The Ecology and Habitat Requirements of Saproxylic Beetles Native to Tasmanian Wet Eucalypt Forests: Potential Impacts of Commercial Forestry Practices

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology and Habitat Requirements of Saproxylic Beetles Native to Tasmanian Wet Eucalypt Forests: Potential Impacts of Commercial Forestry Practices The ecology and habitat requirements of saproxylic beetles native to Tasmanian wet eucalypt forests: potential impacts of commercial forestry practices Marie Yee B. Sc. (Hons.) School of Agricultural Science, University of TasmaniFt CRC for Sustainable Production Forestry A research thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy November 2005 Declaration I declare that this thesis does not contain any material which has been accepted for a degree or diploma by the University of Tasmania or any other institution. To the best of my knowledge, this thesis contains no material previously published or written by another person except where due acknowledgment is made. Marie Yee 12th November 2005 Authority of Access This thesis may be made available for loan. Copying of any part of this thesis is prohibited for one year from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968 Marie Yee 12th November 2005 ii Abstract Large diameter Eucalyptus obliqua decaying logs are characteristic features of wet eucalypt forests in Tasmania. In production coupes, however, rotation lengths of around 80 years will eventually lead to their elimination. This thesis investigates the role of these features as habitat for saproxylic beetles, and thus whether their retention is warranted to maintain biodiversity. Large diameter (> 1OOcm) logs derived from commercially over-mature trees were compared with small diameter (30-60cm) logs derived from trees of an age approaching commercial maturity, in two forest types: mature, unlogged forest; and 20-30 year logged forest that had regenerated after clearfelling. Two field studies were conducted, in which a highly species rich fauna of360 saproxylic beetle species (representing 54 families) are first recorded. The first, destructive sampling study investigated whether small diameter logs follow similar decomposition processes to large diameter logs, and so support similar rot types and beetle assemblages. Eleven rot types were differentiated, each associated with a particular region within the log. Small diameter logs had a relatively high incidence of white rot towards their outer edges, probably originating from fungal colonisation after treefall. Large diameter logs had a higher incidence of brown rot towards their cores, probably originating from internal decay already present in older, living eucalypt trees prior to treefall. Some of the beetle species characteristic of this brown rot are possibly poor dispersers and may be of particular conservation concern in production forests. The second, log emergence trapping study examined the extent to which beetle assemblages differ between small and large diameter logs, and whether they respond in the same way to forest successional processes induced by stand level disturbance. Distinct suites of species were associated with large diameter logs irrespective of forest type, yet there were no apparent small log specialists. Assemblages differed significantly between the mature and logging regenerated forests; there was also significant variation among sites that could not be attributed to forest type. Small diameter logs in the logging regenerated forest lacked some apparent mature forest specialists that were present in large diameter logs in the same forest type. This research iii indicates that large diameter logs have unique habitat qualities for saproxylic beetles, and they are important in providing continuity of habitat for the re-establishment of certain species following stand level disturbances, whether induced by logging or by wildfire. A precautionary and multi-scaled approach towards dead wood management is advocated, with particular consideration of the temporal scale at which the dynamics of the forests operate. In line with current conservation management strategies employed and explored by Tasmanian forestry, retention of some trees during harvesting to improve stand structure complexity and future dead wood supply is strongly recommended as one means of mitigating potential negative impacts. The planning of tree retention should aim to provide sufficient oldgrowth features, and sufficient quantity and continuity of dead wood types, throughout successive forest regeneration cycles for conservation of dead wood dependent biota. At the landscape scale, managing the production forest matrix as a habitat mosaic through diversifying silvicultural regimes is also recommended. lV ACKNOWLEDGMENTS The study of saproxylic beetles has given me new insights into the way I view the forest, particularly in regards its complexity and the plethora of organisms that weave their way through this matrix. To have had this opportunity, there are many people I would like to acknowledge. First, I would like to thank my two primary supervisors, Dr. Caroline Mohammed (School of Agricultural Science, University of Tasmania (UTAS)) and Dr. Simon Grove (Forestry Tasmania). Simon joined the project mid-way after my industry supervisor, Dr. Rob Taylor left (formerly with Forestry Tasmania) to take up another job in Darwin. I greatly appreciate both Caroline's and Simons's support and guidance during my research, particularly for their contributions during the writing-up phase of the thesis. This project would not have been possible without the initial project outline, research questions and ideas proposed by Drs. Caroline Mohammed, Rob Taylor, Alastair Richardson (School of Zoology, UTAS), ZiQing Yuan (formerly with Cooperate Research Centre for Sustainable Production Forestry (CRC-SPF)) and Peter McQuillan (School of Geography and Environmental Sciences, UTAS). Special thanks are due to Sue Baker, for introducing me to the wide world of forest conservation, for her constructive ideas on my project and her willingness to help with almost all aspects of this project. Special thanks are also due to Dr. ZiQing Yuan, whom without his collaboration and field assistance, investigating log decomposition and rotten wood would not have been possible. I appreciate all those volunteers that provided assistance on field trips, particularly with their help constructing log emergence traps, collecting insect samples and removing these traps from the forest. These include Paul Harrington, Yuzuru Hyatake, Sue Baker, Bill Brown, Dean Vincent and his Green-corp crew, David Kolabinski, Rob Taylor, Stuart with the red beard who I met at Tahune one day, Tracey Barker, Georgie Miller, Yoav Daniel Bar-Ness, Gabriel Warren, Lizz Pietrzykowski and Andrew Muirhead. I also thank Gab for measuring the body lengths of each morphospecies without really understanding why, and Dru Haywood, who volunteered her time to help me sort through samples for beetles. v I am grateful for the taxonomic expertise of the many expert Coleopterists that were keen and willing to help with the identification of beetles. The list includes Mr. Tom Weir at the Australian National Insect Collection (ANIC, Canberra), and Drs. Rolf Oberprieler (ANIC), Richard Leschen (Landcare, New Zealand), Don Chandler (University of New Hampshire, United States), John Lawrence (formerly with ANIC), Peter McQuillan, Adam Slipinski (ANIC) and Chris Reid (Australian Museum, Sydney). I was fortunate to spend a few weeks at ANIC at various times to utilise their insect collection, as well as attend a beetle identification course funded by a Maxwell Jacobs Fund Award, Australian Academy of Science. Special thanks extend to Tom Weir, whom was always willing to help with the identification of the smallest, dullest, brown, pubescent and otherwise non-descript beetle. I acknowledge the statistical advice and help from Marti J Anderson (Univ~rsity of Auckland, New Zealand), who helped me better understand my experimental design for the application of PERMANOVA. I also appreciate the statistical advice from David Ratkowsky (School of Agricultural Science, UTAS) and Leon Barmuta (School of Zoology, UTAS). I am deeply indebted to the many people that have read drafts of my thesis chapters and provided constructive input to improving my written English. These have included Caroline Mohammed, Simon Grove, Alastair Richardson, Helen Nahrung, Sarah Richards, Martin Steinbauer, Paul Harrington, Giuliana Deflorio, Ronlyn Duncan, Sue Baker and Hilton Redgrove. Also, many thanks to the staff and students at the CRC­ SPF, the many resources and friendships they provided. Financial support was supplied by a University Strategic scholarship with additional funding from the CRC-SPF top-up scholarship. Project costs were provided by the Australian Research Council, Forestry Tasmania, and Gunns Ltd (then North Forest Products). I am also grateful to the School of Zoology, UTAS for providing conference funding to attend the XXII International Congress of Entomology held in Brisbane, 2004. vi TABLE OF CONTENTS 1 INTRODUCTION 1 1.1 GENERAL INTRODUCTION 1 1.2 THESIS AIMS AND STRUCTURE 6 2 GENERAL MATERIAL AND METHODS 8 2.1 STUDY SYSTEM 8 2.2 STUDY AREA 8 2.3 STUDY SITES 12 2.4 ENVIRONMENTAL AND STAND STRUCTURAL ATTRIBUTES 13 2.5 STUDY LOGS 14 2.6 SAPROXYLIC BEETLE SAMPLING METHODS 14 2.6.1 Destructive sampling 15 2.6.2 Emergence trapping 17 2.7 BEETLE SORTING AND IDENTIFICATION 19 2.8 EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 20 2.9 APPENDICES 21 3 INVENTORY AND BIOLOGY OF SAPROXYLIC BEETLES USING TWO-SAMPLING METHODS . 24 3.1 INTRODUCTION 25 3.1.1 Study location 26 3.1.2 Sampling programme and methods 27 3.1.3 Beetle identifications 28 3.1.4 Biological
Recommended publications
  • Thorne Moors :A Palaeoecological Study of A
    T...o"..e MO<J "S " "",Ae Oe COlOOIC'" S T<.OY OF A e"ONZE AGE slTE - .. "c euc~ , A"O a • n ,• THORNE MOORS :A PALAEOECOLOGICAL STUDY OF A BRONZE AGE SITE A contribution to the history of the British Insect fauna P.c. Buckland, Department of Geography, University of Birmingham. © Authors Copyright ISBN ~o. 0 7044 0359 5 List of Contents Page Introduction 3 Previous research 6 The archaeological evidence 10 The geological sequence 19 The samples 22 Table 1 : Insect remains from Thorne Moors 25 Environmental interpretation 41 Table 2 : Thorne Moors : Trackway site - pollen and spores from sediments beneath peat and from basal peat sample 42 Table 3 Tho~ne Moors Plants indicated by the insect record 51 Table 4 Thorne Moors pollen from upper four samples in Sphagnum peat (to current cutting surface) 64 Discussion : the flooding mechanism 65 The insect fauna : notes on particular species 73 Discussion : man, climate and the British insect fauna 134 Acknowledgements 156 Bibliography 157 List of Figures Frontispiece Pelta grossum from pupal chamber in small birch, Thorne Moors (1972). Age of specimen c. 2,500 B.P. 1. The Humberhead Levels, showing Thorne and Hatfield Moors and the principal rivers. 2 2. Thorne Moors the surface before peat extraction (1975). 5 3. Thorne Moors the same locality after peat cutting (1975). 5 4. Thorne Moors location of sites examined. 9 5. Thorne Moors plan of trackway (1972). 12 6. Thorne Moors trackway timbers exposed in new dyke section (1972) • 15 7. Thorne Moors the trackway and peat succession (1977).
    [Show full text]
  • Revision of the Endemic Madagascan Stag Beetle Genus <I>Ganelius</I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 12-29-2017 Revision of the endemic Madagascan stag beetle genus Ganelius Benesh, and description of a new, related genus (Coleoptera: Lucanidae: Lucaninae: Figulini) M. J. Paulsen University of Nebraska State Museum, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Paulsen, M. J., "Revision of the endemic Madagascan stag beetle genus Ganelius Benesh, and description of a new, related genus (Coleoptera: Lucanidae: Lucaninae: Figulini)" (2017). Insecta Mundi. 1118. https://digitalcommons.unl.edu/insectamundi/1118 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. December 29 December INSECTA 2017 0592 1–16 A Journal of World Insect Systematics MUNDI 0592 Revision of the endemic Madagascan stag beetle genus Ganelius Benesh, and description of a new, related genus (Coleoptera: Lucanidae: Lucaninae: Figulini) M.J. Paulsen Systematic Research Collections University of Nebraska State Museum W436 Nebraska Hall Lincoln, NE 68588-0546 Date of Issue: December 29, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL M.J. Paulsen Revision of the endemic Madagascan stag beetle genus Ganelius Benesh, and description of a new, related genus (Coleoptera: Lucanidae: Lucaninae: Figulini) Insecta Mundi 0592: 1–16 ZooBank Registered: urn:lsid:zoobank.org:pub:DA6CBFE5-927E-45B6-9D05-69AC97AF7B76 Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 7, Number 2 September 2018 September 2018 The Maryland Entomologist Volume 7, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: President Frederick Paras Vice President Philip J. Kean Secretary Janet A. Lydon Treasurer Edgar A. Cohen, Jr. Historian (vacant) Journal Editor Eugene J. Scarpulla E-newsletter Editors Aditi Dubey The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • The Stag Beetle Lucanus Cervus (Linnaeus, 1758) (Coleoptera, Lucanidae) Found in Norway
    © Norwegian Journal of Entomology. 5 June 2009 The stag beetle Lucanus cervus (Linnaeus, 1758) (Coleoptera, Lucanidae) found in Norway GÖRAN E. NILSSON, EMIL ROSSELAND & KARL ERIK ZACHARIASSEN Nilsson, G. E., Rosseland, E. & Zachariassen, K.E. 2009. The stag beetle Lucanus cervus (Linnaeus, 1758) (Coleoptera, Lucanidae) found in Norway. Norw. J. Entomol. 56, 9–12. A 35 mm long male specimen of the stag beetle Lucanus cervus (Linnaeus, 1758) was found at Øynesvann, AAY, in the early 1980ies. The specimen was sitting on the stump of a cut oak tree. The specimen has been kept well preserved in a small insect collection on a farm in the area since it was collected. The species is likely to have been overlooked in Norway. The explanation for this may be the fact that the forest area where the beetle was found is large, sparsely populated and poorly investigated. Another explaining factor is the fact that the biology of the species makes the beetles hard to find even in areas with good populations. Keywords: Stag beetle, Lucanus cervus, Lucanidae, Coleoptera, Norway Göran E. Nilsson, Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, NO-0316 Oslo, Norway. E-mail: [email protected] Emil Rosseland, Grønnestølvn. 8, NO-5073 Bergen, Norway. E-mail: [email protected] Karl Erik Zachariassen, Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway. E-mail: [email protected] Introduction Bugge near Arendal. Since no specimen exists, even this claim has been considered too uncertain Several sources have indicated that the stag beetle to justify the listing of the stag beetle as occurring Lucanus cervus (Linnaeus, 1758) occurs in Norway.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Mandalotus Weevils Mandalotus Spp
    Mandalotus weevils Mandalotus spp. click for html version Other common name: Rubble bug Summary: Mandalotus is a large genus of small, cryptic, native Australian weevils. At least ten species attack germinating canola crops in parts of south-eastern Australia. They occur mainly in areas with lighter soil types and are particularly common in Mallee regions. Weevil populations often recur within the same areas of paddocks across seasons. For these pests, understanding historical problem areas/paddocks, monitoring of emerging canola crops and early detection of weevil damage are critical to prevent crop losses. Occurrence: Mandalotus weevils occur in parts of South Australia, Victoria and southern New South Wales, but are not recorded from Western Australia. They are found primarily on ‘rubbly’ or lighter calcareous soil types and are most commonly reported in Mallee regions. Mandalotus weevil populations are resident within paddocks and may recur in the same areas across seasons. The pest status of Mandalotus weevils in broad-acre crops has increased since the late 1990s, coincident with a dramatic expansion in canola production. The genus Mandalotus currently contains approximately 163 described species and a large number of undescribed species. At least ten species are known to damage to crops in south-eastern Australia. At least ten Mandalotus weevil species are damaging to crops in southeastern Australia, and occur most commonly in areas with lighter soil types. Examples of variation between Mandalotus species that attack crops (Source: SARDI) Description: Mandalotus adults are small, flightless weevils approximately 3-5 mm in length. They are round and dull brown in appearance, often resembling a small clod of dirt.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants
    Temporal lags and overlap in the diversification of weevils and flowering plants Duane D. McKennaa,1, Andrea S. Sequeirab, Adriana E. Marvaldic, and Brian D. Farrella aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bDepartment of Biological Sciences, Wellesley College, Wellesley, MA 02481; and cInstituto Argentino de Investigaciones de Zonas Aridas, Consejo Nacional de Investigaciones Científicas y Te´cnicas, C.C. 507, 5500 Mendoza, Argentina Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 3, 2009 (received for review October 22, 2008) The extraordinary diversity of herbivorous beetles is usually at- tributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversi- fication remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on Ϸ8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning Ϸ166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and ma- jor diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive EVOLUTION diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiver- sification, resource tracking, and sequential evolution.
    [Show full text]
  • Biology and Conservation Ecology of Selected Saproxylic Beetle Species in Tasmania‘S Southern Forests
    Biology and conservation ecology of selected saproxylic beetle species in Tasmania‘s southern forests Belinda Yaxley B.Sc. (Hons.) School of Zoology, University of Tasmania A research thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2013 Declaration I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge contains no copy or paraphrase of material previously published or written by any other person, except where due reference is made in the text of this thesis. Belinda Yaxley University of Tasmania 1st October 2013 Authority of Access This thesis is available for loan via the University of Tasmania and Forestry Tasmania. Copying any part of this thesis is prohibited for one year from the date this statement is signed; thereafter, copying is permitted in accordance with the Copyright Act 1968. Belinda Yaxley 1st October 2013 Chapter 4 is presented as a manuscript and was submitted for publication to Biodiversity and Conservation on the 30th of September 2013. The three authors and their subsequent contribution to the manuscript (shown as a percentage) are as follows: Belinda Yaxley – University of Tasmania, School of Zoology (60%) Initiation Experimental design Collection of samples Preparation of samples Manuscript writing Morag Glen – University of Tasmania, Tasmanian Institute of Agriculture (30%) Preparation of samples Analysis of samples Manuscript writing Simon Grove - Tasmanian Museum and Art Gallery (10%) Initiation Manuscript writing 2 ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisors Dr.
    [Show full text]