1

F

F

O

F

F Z 2

Z

F O 1

F 0

F O

F Z

O

F

F 6

O 9

O Z

F F 1

F 1

O

F O

F Z

F F

F O 1

O F

F 0 F F

F O Z

O 6

Z 2 1

O O

F F O Z Z

O O 2 1

O Z

O O

Z O

O

O O

O Z 1 3 Z 1 5

Z

Z

O 2 O

2 5 Z Z 0

Z 11

1

Z Z 0 Z

1 Z 1 1 Z

2 Z

Z 5

Z Z Z 1

5 1 0

1 1

Z

0 Z 1

2 1 7 9 1

2 5

1 1

2 0 4

2 0

8 1

2 1

1 2 1

0 4

9

5 9 0 5

5

2

0 5 1

5 9

4 0 0 6 7 0

3 8

6 9 8

7 6 8

9 3

1 3 5 18 Genomic Conservation of AnGR A

B Family #1 C

D

Family #2

19 Local Breed - BURLINA “Morlacco cheese of Burlina cattle breed”

21 Economic Characterization of AnGR

400 “Economic comparison Burlina vs HF” 200

0 € 0 -200

-400 -€ 321

-600 -€ 566 -800 Diff. in profit, €/year per cow cow €/year per profit, in Diff. -€ 766 -1.000 Regional Premium no 200 €/head 200 €/head 200 €/head

Milk valorization no no + 0,05 €/kg + 0,05 €/kg

Holstein Friesian yield 9079 kg 9079 kg 9079 kg 7706 kg

22 Genomic Characterization of AnGR

Assignment of individuals at 4 clusters breeds using software STRUCTURE 2.1,

Group #1 : unknown BREED? Group #2: Burlina breed Group #3: Bruna breed Group #4: Frisona breed. Unknown BURLINA BROWN HOLSTEIN Breed? SWISS FRIESIAN

23 Outline

Introduction

Genomic Assisted CONSERVATION Scheme for Local AnGR

Genomic Assisted CHARACTERIZATION of local AnGR

Genomic Assisted TRACEABILITY for local Animal Products

24 Genomic Traceability of AnGR

Individual Genetic Fingerprint is constant 25 Genomic Traceability of AnGR

Probabilistc approach based on allelic frequencies

Match Probability inferior to 1*E-6

(Weir, 1996) m = number of loci n = number of alleles at locus k locus pki(j) = Allelic frequency of the allele i (j) at k 26 Genomic Traceability of AnGR

N° loci Dairy All breeds breeds breeds 12 1.57E-10 1.89E-11 1.13E-11

8 7.02E-09 2.23E-09 1.27E-09

4 1.25E-05 1.26E-05 6.76E-06

1 5.3E-02 3.64E-02 2.74E-02

27 Genomic Traceability of AnGR

Breed traceability approaches

Deterministic approach: Probabilistic approach: allelic variants fixed in different allelic frequencies typical in breeds (Melanocortin receptor 1 and kit genes) different breeds

28 Breed Traceability for Cheese Deterministic Approach using MC1R e KIT genes

Brown Holstein Simmental Reggiana

(Russo e Fontanesi, 2004) 29 Model of inheritance of the Extension (E) locus and Spotted (S) locus

MC1R gene KIT gene (Melanocortin receptor 1) Alleles Alleles

ED = Black S = not spotted E+ = Brown s = spotted e = Red

Genotypes Genotypes ED ED Black Holstein SS not spotted Brown Swiss, ED E+ Black Reggiana ED e Black Ss not spotted E+ E+ Brown BrownSwiss ss spotted Holstein E+ e Brown Simmental e e Red Simmental Reggiana

30 Breed Traceability in Cattle (15 microsatellite) Probabilistic Approach

Breed assignement CHI ROM MAR PIE HF CHI 98 % 2 % - - ROM 2 % 90 % 8 % - MAR 8 % 88 % 2 % 2 % PIE - 2 % 5 % 93 % - HF - - - - 100%

(Ciampolini e coll., 1999) 31 Genomic Traceability of AnGR

Genome wide information is necessary for several aims for AnGR:

- Conservation - Characterization - Traceability - Authenticity

…....and other traditional/already known uses as - Parentage test - Pedigree validation - Heterosis prediction - Other uses in animal breeding

32 Thank for the attention

A FUTURE PERSPECTIVE IS A MULTIFUNCTIONAL USE OF GENOME WIDE INFORMATION

33