The Lattice of Topologies: Structure and Complementation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proofs in Elementary Analysis by Branko´Curgus January 15, 2016
Proofs in Elementary Analysis by Branko Curgus´ January 15, 2016 Contents Chapter 1. Introductory Material 5 1.1. Goals 5 1.2. Strategies 5 1.3. Mathematics and logic 6 1.4. Proofs 8 1.5. Four basic ingredients of a Proof 10 Chapter 2. Sets and functions 11 2.1. Sets 11 2.2. Functions 14 2.3. Cardinality of sets 17 Chapter 3. The Set R of real numbers 19 3.1. Axioms of a field 19 3.2. Axioms of order in a field 21 3.3. Three functions: the unit step, the sign and the absolute value 23 3.4. Intervals 25 3.5. Bounded sets. Minimum and Maximum 28 3.6. The set N 29 3.7. Examples and Exercises related to N 32 3.8. Finite sets, infinite sets, countable sets 34 3.9. More on countable sets 37 3.10. The sets Z and Q 41 3.11. The Completeness axiom 42 3.12. More on the sets N, Z and Q 45 3.13. Infimum and supremum 47 3.14. The topology of R 49 3.15. The topology of R2 51 Chapter 4. Sequences in R 53 4.1. Definitions and examples 53 4.2. Bounded sequences 54 4.3. Thedefinitionofaconvergentsequence 55 4.4. Finding N(ǫ)foraconvergentsequence 57 4.5. Two standard sequences 60 4.6. Non-convergent sequences 61 4.7. Convergence and boundedness 61 4.8. Algebra of limits of convergent sequences 61 4.9. Convergent sequences and the order in R 62 4.10. Themonotonicconvergencetheorem 63 3 4 CONTENTS 4.11. -
A Set Optimization Approach to Utility Maximization Under Transaction Costs
A set optimization approach to utility maximization under transaction costs Andreas H. Hamel,∗ Sophie Qingzhen Wangy Abstract A set optimization approach to multi-utility maximization is presented, and duality re- sults are obtained for discrete market models with proportional transaction costs. The novel approach admits to obtain results for non-complete preferences, where the formulas derived closely resemble but generalize the scalar case. Keywords. utility maximization, non-complete preference, multi-utility representation, set optimization, duality theory, transaction costs JEL classification. C61, G11 1 Introduction In this note, we propose a set-valued approach to utility maximization for market models with transaction costs. For finite probability spaces and a one-period set-up, we derive results which resemble very closely the scalar case as discussed in [4, Theorem 3.2.1]. This is far beyond other approaches in which only scalar utility functions are used as, for example, in [1, 3], where a complete preference for multivariate position is assumed. As far as we are aware of, there is no argument justifying such strong assumption, and it does not seem appropriate for market models with transaction costs. On the other hand, recent results on multi-utility representations as given, among others, in [5] lead to the question how to formulate and solve an \expected multi-utility" maximiza- tion problem. The following optimistic goal formulated by Bosi and Herden in [2] does not seem achievable since, in particular, there is no satisfactory multi-objective duality which matches the power of the scalar version: `Moreover, as it reduces finding the maximal ele- ments in a given subset of X with respect to to a multi-objective optimization problem (cf. -
A Theory of Well-Connected Relations 99
INFORMA TION SCIENCES 19, 97- 134 (1979) 97 A Theory of Well-conwcted Relations SUDHIR K. ARORA and K. C. SMITH Lkpartment of Conputer Science, Uniwrsity of Toronto, Toronto, Cuna& MSS IA7 Communicated by John M. Richardson ABSTRACT The simple concept of a well-connected relation (WCR) is defined and then developed into a theory for studying the structure of binary relations. Several interesting partitions of a binary relation are identified. It is shown that binary relations can be separated into families which form a hierarchy. Finally, concepts of universal algebra are extended to the family of “prime” relations. One application for the theory is in the logical design of data bases. INTRODUCTION Data in an information system have been studied from several points of view [2, 4, 9, 10, Ill. With the growing interest in data base systems, the possibility for structuring the data in various ways has been explored by several authors. For example, Delobel [9] defines “elementary functional relations” and proposes a theory based on this building block; Zaniolo [lo] defines “atomic relations” as a basic building block for data; Furtado and Kerschberg [ 1 l] have “quotient relations.” Further, many authors have noted and studied specific data structures, such as “functional dependencies” [4], “multivalued dependencies” [5], “contextual dependencies” [6], “mutual de- pendencies” [12] (which happen to be same as contextual dependencies), and “hierarchical dependencies” [ 131. In this paper we define a new building block, “well-connected relations,” and propose a theory to study binary relations. Elsewhere [6] we have applied this theory to the study of dependency structures of data. -
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
Sets, Relations, Pos and Lattices
Contents 1 Discrete structures F TECHN O OL E O T G U Y IT K T H S A N R I A N G A P I U D R N I 19 51 yog, km s kOflm^ Chittaranjan Mandal (IIT Kharagpur) SCLD January 21, 2020 1 / 23 Discrete structures Section outline Lattices (contd.) Boolean lattice 1 Discrete structures Boolean lattice structure Sets Boolean algebra Relations Additional Boolean algebra Lattices properties F TECHN O OL E O T G U Y IT K T H S A N R I A N G A P I U D R N I 19 51 yog, km s kOflm^ Chittaranjan Mandal (IIT Kharagpur) SCLD January 21, 2020 2 / 23 S = fXjX 62 Xg S 2 S? [Russell’s paradox] Set union: A [ B A B Set intersection: A \ B A B U Complement: S A Set difference: A − B = A \ B A B + Natural numbers: N = f0; 1; 2; 3;:::g or f1; 2; 3;:::g = Z Integers: Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g Universal set: U Empty set: ? = fg Discrete structures Sets Sets A set A of elements: A = fa; b; cg F TECHN O OL E O T G U Y IT K T H S A N R I A N G A P I U D R N I 19 51 yog, km s kOflm^ Chittaranjan Mandal (IIT Kharagpur) SCLD January 21, 2020 3 / 23 S = fXjX 62 Xg S 2 S? [Russell’s paradox] Set union: A [ B A B Set intersection: A \ B A B U Complement: S A Set difference: A − B = A \ B A B Integers: Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g Universal set: U Empty set: ? = fg Discrete structures Sets Sets A set A of elements: A = fa; b; cg + Natural numbers: N = f0; 1; 2; 3;:::g or f1; 2; 3;:::g = Z F TECHN O OL E O T G U Y IT K T H S A N R I A N G A P I U D R N I 19 51 yog, km s kOflm^ Chittaranjan Mandal (IIT Kharagpur) SCLD January 21, 2020 3 / 23 S = fXjX -
Supremum and Infimum of Set of Real Numbers
ISSN (Online) :2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 9, September 2015 Supremum and Infimum of Set of Real Numbers M. Somasundari1, K. Janaki2 1,2Department of Mathematics, Bharath University, Chennai, Tamil Nadu, India ABSTRACT: In this paper, we study supremum and infimum of set of real numbers. KEYWORDS: Upper bound, Lower bound, Largest member, Smallest number, Least upper bound, Greatest Lower bound. I. INTRODUCTION Let S denote a set(a collection of objects). The notation x∈ S means that the object x is in the set S, and we write x ∉ S to indicate that x is not in S.. We assume there exists a nonempty set R of objects, called real numbers, which satisfy the ten axioms listed below. The axioms fall in anatural way into three groups which we refer to as the field axioms, the order axioms, and the completeness axiom( also called the least-upper-bound axiom or the axiom of continuity)[10]. Along with the R of real numbers we assume the existence of two operations, called addition and multiplication, such that for every pair of real numbers x and ythe sum x+y and the product xy are real numbers uniquely dtermined by x and y satisfying the following axioms[9]. ( In the axioms that appear below, x, y, z represent arbitrary real numbers unless something is said to the contrary.). In this section, we define axioms[6]. The field axioms Axiom 1. x+y = y+x, xy =yx (commutative laws) Axiom 2. -
A “Three-Sentence Proof” of Hansson's Theorem
Econ Theory Bull (2018) 6:111–114 https://doi.org/10.1007/s40505-017-0127-2 RESEARCH ARTICLE A “three-sentence proof” of Hansson’s theorem Henrik Petri1 Received: 18 July 2017 / Accepted: 28 August 2017 / Published online: 5 September 2017 © The Author(s) 2017. This article is an open access publication Abstract We provide a new proof of Hansson’s theorem: every preorder has a com- plete preorder extending it. The proof boils down to showing that the lexicographic order extends the Pareto order. Keywords Ordering extension theorem · Lexicographic order · Pareto order · Preferences JEL Classification C65 · D01 1 Introduction Two extensively studied binary relations in economics are the Pareto order and the lexicographic order. It is a well-known fact that the latter relation is an ordering exten- sion of the former. For instance, in Petri and Voorneveld (2016), an essential ingredient is Lemma 3.1, which roughly speaking requires the order under consideration to be an extension of the Pareto order. The main message of this short note is that some fundamental order extension theorems can be reduced to this basic fact. An advantage of the approach is that it seems less abstract than conventional proofs and hence may offer a pedagogical advantage in terms of exposition. Mandler (2015) gives an elegant proof of Spzilrajn’s theorem (1930) that stresses the importance of the lexicographic I thank two anonymous referees for helpful comments. Financial support by the Wallander–Hedelius Foundation under Grant P2014-0189:1 is gratefully acknowledged. B Henrik Petri [email protected] 1 Department of Finance, Stockholm School of Economics, Box 6501, 113 83 Stockholm, Sweden 123 112 H. -
Strategies for Linear Rewriting Systems: Link with Parallel Rewriting And
Strategies for linear rewriting systems: link with parallel rewriting and involutive divisions Cyrille Chenavier∗ Maxime Lucas† Abstract We study rewriting systems whose underlying set of terms is equipped with a vector space structure over a given field. We introduce parallel rewriting relations, which are rewriting relations compatible with the vector space structure, as well as rewriting strategies, which consist in choosing one rewriting step for each reducible basis element of the vector space. Using these notions, we introduce the S-confluence property and show that it implies confluence. We deduce a proof of the diamond lemma, based on strategies. We illustrate our general framework with rewriting systems over rational Weyl algebras, that are vector spaces over a field of rational functions. In particular, we show that involutive divisions induce rewriting strategies over rational Weyl algebras, and using the S-confluence property, we show that involutive sets induce confluent rewriting systems over rational Weyl algebras. Keywords: confluence, parallel rewriting, rewriting strategies, involutive divisions. M.S.C 2010 - Primary: 13N10, 68Q42. Secondary: 12H05, 35A25. Contents 1 Introduction 1 2 Rewriting strategies over vector spaces 4 2.1 Confluence relative to a strategy . .......... 4 2.2 Strategies for traditional rewriting relations . .................. 7 3 Rewriting strategies over rational Weyl algebras 10 3.1 Rewriting systems over rational Weyl algebras . ............... 10 3.2 Involutive divisions and strategies . .............. 12 arXiv:2005.05764v2 [cs.LO] 7 Jul 2020 4 Conclusion and perspectives 15 1 Introduction Rewriting systems are computational models given by a set of syntactic expressions and transformation rules used to simplify expressions into equivalent ones. -
Arxiv:2005.13313V1
Single Valued Neutrosophic Filters 1Giorgio Nordo, 2Arif Mehmood, 3Said Broumi 1MIFT - Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, Messina University, Italy. 2Department of Mathematics and Statistics, Riphah International University Sector I-14, Islamabad, Pakistan 3Laboratory of Information Processing, Faculty of Science, University Hassan II, Casablanca, Morocco [email protected], [email protected], [email protected] Abstract In this paper we give a comprehensive presentation of the notions of filter base, filter and ultrafilter on single valued neutrosophic set and we investigate some of their properties and relationships. More precisely, we discuss properties related to filter completion, the image of neutrosophic filter base by a neutrosophic induced mapping and the infimum and supremum of two neutrosophic filter bases. Keywords: neutrosophic set, single valued neutrosphic set, neutrosophic induced mapping, single valued neutrosophic filter, neutrosophic completion, single valued neutrosophic ultrafilter. 1 Introduction The notion of neutrosophic set was introduced in 1999 by Smarandache [20] as a generalization of both the notions of fuzzy set introduced by Zadeh in 1965 [22] and intuitionistic fuzzy set introduced by Atanassov in 1983 [2]. In 2012, Salama and Alblowi [17] introduced the notion of neutrosophic topological space which gen- eralizes both fuzzy topological spaces given by Chang [8] and that of intuitionistic fuzzy topological spaces given by Coker [9]. Further contributions to Neutrosophic Sets Theory, which also involve many fields of theoretical and applied mathematics were recently given by numerous authors (see, for example, [6], [3], [4], [15], [1], [13], [14] and [16]). In particular, in [18] Salama and Alagamy introduced and studied the notion of neutrosophic filter and they gave some applications to neutrosophic topological space. -
Bijective Link Between Chapoton's New Intervals and Bipartite Planar Maps
Bijective link between Chapoton’s new intervals and bipartite planar maps Wenjie Fang* LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris F-77454 Marne-la-Vallée, France June 18, 2021 Abstract In 2006, Chapoton defined a class of Tamari intervals called “new intervals” in his enumeration of Tamari intervals, and he found that these new intervals are equi- enumerated with bipartite planar maps. We present here a direct bijection between these two classes of objects using a new object called “degree tree”. Our bijection also gives an intuitive proof of an unpublished equi-distribution result of some statistics on new intervals given by Chapoton and Fusy. 1 Introduction On classical Catalan objects, such as Dyck paths and binary trees, we can define the famous Tamari lattice, first proposed by Dov Tamari [Tam62]. This partial order was later found woven into the fabric of other more sophisticated objects. A no- table example is diagonal coinvariant spaces [BPR12, BCP], which have led to several generalizations of the Tamari lattice [BPR12, PRV17], and also incited the interest in intervals in such Tamari-like lattices. Recently, there is a surge of interest in the enu- arXiv:2001.04723v2 [math.CO] 16 Jun 2021 meration [Cha06, BMFPR11, CP15, FPR17] and the structure [BB09, Fan17, Cha18] of different families of Tamari-like intervals. In particular, several bijective rela- tions were found between various families of Tamari-like intervals and planar maps [BB09, FPR17, Fan18]. The current work is a natural extension of this line of research. In [Cha06], other than counting Tamari intervals, Chapoton also introduced a subclass of Tamari intervals called new intervals, which are irreducible elements in a grafting construction of intervals. -
COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES Patrick F. Smith 1. Introduction in This Paper We Continue the Discussion In
International Electronic Journal of Algebra Volume 16 (2014) 16-31 COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES Patrick F. Smith Received: 18 October 2013; Revised: 25 May 2014 Communicated by Christian Lomp For my good friend John Clark on his 70th birthday Abstract. We examine the properties of certain mappings between the lattice L(R) of ideals of a commutative ring R and the lattice L(RM) of submodules of an R-module M, in particular considering when these mappings are com- plete homomorphisms of the lattices. We prove that the mapping λ from L(R) to L(RM) defined by λ(B) = BM for every ideal B of R is a complete ho- momorphism if M is a faithful multiplication module. A ring R is semiperfect (respectively, a finite direct sum of chain rings) if and only if this mapping λ : L(R) !L(RM) is a complete homomorphism for every simple (respec- tively, cyclic) R-module M. A Noetherian ring R is an Artinian principal ideal ring if and only if, for every R-module M, the mapping λ : L(R) !L(RM) is a complete homomorphism. Mathematics Subject Classification 2010: 06B23, 06B10, 16D10, 16D80 Keywords: Lattice of ideals, lattice of submodules, multiplication modules, complete lattice, complete homomorphism 1. Introduction In this paper we continue the discussion in [7] concerning mappings, in particular homomorphisms, between the lattice of ideals of a commutative ring and the lattice of submodules of a module over that ring. A lattice L is called complete provided every non-empty subset S has a least upper bound _S and a greatest lower bound ^S. -
Sun Studio 9: Fortran 95 Interval Arithmetic
Fortran 95 Interval Arithmetic Programming Reference Sun™ Studio 9 Sun Microsystems, Inc. www.sun.com Part No. 817-6704-10 July 2004, Revision A Submit comments about this document at: http://www.sun.com/hwdocs/feedback Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc. This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.