Vertex Deletion Problems on Chordal Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Strong Perfect Graph Theorem
Annals of Mathematics, 164 (2006), 51–229 The strong perfect graph theorem ∗ ∗ By Maria Chudnovsky, Neil Robertson, Paul Seymour, * ∗∗∗ and Robin Thomas Abstract A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornu´ejols and Vuˇskovi´c — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both of these conjectures. 1. Introduction We begin with definitions of some of our terms which may be nonstandard. All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G.Ahole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even length. A clique in G is a subset X of V (G) such that every two members of X are adjacent. -
Algorithms for Deletion Problems on Split Graphs
Algorithms for deletion problems on split graphs Dekel Tsur∗ Abstract In the Split to Block Vertex Deletion and Split to Threshold Vertex Deletion problems the input is a split graph G and an integer k, and the goal is to decide whether there is a set S of at most k vertices such that G − S is a block graph and G − S is a threshold graph, respectively. In this paper we give algorithms for these problems whose running times are O∗(2.076k) and O∗(2.733k), respectively. Keywords graph algorithms, parameterized complexity. 1 Introduction A graph G is called a split graph if its vertex set can be partitioned into two disjoint sets C and I such that C is a clique and I is an independent set. A graph G is a block graph if every biconnected component of G is a clique. A graph G is a threshold graph if there is a t ∈ R and a function f : V (G) → R such that for every u, v ∈ V (G), (u, v) is an edge in G if and only if f(u)+ f(v) ≥ t. In the Split to Block Vertex Deletion (SBVD) problem the input is a split graph G and an integer k, and the goal is to decide whether there is a set S of at most k vertices such that G − S is a block graph. Similarly, in the Split to Threshold Vertex Deletion (STVD) problem the input is a split graph G and an integer k, and the goal is to decide whether there is a set S of at most k vertices such that G − S is a threshold graph. -
Online Graph Coloring
Online Graph Coloring Jinman Zhao - CSC2421 Online Graph coloring Input sequence: Output: Goal: Minimize k. k is the number of color used. Chromatic number: Smallest number of need for coloring. Denoted as . Lower bound Theorem: For every deterministic online algorithm there exists a logn-colorable graph for which the algorithm uses at least 2n/logn colors. The performance ratio of any deterministic online coloring algorithm is at least . Transparent online coloring game Adversary strategy : The collection of all subsets of {1,2,...,k} of size k/2. Avail(vt): Admissible colors consists of colors not used by its pre-neighbors. Hue(b)={Corlor(vi): Bin(vi) = b}: hue of a bin is the set of colors of vertices in the bin. H: hue collection is a set of all nonempty hues. #bin >= n/(k/2) #color<=k ratio>=2n/(k*k) Lower bound Theorem: For every randomized online algorithm there exists a k- colorable graph on which the algorithm uses at least n/k bins, where k=O(logn). The performance ratio of any randomized online coloring algorithm is at least . Adversary strategy for randomized algo Relaxing the constraint - blocked input Theorem: The performance ratio of any randomized algorithm, when the input is presented in blocks of size , is . Relaxing other constraints 1. Look-ahead and bufferring 2. Recoloring 3. Presorting vertices by degree 4. Disclosing the adversary’s previous coloring First Fit Use the smallest numbered color that does not violate the coloring requirement Induced subgraph A induced subgraph is a subset of the vertices of a graph G together with any edges whose endpoints are both in the subset. -
Strong Triadic Closure in Cographs and Graphs of Low Maximum Degree
Strong Triadic Closure in Cographs and Graphs of Low Maximum Degree Athanasios L. Konstantinidis1, Stavros D. Nikolopoulos2, and Charis Papadopoulos1 1 Department of Mathematics, University of Ioannina, Greece. [email protected], [email protected] 2 Department of Computer Science & Engineering, University of Ioannina, Greece. [email protected] Abstract. The MaxSTC problem is an assignment of the edges with strong or weak labels having the maximum number of strong edges such that any two vertices that have a common neighbor with a strong edge are adjacent. The Cluster Deletion problem seeks for the minimum number of edge removals of a given graph such that the remaining graph is a disjoint union of cliques. Both problems are known to be NP-hard and an optimal solution for the Cluster Deletion problem provides a solu- tion for the MaxSTC problem, however not necessarily an optimal one. In this work we give the first systematic study that reveals graph families for which the optimal solutions for MaxSTC and Cluster Deletion coincide. We first show that MaxSTC coincides with Cluster Dele- tion on cographs and, thus, MaxSTC is solvable in quadratic time on cographs. As a side result, we give an interesting computational charac- terization of the maximum independent set on the cartesian product of two cographs. Furthermore we study how low degree bounds influence the complexity of the MaxSTC problem. We show that this problem is polynomial-time solvable on graphs of maximum degree three, whereas MaxSTC becomes NP-complete on graphs of maximum degree four. The latter implies that there is no subexponential-time algorithm for MaxSTC unless the Exponential-Time Hypothesis fails. -
Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses
Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/55 What we’ll do 1 THE BASICS. 2 PERFECT GRAPHS. 3 COGRAPHS. 4 CHORDAL GRAPHS. 5 SPLIT GRAPHS. 6 THRESHOLD GRAPHS. 7 INTERVAL GRAPHS. 2/55 THE BASICS. 2/55 Induced Subgraphs Recall: Definition Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G is an induced subgraph of G′ if V ⊆ V ′ and E = {uv ∈ E ′ : u, v ∈ V }. Equivalently: G can be obtained from G′ by deleting vertices. Notation: G < G′ 3/55 Hereditary Graph Properties Hereditary graph property (hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Formally: a set of graphs X such that G ∈ X and H < G ⇒ H ∈ X . 4/55 Hereditary Graph Properties Hereditary graph property (Hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Examples: forests complete graphs line graphs bipartite graphs planar graphs graphs of degree at most ∆ triangle-free graphs perfect graphs 5/55 Hereditary Graph Properties Why hereditary graph classes? Vertex deletions are very useful for developing algorithms for various graph optimization problems. Every hereditary graph property can be described in terms of forbidden induced subgraphs. 6/55 Hereditary Graph Properties H-free graph = a graph that does not contain H as an induced subgraph Free(H) = the class of H-free graphs Free(M) := H∈M Free(H) M-free graphT = a graph in Free(M) Proposition X hereditary ⇐⇒ X = Free(M) for some M M = {all (minimal) graphs not in X} The set M is the set of forbidden induced subgraphs for X. -
On the Pathwidth of Chordal Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 45 (1993) 233-248 233 North-Holland On the pathwidth of chordal graphs Jens Gustedt* Technische Universitdt Berlin, Fachbereich Mathematik, Strape des I7 Jmi 136, 10623 Berlin, Germany Received 13 March 1990 Revised 8 February 1991 Abstract Gustedt, J., On the pathwidth of chordal graphs, Discrete Applied Mathematics 45 (1993) 233-248. In this paper we first show that the pathwidth problem for chordal graphs is NP-hard. Then we give polynomial algorithms for subclasses. One of those classes are the k-starlike graphs - a generalization of split graphs. The other class are the primitive starlike graphs a class of graphs where the intersection behavior of maximal cliques is strongly restricted. 1. Overview The pathwidth problem-PWP for short-has been studied in various fields of discrete mathematics. It asks for the size of a minimum path decomposition of a given graph, There are many other problems which have turned out to be equivalent (or nearly equivalent) formulations of our problem: - the interval graph extension problem, - the gate matrix layout problem, - the node search number problem, - the edge search number problem, see, e.g. [13,14] or [17]. The first three problems are easily seen to be reformula- tions. For the fourth there is an easy transformation to the third [14]. Section 2 in- troduces the problem as well as other problems and classes of graphs related to it. Section 3 gives basic facts on path decompositions. -
On J-Colouring of Chithra Graphs Arxiv:1808.08661V1 [Math.GM] 27 Aug 2018
On J-Colouring of Chithra Graphs Johan Kok1, Sudev Naduvath2∗ Centre for Studies in Discrete Mathematics Vidya Academy of Science & Technology Thalakkottukara, Thrissur-680501, Kerala, India. [email protected],[email protected] Abstract The family of Chithra graphs is a wide ranging family of graphs which includes any graph of size at least one. Chithra graphs serve as a graph theoretical model for genetic engineering techniques or for modelling natural mutation within various biological networks found in living systems. In this paper, we discuss recently introduced J-colouring of the family of Chithra graphs. Keywords: Chithra graph, chromatic colouring of graphs, J-colouring of graphs, rainbow neighbourhood in a graph. AMS Classification Numbers: 05C15, 05C38, 05C75, 05C85. 1 Introduction For general notations and concepts in graphs and digraphs see [1, 2, 6]. Unless mentioned otherwise, all graphs G mentioned in this paper are simple and finite graphs. Note that the order and size of a graph G are denoted by ν(G) = n and "(G) = p. The minimum and maximum degrees of G are respectively denoted bby δ(G) and ∆(G). The degree of a vertex v 2 V (G) is denoted dG(v) or simply by d(v), when the context is clear. We recall that if C = fc1; c2; c3; : : : ; c`g and ` sufficiently large, is a set of distinct colours, a proper vertex colouring of a graph G denoted ' : V (G) 7! C is a vertex arXiv:1808.08661v1 [math.GM] 27 Aug 2018 colouring such that no two distinct adjacent vertices have the same colour. -
Complexity of the Cluster Deletion Problem on Subclasses of Chordal Graphs∗
Complexity of the cluster deletion problem on subclasses of chordal graphs∗ Flavia Bonomoy Guillermo Duranz Mario Valencia-Pabonx Abstract We consider the following vertex-partition problem on graphs, known as the CLUSTER DELETION (CD) problem: given a graph with real nonnegative edge weights, partition the vertices into clusters (in this case, cliques) to minimize the total weight of edges outside the clusters. The decision version of this optimization problem is known to be NP-complete even for unweighted graphs and has been studied extensively. We investigate the complexity of the decision CD problem for the family of chordal graphs, showing that it is NP-complete for weighted split graphs, weighted interval graphs and unweighted chordal graphs. We also prove that the problem is NP-complete for weighted cographs. Some polynomial-time solvable cases of the optimization problem are also identified, in particular CD for unweighted split graphs, unweighted proper interval graphs and weighted block graphs. Keywords:Block graphs, Cliques, Edge-deletion, Cluster deletion, Interval graphs, Split graphs, Submodular functions, Chordal graphs, Cographs, NP-completeness. 1 Introduction Clustering is an important task in the data analysis process. It can be viewed as a data modeling technique that provides an attractive mechanism for automatically finding the hidden structure of large data sets. The input to the problem is typically a set of elements and pairwise similarity values between elements. The goal is to partition these elements into subsets called clusters such that two meta-criteria are satisfied: homogeneity{elements in a given cluster are highly similar to each other; and separation{elements from different clusters have low similarity to each other. -
Differential Coloring of Graphs 163
CORE Metadata, citation and similar papers at core.ac.uk SUT Journal of Mathematics Vol. 47, No. 2 (2011), 161{174 Di®erential Coloring of Graphs P. Roushini Leely Pushpam, I. Sahul Hamid and D. Yokesh (Received March 11, 2011; Revised September 18, 2011) Abstract. Let G = (V; E) be a connected graph. For a set S ⊆ V , the di®erential of S, denoted by @(S), is de¯ned to be @(S) = jB(S)j ¡ jSj, where B(S) = N(S) \ (V ¡ S). A set S ⊆ V is said to be a positive di®erential set if @(S) ¸ 0. A partition fV1;V2;:::;Vkg of V is said to be a positive di®erential chromatic partition of G if each Vi is both independent and positive di®erential. The minimum order of a positive di®erential chromatic partition of G is called the di®erential chromatic number of G and is denoted by Â@ (G). In this paper we initiate a study of this parameter. AMS 2010 Mathematics Subject Classi¯cation. 05C. Key words and phrases. Di®erential coloring, di®erential chromatic number. x1. Introduction By a graph G = (V; E), we mean a ¯nite, undirected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to Chartrand and Lesniak [1]. All graphs in this paper are assumed to be connected with at least two vertices. For a vertex v 2 V , the open neighborhood of v is the set N(v) = fu 2 V juv 2 Eg and the closed neighborhood is the set N[v] = N(v) [ fvg. -
Graph-Based Data Clustering with Overlaps
Proc. 15th COCOON, 2009 Graph-Based Data Clustering with Overlaps Michael R. Fellows1⋆, Jiong Guo2, Christian Komusiewicz2⋆⋆, Rolf Niedermeier2, and Johannes Uhlmann2⋆ ⋆ ⋆ 1 PC Research Unit, Office of DVC (Research), University of Newcastle, Callaghan, NSW 2308, Australia. [email protected] 2 Institut f¨ur Informatik, Friedrich-Schiller-Universit¨at Jena Ernst-Abbe-Platz 2, D-07743 Jena, Germany {jiong.guo,c.komus,rolf.niedermeier,johannes.uhlmann}@uni-jena.de Abstract. We introduce overlap cluster graph modification problems where, other than in most previous work, the clusters of the target graph may overlap. More precisely, the studied graph problems ask for a mini- mum number of edge modifications such that the resulting graph consists of clusters (maximal cliques) that may overlap up to a certain amount specified by the overlap number s. In the case of s-vertex overlap, each vertex may be part of at most s maximal cliques; s-edge overlap is anal- ogously defined in terms of edges. We provide a complete complexity dichotomy (polynomial-time solvable vs NP-complete) for the underly- ing edge modification problems, develop forbidden subgraph characteri- zations of “cluster graphs with overlaps”, and study the parameterized complexity in terms of the number of allowed edge modifications, achiev- ing fixed-parameter tractability results (in case of constant s-values) and parameterized hardness (in case of unbounded s-values). 1 Introduction Graph-based data clustering is an important tool in exploratory data analy- sis [21,25]. The applications range from bioinformatics [2,22] to image process- ing [24]. The formulation as a graph-theoretic problem relies on the notion of a similarity graph, where vertices represent data items and an edge between two vertices expresses high similarity between the corresponding data items. -
Subgraph Complementation Fedor V
Subgraph Complementation Fedor V. Fomin, Petr A. Golovach, Torstein Strømme, Dimitrios M. Thilikos To cite this version: Fedor V. Fomin, Petr A. Golovach, Torstein Strømme, Dimitrios M. Thilikos. Subgraph Comple- mentation. Algorithmica, Springer Verlag, 2020, 82 (7), pp.1859-1880. 10.1007/s00453-020-00677-8. hal-03002656 HAL Id: hal-03002656 https://hal.archives-ouvertes.fr/hal-03002656 Submitted on 20 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Algorithmica https://doi.org/10.1007/s00453-020-00677-8 Subgraph Complementation Fedor V. Fomin1 · Petr A. Golovach1 · Torstein J. F. Strømme1 Dimitrios M. Thilikos2 Received: 30 January 2019 / Accepted: 8 January 2020 © The Author(s) 2020 Abstract A subgraph complement of the graph G is a graph obtained from G by complement- ing all the edges in one of its induced subgraphs. We study the following algorithmic question: for a given graph G and graph class G , is there a subgraph complement of G which is in G ? We show that this problem can be solved in polynomial time for various choices of the graphs class G , such as bipartite, d-degenerate, or cographs. -
1. Introduction
Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications Universiti Sains Malaysia λ-BACKBONE COLORING NUMBERS OF SPLIT GRAPHS WITH TREE BACKBONES A.N.M. Salman Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia [email protected] Abstract. In the application area of frequency assignment graphs are used to model the topology and mutual in- terference between transmitters. The problem in practice is to assign a limited number of frequency channels in an economical way to the transmitter in such a way that interference is kept at an acceptable level. This has led to various different types of coloring problem in graphs. One of them is a λ-backbone coloring. Given an integer λ ≥ 2, a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G,H) is a proper vertex coloring V → {1, 2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The λ-backbone coloring number BBCλ(G,H) of (G,H) is the smallest integer ℓ for which there exists a λ-backbone coloring f : V → {1, 2, . , ℓ}. In this paper we consider the λ-backbone coloring of split graphs. A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of mutually non adjacent vertices), with possibly edges in between.