[Polystichum Circinatum Pm

Total Page:16

File Type:pdf, Size:1020Kb

[Polystichum Circinatum Pm SLI of winter near peratures roug with most of t1 THE HIGHER FUNGI OF OREGONS CASCADE ties at the Ex HEAD EXPERIMENTAL FOREST operations, we AND VICINITY—I. stream valleys. forest cover, sa THE GENUS PHAEOCOLLYBIA (AGARI- coastal "jungle CALES) AND NOTES AND DESCRIP- [Polystichum TIONS OF OTHER SPECIES IN circinatum Pm THE AGARICALES Miguel!], and a all under a can ALEXANDER H. SMITH in short, to vi University Herbarium, University of Michigan, Ann Arbor, Michigan 18101 expected. The season AND "avalanche" of I JAMES M. TRAPPE hand at no time both an unusual U.S.D.A. Forest Service, Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, and the Department of for the period of Botany and Plant Pathology, Oregon State University, previous seasons Corvallis, Oregon 97331 Since the pr. deals with some SUMMARY complex problen It was established that one of the characteristics of the sitka spruce tinued. forest of the Pacific Northwest is an abundance of basidiocarps of species In the follow of Phaeocollybia. The presence of Russula nigricans Fr. in North America is reaffirmed. New species and varieties described are : Phaeo- taken from Ridg collybia deceptiva, P. dissilicns, P. gregaria, P. oregonensis, P. piceae, P. scatesiae, Cortinarius vanduzerensis, Phylloporus arenicola, Suillus imitatus synonym in part var. viridescens. name is used wit mated that of th INTRODUCTION AND ACKNOWLEDGMENTS not actually mad In discussions at the North American Conference on Mycorrhiza at Melzers, to desi the University of Illinois in 1969 the authors considered studying, at solution of potasl a future date, the higher fungi of the Cascade Head Experimental tion and used for Forest. Since it later developed that the fall of 1970 fitted our indi- Field •work w vidual and mutual plans, arrangements were made to undertake the work logical Society wi during that season. The location appeared to be good for field work In addition Mrs. the Northern Ida on Smiths project of a manual on the higher fleshy fungi of the western Research Assista United States, as well as for furthering the interest of the Forest Service Botany, also mad. in mycorrhizae and mvcorrhiza-fonning fungi. Smiths effort s Work began near the end of September and ceased with the onset Grant GB-16969, 1138 S MITH AND TRAPPE : A GARICALES 1139 of winter near the end of November. Winter in this area features tem- peratures roughly from 20-25° F to maxima in the 40-50-degree range with most of the precipitation as rain or freezing rain. From the facili- ..SCADE ties at the Experimental Forest headquarters near Otis as a base of operations, we worked both up and clown the coast as well as up the stream valleys. Frequent visits were made to the various types of forest cover, sand dunes, pastures and their borders, and of course the ARI- coastal "jungle" of salmon berry (Rubus spectabilis Pursh), sword fern IP- [Polystichum inunitum (Kaulf.) Pres1], willows, vine-maple (Acer circinatum Pursh.), Devils-club [Oplopanax horridum (J. Smith) Miquell], and a generous mixture of the debris left from timber cutting, all under a canopy of red alder mixed with conifers. We attempted, in short, to visit all types of habitat where higher fungi might be expected. igan 48104 The season was a "slow" one. At no time did we experience an "avalanche" of fungi, as can happen in the coastal area, but on the other hand at no time did we lack material for study. In this respect it was both an unusual and an ideal season. Smith recorded 1440 collections xperime I t for the period of residence, while Trappes collections from the same and t of previous seasons number nearly a thousand. Since the present report is in the nature of a preliminary paper, it deals with some of the highlights, so to speak, of the season. The more complex problems still await critical study, and collecting will be con- tka spruce tinued. of species In the following account, color names within quotation marks are in North -e : Phaeo- taken from Ridgway (1912) and are followed by the ISCC-NBS near- piceae, P. synonym in parentheses (Kelly and Judd, 1955). When a Ridgway us imitates name is used without quotation marks it means that the color approxi- mated that of the designated plate, but that a critical comparison was not actually made. The following abbreviations for solutions are used : ilycorrhiza at Melzers, to designate Melzers solution; KOH, for a 2.5% aqueous studying, at solution of potash; FeSO4, for iron salts in about a 5% aqueous solu- Experimental tion and used for certain color reactions. ted our indi- Field work was aided materially by members of the Oregon Myco- logical Society with special credit going to Mr. and Airs. Donald Goetz. lake the work In addition Mrs. Robert M. Scates of Post Falls, Idaho, a member of x field work the Northern Idaho Mycological Association, and Mr. Elwin Stewart, If the western Research Assistant of the Oregon State University Department of orest Service Botany, also made many valuable contributions. Smiths efforts were supported by the National Science Foundation rith the onset Grant GB-16969, and by the Northwest Forest and Range Experiment 7i■ ,0-AL I 1140 MYCOLOGIA, VOL. 64, 1972 Station which made available the facilities of the Cascade Head Experi- pression one mental Forest. Trappes participation was supported in part by rhizomorphs. National Science Foundation Grant GB-2738. This help is deeply discounted, si I appreciated. permeated Iv: From our THE GENUS PHAEOCOLLYBIA HEIM is a mycolopj The data included here form a supplement to the treatment of the Carr.] and 11( North American species by Smith (1957). From the standpoint of of the coastal the gill-fungi encountered, this genus furnished the most interesting to this forest data of any including Cortinarius. Six previously undescribed species further study were collected and are here described, but of equal interest was the oc- (1957) key t( currence of such previously described taxa as Phaeocollybia kauffmanit from the Ore (Smith) Singer, P. fear Smith, and P. attenuate (Smith) Singer. out our currel Earlier, Smith (1957) considered P. kauffmanii as uncommon to rare. It was a common species, however, in the sitka spruce—hemlock and A REVIS1 sitka spruce stands of the Experimental Forest in October, 1970. In 1. Spores 5-7.5 spite of repeated attempts, we still have not established the point of 1. Spores 7-11: 2. Stipe 8-20 origin of the hasidiocarps. The pseudorhiza becomes so thin, and the 2. Stipe 3-6 mat of tree rootlets so dense, that after the pseudorhiza has become 3. Pileus 50-11( reduced to a thread it always breaks before its point of origin can be tous to clavat ascertained. For P. kauffmanii, however, it seems apparent that the 3. Pileus 30-60 pseudorhiza extends deep into the mineral soil below the level of the cystidia (flat 4. Hyphac of densest distribution of mycorrhizae. 4. Hyphae of Among the larger species, P. olivacea Smith was the only one pre- 5. Pileus slimy t viously found producing truly large numbers of basidiocarps. Charac- 5. Pileus moist teristically, this species fruits in dense clusters or in arcs in which the 6. Spores rust fruit bodies are gregarious to clustered. In 1970 we found it rarely 6. Spores hya occurred 7. Stipe 1.5-3 in and only as individual hasidiocarps. Phaeocollybia kauffmanii 7. Stipe thicker: gregariously in limited areas in groups of a dozen or more, but the 8. Hyphae of basidiocarps did not appear to come from a common localized substrate such as a buried log. On the other hand, P. attenuata fruited in masses 8. Clamp coin of hundreds of hasidiocarps over a wide area, as if the spores had been the pellicle broadcast over the ground and each spore had produced a fruit body. 9. Stipe 3-8 (-10 9. Stipe 8-20(-4( This pattern of fruiting, we believe, excluded the possibility of their 10. Pileus lulti• point of origin being a buried stump, tree trunk or mass of dead roots. 10. Pileus vise The situation as regards the species Mrs. Scates discovered creates the 11. Cheilocystidia opposite impression. In this instance approximately 380 basidiocarps 11. Cheilocystidia occurred in a gigantic loose cluster on a mossy hummock which likely on one species represented the remains of a long-decayed stump, though the evidence 12. Spores 9-1 moist .... was not conclusive. Again, the pseudorhizae tapered to a fine thread 12. Spores 7-9 and their ultimate attachments were not determined, though the im- 13. Pileus olive fa( S MITH AND TRAPPE : AGARICALES 1141 lead Experi- pression one obtained was that they eventually became reduced to in part by rhizomorphs. The possibility of mycorrhizal association cannot be 1p is deeply discounted, since rotten wood on or in the soil of the coastal forests is permeated with living roots and mycorrhizae. From our studies in 1970 it is evident that the genus Phaeocollybia is a mycological feature of the sitka spruce [Picea sitchensis (Bong.) .tment of the Carr.] and hemlock [Tsztga heterophylla (Raf.) Sarg.] mixed stands standpoint of of the coastal area, but that the ecological relationships of the species -it interesting to this forest association still remain to be determined. To facilitate gibed species further study of this problem we take this occasion to revise Smiths t was the oc- (1957) key to the species. Also, a new species from Idaho and one pia kauffinanii from the Oregon area of the Cascade Range are included to round with) Singer. out our current knowledge of the genus in the Pacific Northwest.
Recommended publications
  • Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: a Review
    viruses Review Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review Dong Joo Seo 1 and Changsun Choi 2,* 1 Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea; [email protected] 2 Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea * Correspondence: [email protected]; Tel.: +82-31-670-4589; Fax: +82-31-676-8741 Abstract: Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections. Citation: Seo, D.J.; Choi, C. Antiviral Bioactive Compounds of Mushrooms Keywords: mushroom; bioactive compound; virus; infection; antiviral mechanism and Their Antiviral Mechanisms: A Review.
    [Show full text]
  • Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–870/2014/16–3–489–497 http://www.fspublishers.org Full Length Article Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan Samina Sarwar * and Abdul Nasir Khalid Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54950, Pakistan *For correspondence: [email protected] Abstract Suillus (Boletales; Basidiomycota) is an ectomycorrhizal genus, generally associated with Pinaceae. Coniferous forests of Pakistan are rich in mycodiversity and Suillus species are found as early appearing fungi in the vicinity of conifers. This study reports the diversity of Suillus collected during a period of three (3) years (2008-2011). From 32 basidiomata of Suillus collected, 12 species of this genus were identified. These basidiomata were characterized morphologically, and phylogenetically by amplifying and sequencing the ITS region of rDNA. © 2014 Friends Science Publishers Keywords: Moist temperate forests; PCR; rDNA; Ectomycorrhizae Introduction adequate temperature make the environment suitable for the growth of mushrooms in these forests. Suillus (Suillaceae, Basidiomycota, Boletales ) forms This paper described the diversity of Suillus (Boletes, ectomycorrhizal associations mostly with members of the Fungi) with the help of the anatomical, morphological and Pinaceae and is characterized by having slimy caps, genetic analyses as little knowledge is available from forests glandular dots on the stipe, large pore openings that are in Pakistan. often arranged radially and a partial veil that leaves a ring or tissue hanging from the cap margin (Kuo, 2004). This genus Materials and Methods is mostly distributed in northern temperate locations, although some species have been reported in the southern Sporocarp Collection hemisphere as well (Kirk et al ., 2008).
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Elias Fries – En Produktiv Vetenskapsman Redan Som Tonåring Började Fries Att Skriva Uppsatser Om Naturen
    Elias Fries – en produktiv vetenskapsman Redan som tonåring började Fries att skriva uppsatser om naturen. År 1811, då han fyllt 17 år, fick han sina första alster publi- cerade. Samma år påbörjade han universitetsstudier i Lund och tre år senare var han klar med sin magisterexamen. Därefter Elias Fries – ein produktiver Wissenschaftler följde inte mindre än 64 aktiva år som mykolog, botanist, filosof, lärare, riksdagsman och akademiledamot. Han var oerhört produktiv och författade inte bara stora och betydande böcker i mykologi och botanik utan också hundratals mindre artiklar och uppsatser. Dessutom ledde han ett omfattande arbete med att avbilda svampar. Dessa målningar utgavs som planscher och Bereits als Teenager begann Fries Aufsätze dem schrieb er Tagebücher und die „Tidningar i Na- Die Zeit in Uppsala – weitere 40 Jahre im das führte zu sehr erfolgreichen Ausgaben seiner und schrieb: „In Gleichheit mit allem dem das sich aus Auch der Sohn Elias Petrus, geboren im Jahre 1834, und Seth Lundell (Sammlungen in Uppsala), Fredrik über die Natur zu schreiben. Im Jahre 1811, turalhistorien“ (Neuigkeiten in der Naturalgeschich- Dienste der Mykologie Werke. Das erste, „Sveriges ätliga och giftiga svam- edlen Naturtrieben entwickelt, erfordert das Entstehen war ein begeisterter Botaniker und Mykologe. Leider Hård av Segerstad (publizierte 1924 eine Überarbei- te) mit Artikeln über beispielsweise seltene Pilze, Auch nach seinem Umzug nach Uppsala im Jahre par“ (Schwedens essbare und giftige Pilze), war ein dieser Liebe zur Natur ernste Bemühungen, aber es verstarb er schon in jungen Jahren. Ein dritter Sohn, tung von Fries’ Aufzeichnungen), Meinhard Moser bidrog till att kunskap om svamp spreds. Efter honom har givetvis det vetenskapliga arbetet utvecklats vidare men än idag an- in seinem 18.
    [Show full text]
  • An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula Delica
    J. Microbiol. Biotechnol. (2010), 20(4), 693–699 doi: 10.4014/jmb.0911.11022 First published online 30 January 2010 An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula delica Zhao, Shuang1,2, Yong Chang Zhao3, Shu Hong Li3, Guo Qing Zhang1, He Xiang Wang1*, and Tzi Bun Ng4* 1State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China 2Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 3Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming 650223, China 4School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Received: November 20, 2009 / Revised: December 21, 2009 / Accepted: December 25, 2009 An antiproliferative ribonuclease with a new N-terminal The mushroom family Russulaceae is composed of two sequence was purified from fruiting bodies of the edible genera, Russula and Lactarius, the former being the wild mushroom Russula delica in this study. This novel majority. To date, only a ribonuclease [34] and a protein ribonuclease was unadsorbed on DEAE-cellulose, but with anti-HIV-1 reverse transcriptase activity [38] have absorbed on SP-Sepharose and Q-Sepharose. It had a been isolated from mushrooms of the genus Russula. Only molecular mass of 14 kDa, as judged by fast protein liquid four reports on Lactarius lectin [6, 10, 24, 26] and one chromatography on Superdex 75 and SDS-polyacrylamide report on a Lactarius enzyme [17] are available. Russula gel electrophoresis. Its optimal pH and optimal temperature delica is a wild mushroom on which few literatures have were pH 5 and 60oC, respectively.
    [Show full text]
  • Does Fungal Competitive Ability Explain Host Specificity Or Rarity in Ectomycorrhizal
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.106047; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal 2 symbioses? 3 4 5 6 7 Peter G. Kennedy1, Joe Gagne1, Eduardo Perez-Pazos1, Lotus A. Lofgren2, Nhu H. Nguyen3 8 9 10 1. Department of Plant and Microbial Biology, University of Minnesota 11 2. Department of Microbiology and Plant Pathology, University of California, Riverside 12 3. Department of Tropical Plant & Soil Sciences, University of Hawai’i, Manoa 13 14 15 16 17 18 19 Text: 4522 words 20 Figures: 2 21 Tables: 1 22 Supplemental Info: Fig. S1-3 23 Corresponding author: Peter Kennedy, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.106047; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 Two common ecological assumptions are that host generalist and rare species are poorer 27 competitors relative to host specialist and more abundant counterparts. While these assumptions 28 have received considerable study in both plant and animals, how they apply to ectomycorrhizal 29 fungi remains largely unknown.
    [Show full text]
  • A MYCOLEGIUM of LITERATURE the New North America Mushroom Species of 2015 Else C
    Cortinarius vanduzerensis, from the type locality in Oregon, unmistakable with its and the species, growing with slimy dark brown cap, Pseudotsuga, Tsuga and Abies in and slimy lilac-purple Oregon, Washington, and British stem, right? Alas, it is Columbia has been described now postulated that this as Cortinarius seidliae. Images species is only known courtesy of M. G. Wood and N. Siegel. A MYCOLEGIUM OF LITERATURE The new North America mushroom species of 2015 Else C. Vellinga round 30 new North American species of macrofungi they are in general very difficult to recognize anyway; without saw the light in 2015 – leaving 2014 as the top year pictures for comparison it is just impossible. with 58 species. In 2015, 14 new Cortinarius species, To speed up the description of new species, several Aan Entoloma, one wax cap, two Russulas, one bolete, several journals now offer the opportunity to publish single species polypores, two Craterellus species, one Geastrum, an descriptions as part of a much bigger article in which many Auricularia, and a number of Tremella species were presented different authors each describe only one or a few new species. as new, plus two Otidea species representing the Ascomycota. Several of the new Cortinarius and Russula species were As in 2014, many of the new taxa were published in Index published as part of these big community efforts. For the Fungorum, without any supporting illustrations and without individual author this is advantageous, as there will be more phylogenetic trees showing the placement of the new species. citations of the whole article than for a single species article.
    [Show full text]
  • One Step Closer to Unravelling the Origin of Russula: Subgenus Glutinosae Subg
    Mycosphere 11(1): 285–304 (2020) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/11/1/6 One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Buyck B1*, Wang X-H2, Adamčíková K3, Caboň M4, Jančovičová S5, 6 4 Hofstetter V and Adamčík S 1Institut pour la Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Case Postale 39 Muséum national d’histoire naturelle, Sorbonne Université, CNRS, 12 Rue Buffon, F-75005 Paris, France 2CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China 3Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences Zvolen, Akademická 2, SK-949 01 Nitra, Slovakia 4Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia 5Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, SK-811 02 Bratislava, Slovakia 6Agroscope Research Station, Department of plant protection, Rte de Duiller 60, 1260 Nyon 1, Switzerland Buyck B, Wang X-H, Adamčíková K, Caboň M, Jančovičová S, Hofstetter V, Adamčík S 2020 – One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Mycosphere 11(1), 285–304, Doi 10.5943/mycosphere/11/1/6 Abstract This study reports on the discovery of a new subgenus, Russula subg. Glutinosae, having an Eastern North American – East Asian distribution. A multigene phylogeny places this new subgenus sister with strong support to a well-supported clade composed of subgenera Compactae and Archaeae.
    [Show full text]
  • Boletaceae), First Report of a Red-Pored Bolete
    A peer-reviewed open-access journal MycoKeys 49: 73–97Neoboletus (2019) antillanus sp. nov. (Boletaceae), first report of a red-pored bolete... 73 doi: 10.3897/mycokeys.49.33185 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus Matteo Gelardi1, Claudio Angelini2,3, Federica Costanzo1, Francesco Dovana4, Beatriz Ortiz-Santana5, Alfredo Vizzini4 1 Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 2 Via Cappuccini 78/8, I-33170 Pordenone, Italy 3 National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 4 Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 5 US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA Corresponding author: Alfredo Vizzini ([email protected]) Academic editor: M.P. Martín | Received 18 January 2019 | Accepted 12 March 2019 | Published 29 March 2019 Citation: Gelardi M, Angelini C, Costanzo F, Dovana F, Ortiz-Santana B, Vizzini A (2019) Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus. MycoKeys 49: 73–97. https://doi.org/10.3897/mycokeys.49.33185 Abstract Neoboletus antillanus sp. nov. appears to be the only red-pored bolete known from the Dominican Repub- lic to date. It is reported as a novel species to science based on collections gathered in a neotropical lowland mixed broadleaved woodland.
    [Show full text]
  • Study on Species of Phylloporus I: Neotropics and North America
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/45279837 Study on species of Phylloporus I: Neotropics and North America Article in Mycologia · July 2010 DOI: 10.3852/09-215 · Source: PubMed CITATIONS READS 11 203 2 authors: Maria Alice Neves Roy E Halling Federal University of Santa Catarina New York Botanical Garden 72 PUBLICATIONS 297 CITATIONS 141 PUBLICATIONS 1,496 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Boletinae of Australia View project Diversity and systematics of South-East Asian Boletineae View project All content following this page was uploaded by Roy E Halling on 29 May 2014. The user has requested enhancement of the downloaded file. Mycologia, 102(4), 2010, pp. 923–943. DOI: 10.3852/09-215 # 2010 by The Mycological Society of America, Lawrence, KS 66044-8897 Study on species of Phylloporus I: Neotropics and North America Maria Alice Neves1 (Halling 1989, Orijel-Garibay et al. 2008, Osmundson Departamento de Sistema´tica e Ecologia, Campus 1, et al. 2007). In Belize these forests occur at lower Universidade Federal da Paraı´ba, Cidade elevation, where members of the Boletaceae also are Universita´ria, Joa˜o Pessoa, PB, 58051-970, Brazil present and associated with these hosts (Ortiz- Roy E. Halling Santana et al. 2007). In Guyana species of Boletaceae Institute of Systematic Botany, The New York Botanical have been associated with Dicymbe species (Henkel et Garden, Bronx, New York, 10458-5126 al. 2002). Some of the areas that need more attention are the lowlands of central Amazonia, where Singer et al.
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • The Secotioid Syndrome Author(S): Harry D
    Mycological Society of America The Secotioid Syndrome Author(s): Harry D. Thiers Source: Mycologia, Vol. 76, No. 1 (Jan. - Feb., 1984), pp. 1-8 Published by: Mycological Society of America Stable URL: http://www.jstor.org/stable/3792830 Accessed: 18-08-2016 13:56 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/3792830?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mycological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Mycologia This content downloaded from 152.3.43.180 on Thu, 18 Aug 2016 13:56:00 UTC All use subject to http://about.jstor.org/terms 76(1) M ycologia January-February 1984 Official Publication of the Mycological Society of America THE SECOTIOID SYNDROME HARRY D. THIERS Department of Biological Sciences, San Francisco State University, San Francisco, California 94132 I would like to begin this lecture by complimenting the Officers and Council of The Mycological Society of America for their high degree of cooperation and support during my term of office and for their obvious dedication to the welfare of the Society.
    [Show full text]