High Temperature Corrosion of Calcium Hexaaluminate with Biomass Slag

Total Page:16

File Type:pdf, Size:1020Kb

High Temperature Corrosion of Calcium Hexaaluminate with Biomass Slag High temperature corrosion of calcium hexaaluminate with biomass slag Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch -Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Dipl.-Ing. Lise Rebecca Loison aus Schiltigheim Berichter: Univ.-Prof. Dr.rer. nat. Rainer Telle Univ.-Prof. Dr.-Ing Jacques Poirier Tag der mündlichen Prüfung: 07.12.2018 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Chapter 1: Introduction .............................................................................................................. 1 1. 1. Research question ........................................................................................................... 1 1. 2. Objectives ....................................................................................................................... 3 1. 3. Acknowledgements ........................................................................................................ 4 Chapter 2: Bibliography ............................................................................................................. 5 2. 1. Industrial context ............................................................................................................ 5 2. 1. 1. Biomass as alternative combustible for the energy production .............................. 5 2. 1. 2. Ash related issues at high temperature ................................................................... 6 2. 1. 3. Refractory lining in biomass incinerators .............................................................. 7 2. 2. Degradation mechanisms of refractory lining in contact with biomass slag .................. 8 2. 2. 1. Molten slag infiltration ........................................................................................... 8 2. 2. 2. Refractory dissolution ............................................................................................ 9 2. 2. 3. Structural spalling ................................................................................................ 10 2. 3. Calcium hexaaluminate as refractory component ........................................................ 11 2. 3. 1. Properties of calcium hexaaluminate ................................................................... 11 2. 3. 2. Refractory applications ........................................................................................ 12 2. 3. 3. Stability with alkaline ........................................................................................... 13 Chapter 3: Materials ................................................................................................................. 14 3. 1. Presentation of the system ............................................................................................ 14 3. 1. 1. Refractory castables ............................................................................................. 14 3. 1. 2. Al2O3-SiO2-CaO-K2O phase diagrams ................................................................. 16 3. 1. 3. Slag structure ........................................................................................................ 21 3. 2. Refractory samples ....................................................................................................... 23 3. 2. 1. Powder .................................................................................................................. 24 3. 2. 2. Matrix ................................................................................................................... 25 3. 2. 3. Castables ............................................................................................................... 30 3. 3. Slag samples ................................................................................................................. 32 3. 3. 1. Wood ash .............................................................................................................. 33 3. 3. 2. CaO-SiO2-K2O ternary slag ................................................................................. 34 3. 3. 3. CaO-SiO2 binary slag ........................................................................................... 35 3. 4. Conclusion .................................................................................................................... 37 Chapter 4: Identification of reactive mechanisms .................................................................... 39 4. 1. Theory .......................................................................................................................... 39 4. 1. 1. Gibbs’energy ........................................................................................................ 39 4. 1. 2. Local thermodynamic equilibrium ....................................................................... 40 4. 1. 3. Dissolution in the system Al2O3-SiO2-CaO ......................................................... 40 4. 2. Method ......................................................................................................................... 41 4. 2. 1. Generation of reactive interface ........................................................................... 41 4. 2. 2. Characterization techniques ................................................................................. 42 4. 2. 3. Thermodynamic calculations ............................................................................... 42 4. 3. Results .......................................................................................................................... 43 4. 3. 1. Solubility limit and thermodynamic equilibriums ............................................... 43 4. 3. 2. Phase identifications ............................................................................................. 47 4. 3. 3. Post-mortem microstructures ............................................................................... 49 4. 4. Conclusion .................................................................................................................... 58 Chapter 5: Determination of kinetics ....................................................................................... 61 5. 1. Theory .......................................................................................................................... 61 5. 1. 1. Regime of kinetics ................................................................................................ 61 5. 1. 2. Transport of species ............................................................................................. 62 5. 1. 3. Influence of viscous boundary layer .................................................................... 63 5. 2. Method ......................................................................................................................... 63 5. 2. 1. Reaction couple specimens .................................................................................. 63 5. 2. 2. Quantitative X-Ray Diffraction ............................................................................ 64 5. 2. 3. Corrective factors ................................................................................................. 67 5. 3. Results and discussion .................................................................................................. 68 5. 3. 1. Liquid phase formation ........................................................................................ 68 5. 3. 2. Matrix reaction ..................................................................................................... 72 5. 3. 3. Phases identification in the microstructure .......................................................... 75 5. 4. Conclusion .................................................................................................................... 78 Chapter 6: Microstructural considerations ............................................................................... 80 6. 1. Theory .......................................................................................................................... 80 6. 1. 1. Microstructural properties influencing the corrosion resistance .......................... 80 6. 1. 2. Microstructure development of calcium hexaaluminate ...................................... 81 6. 1. 3. Expansive reactions .............................................................................................. 81 6. 2. Method ......................................................................................................................... 82 6. 2. 1. Characterisation of the porous network................................................................ 82 6. 2. 2. Corrosion tests ...................................................................................................... 83 6. 2. 3. XRD measurements .............................................................................................. 83 6. 3. Results and discussion .................................................................................................. 83 6. 3. 1. Resistance to structural spalling ........................................................................... 83 6. 3. 2. Influence of the porosity ...................................................................................... 86 6. 3. 3. Morphology of calcium hexaaluminate ...............................................................
Recommended publications
  • Composing a Paper for Microscopy and Microanalysis 2002
    Structures of Astromaterials Revealed by EBSD M. Zolensky, ARES, XI2, NASA Johnson Space Center, Houston, TX 77058, USA Introduction: Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. Asteroid 2008TC3 -Almahata Sitta: The Almahata Sitta meteorite (Alma) is the first example of a recovered asteroidal sample that fell to earth after detection while still in solar orbit (asteroid 2008TC3), and thus is critical to understanding the relationship between meteorites and their asteroidal parent bodies [1&2]. Alma is an anomalous polymict ureilite, and the structures of the low-calcium pyroxenes have been particularly instructive. The pyroxene crystal structure gives important information on thermal history when coupled with chemical composition. Thus we employed EBSD to study the crystallography of Alma pyroxenes. Although the Ca contents of these low-Ca pyroxenes are as low as Wo2, the obtained Kikuchi bands show that all Alma low-Ca pyroxenes have the pigeonite (P21/c) crystal. This is consistent with the observation that (100) twinning is common in these low-Ca pyroxenes. Alma pigeonites in the same pyroxene areas show generally similar orientation as suggested by optical microscopy. The Kikuchi bands from augite in Alma can be indexed by the C2/c augite structure, but it is usually difficult to distinguish between the P21/c and C2/c pyroxene structures on EBSD patterns.
    [Show full text]
  • Addibischoffite, Ca2al6al6o20, a New Calcium Aluminate Mineral from The
    1 Revision 3 2 Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from 3 the Acfer 214 CH carbonaceous chondrite: A new refractory phase from 4 the solar nebula 5 Chi Ma1,*, Alexander N. Krot2, Kazuhide Nagashima2 6 1Division of Geological and Planetary Sciences, California Institute of Technology, 7 Pasadena, California 91125, USA 8 2Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, 9 Honolulu, Hawai‘i 96822, USA 10 11 ABSTRACT 12 Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral 13 that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, 14 anorthite and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 15 214 CH3 carbonaceous chondrite. The mean chemical composition of type 16 addibischoffite by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, 17 SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to 18 an empirical formula of 3+ 3+ 2+ 19 (Ca2.00)(Al2.55Mg1.73V 1.08Ti 0.50Ca0.09Fe 0.05)Σ6.01(Al4.14Si1.86)O20. The general 20 formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. 21 Addibischoffite has the P1 aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c 22 = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by 23 electron back-scatter diffraction. The calculated density using the measured 24 composition is 3.41 g/cm3.
    [Show full text]
  • Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1U
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2559.pdf Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1University of Texas El Paso/Jacobs Technology/NASA-JSC-ARES (2224 Bay Area Blvd. Houston TX 77058, USA ([email protected]), 2NASA-Johnson Space Center-ARES ([email protected]). Introduction: We have characterized 142 refract- finer grained particles with substantial porosity. Ongo- ory objects by EDS hyperspectral X-ray mapping in the ing reaction with nebular gases produces down-temper- CO3.1 chondrite MIL 090019-13. These include 127 ature phases partially replacing earlier formed phases Ca-Al rich inclusions (CAIs), 14 amoeboidal olivine ag- and infilling porosity, leading to densified objects. gregates (AOAs) and one Al-rich chondrule. These data Most CAIs are not fully equilibrated, but exhibit miner- are being used to reveal the mineralogy, texture and alogy reflecting a considerable range of temperature, bulk composition of these inclusions, and to identify ob- with relict phases. Hibonite is typically intergrown with, jects that represent endmembers within cogenetic popu- and partially replaced by spinel, violating the predicted lations of primitive inclusions, which will be further in- crystallization order from thermodynamic calcula- vestigated by future isotopic studies. Previous work re- tions[3], in which melilite should precede spinel crystal- lated to these refractory inclusions in this chondrite also lization. appear in [1] and [2]. Twenty six inclusions are hibonite-bearing, 18 are grossite-bearing and one inclusion is corundum-rich. In seven of these inclusions, grossite and hibonite coexist.
    [Show full text]
  • In Iron Silicide
    CALCIUM-ALUMINUM-RICH INCLUSIONS (CAIs) IN IRON SILICIDE (XIFENGITE, GUPEIITE, HAPKEITE) 76th Annual Meteoritical Society Meeting (2013) MATTER: EVIDENCE OF A COSMIC ORIGIN 5055.pdf Abstract The CAIs Mm- to cm-sized metallic particles in the subsoil of -- The iron silicides from the Chiemgau impact strewn field contain CAIs with M.A. Rappenglück the Alpine Foreland are composed of iron silicides minerals CaAl2O4, calcium monoaluminate, and Ca2Al2O5, dicalcium dialuminate. Institute for Interdisciplinary Studies, Fe3Si, mineral gupeiite, Fe5Si3, mineral xifengite, -- The monoclinic high-temperature (>1,500°C), low-pressure dimorph of CaAl2O4, Gilching, Germany, [email protected] Fe2Si, mineral hapkeite, FeSi, fersilicite, and FeSi2, mineral krotite, was first identified in a CAI from the CH chondrite NWA 470 [17] ferdisilicite, the minerals gupeiite, xifengite and and later reported [18, 19] to exist in a CAI in the carbonaceous chondrite meteorite F. Bauer 10 µm 2 µm NWA 1934. fersilicite being the main components. More peculiar Oxford Instruments GmbH Nano- Science, mineral components add to the matrix also hosting -- The orthorhombic Ca2Al2O5 dicalcium dialuminate high pressure phase with the Fig. 6. Zircon crystals obviously having impacted larger crystals of extremely pure titanium carbide, Fig. 5. Zircon crystals in iron silicide matrix. brownmillerite-type structure was established in 2000 [20] and has so far no natural Wiesbaden Germany, The white tips on the crystals have been shown a plastic or liquid iron silicide matrix that seems [email protected] mineral khamrabaevite, and silicon carbide, mineral to be uranium. to have been frozen during the disturbance. counterpart. Experimental data were 1,250°C and 2.5 GPa, and stability was reached moissanite.
    [Show full text]
  • A New Mineral of the Pyroxene Group from the ALH 85085 CH Chondrite, and Its Genetic Significance in Refractory Inclusions
    American Mineralogist, Volume 94, pages 1479–1482, 2009 Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions MAKOTO KI M URA ,1,* TAKASHI MIKOUCHI ,2 AKIO SUZUKI ,3 MASAAKI MIYAHARA ,3 EIJI OHTANI ,3 4 AND AH me D EL GOR E SY 1Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512, Japan 2Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan 3Institute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan 4Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ABSTRACT The new mineral kushiroite, belonging to the pyroxene group, was first discovered in a refrac- tory inclusion in the CH group carbonaceous chondrite ALH 85085. The chemical formula is Ca1.008(Mg0.094Fe0.034Al0.878)(Al0.921Si1.079)O6, containing 88% CaAlAlSiO6 and 12% diopside com- ponents. We identified the exact nature of kushiroite by micro-Raman spectroscopy and electron backscatter diffraction (EBSD) analyses. The results are consistent with those obtained from the synthetic CaAlAlSiO6 pyroxene, thus indicating a monoclinic structure (space group C2/c). Although CaAlAlSiO6 has been one of the most important hypothetical components of the pyroxene group, it is here for the first time established to be a naturally occurring mineral. We named this pyroxene with >50% CaAlAlSiO6 component kushiroite, which was recently approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2008- 059). The name is for Ikuo Kushiro, Professor Emeritus at the University of Tokyo, Japan, and eminent experimental petrologist, for his outstanding experimental investigations on silicate systems involving the Ca-Tschermak component.
    [Show full text]
  • Compiled Thesis
    SPACE ROCKS: a series of papers on METEORITES AND ASTEROIDS by Nina Louise Hooper A thesis submitted to the Department of Astronomy in partial fulfillment of the requirement for the Bachelor’s Degree with Honors Harvard College 8 April 2016 Of all investments into the future, the conquest of space demands the greatest efforts and the longest-term commitment, but it also offers the greatest reward: none less than a universe. — Daniel Christlein !ii Acknowledgements I finished this senior thesis aided by the profound effort and commitment of my thesis advisor, Martin Elvis. I am extremely grateful for him countless hours of discussions and detailed feedback on all stages of this research. I am also grateful for the remarkable people at Harvard-Smithsonian Center for Astrophysics of whom I asked many questions and who took the time to help me. Special thanks go to Warren Brown for his guidance with spectral reduction processes in IRAF, Francesca DeMeo for her assistance in the spectral classification of our Near Earth Asteroids and Samurdha Jayasinghe and for helping me write my data analysis script in python. I thank Dan Holmqvist for being an incredibly helpful and supportive presence throughout this project. I thank David Charbonneau, Alicia Soderberg and the members of my senior thesis class of astrophysics concentrators for their support, guidance and feedback throughout the past year. This research was funded in part by the Harvard Undergraduate Science Research Program. !iii Abstract The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation.
    [Show full text]
  • Template for Two-Page Abstracts in Word 97 (PC)
    STACKING DEFECTS IN SYNTHETIC AND METEORITIC HIBONITES: IMPLICATIONS FOR HIGH- TEMPERATURE PROCESSES IN THE SOLAR NEBULA. J. Han1,2, L. P. Keller2, A. J. Brearley3, and L. R. Danielson4. 1Lunar and Planetary Institute, Houston, TX 77058, USA ([email protected]), 2ARES, NASA/JSC, Houston, TX 77058, USA, 3Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA, 4Jacobs JETS, NASA/JSC, Houston, TX 77058, USA. Introduction: Hibonite (CaAl12O19) is a primary, with uniform d-spacings, indicative of the presence of highly refractory phase occurring in many Ca-Al-rich ordered, stoichiometric hibonite. Most hibonite crystals inclusions (CAIs) from different chondrite groups, ex- are free of defects, but a few grains contain a very low cept CI chondrites [1]. Hibonite is predicted to be one density of stacking defects parallel to the c axis. Lattice of the earliest minerals to condense during cooling of fringe images of hibonite grains show isolated, single the solar nebula at higher temperatures than any other layers of 2.6 nm (001) spacing within ordered hibonite major CAI mineral [2]. Therefore, hibonite has great of 2.2 nm (001) spacing. Quantitative EDX analyses potential to reveal the processes and conditions of the show that hibonite grains have a uniform composition very early, high-temperature stages of the solar nebular of pure CaAl12O19, but defect-rich areas in hibonite evolution. show Ca deficiencies up to ~8 mol%. Previous microstructural studies of hibonite in CAIs and their Wark-Lovering (WL) rims showed the presence of numerous stacking defects in hibonite. These defects are interpreted as the modification of the stacking sequences of spinel and Ca-containing blocks within the ideal hexagonal hibonite structure [3,4], as shown by experimental studies of reaction-sintered ceramic CaO-Al2O3 compounds [5].
    [Show full text]
  • The Behaviour of Siderite Rocks in an Experimental Imitation of Pyrometamorphic Processes in Coal-Waste Fires: Upper and Lower Silesian Case, Poland
    minerals Article The Behaviour of Siderite Rocks in an Experimental Imitation of Pyrometamorphic Processes in Coal-Waste Fires: Upper and Lower Silesian Case, Poland Łukasz Kruszewski 1 and Justyna Ciesielczuk 2,* 1 Institute of Geological Sciences, Polish Academy of Sciences (ING PAN), Twarda 51/55, 00-818 Warszawa, Poland; [email protected] 2 Faculty of Natural Sciences, University of Silesia, B˛edzi´nska60, 41-205 Sosnowiec, Poland * Correspondence: [email protected] Received: 18 May 2020; Accepted: 26 June 2020; Published: 29 June 2020 Abstract: Little is known of the influence of fluxes on the nature and the intensity of burning in coal-waste heaps. To gain some insight, two siderite samples, one each from coal-mining waste heaps in Upper- and Lower Silesian Coal Basins (Poland), were heated under identical conditions in a thermal chamber coupled to a powder X-ray diffractometer. Differences in the behaviour of siderite phase and the products of its decomposition, mainly magnetite, wüstite, and olivine, are discussed. The waste heaps sampled underwent self-heating and self-ignition catalysed by fluxes. Though the samples are unlikely to be truly representative of the Silesian basins, the heterogeneous behaviour they displayed on heating merits description and explanation, as siderite is an important widely known flux in pyrometamorphic processes. Keywords: thermal chamber experiment; Powder X-ray Diffraction; pyrometamorphism; siderite; wüstite; magnetite; graphite 1. Introduction In coal basins in Poland, siderite occurs mainly as concretions of different sizes and shapes within mudstones, coaly shales, sandstones, and conglomerates hosting coal seams. As is common worldwide, these seams can undergo spontaneous combustion influenced by numerous external and internal factors [1–6].
    [Show full text]
  • Chance and Necessity in the Mineral Diversity of Terrestrial Planets
    295 The Canadian Mineralogist Vol. 53, pp. 295-324 (2015) DOI: 10.3749/canmin.1400086 MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS § ROBERT M. HAZEN Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, U.S.A. EDWARD S. GREW School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ROBERT T. DOWNS AND JOSHUA GOLDEN Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, U.S.A. GRETHE HYSTAD Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721-0089, U.S.A. ABSTRACT Four factors contribute to the roles played by chance and necessity in determining mineral distribution and diversity at or near the surfaces of terrestrial planets: (1) crystal chemical characteristics; (2) mineral stability ranges; (3) the probability of occurrence for rare minerals; and (4) stellar and planetary stoichiometries in extrasolar systems. The most abundant elements generally have the largest numbers of mineral species, as modeled by relationships for Earth’s upper continental crust (E) and the Moon (M), respectively: 2 LogðNEÞ¼0:22 LogðCEÞþ1:70 ðR ¼ 0:34Þð4861 minerals; 72 elementsÞ 2 LogðNMÞ¼0:19 LogðCMÞþ0:23 ðR ¼ 0:68Þð63 minerals; 24 elementsÞ; where C is an element’s abundance in ppm and N is the number of mineral species in which that element is essential. Several elements that plot significantly below the trend for Earth’s upper continental crust (e.g., Ga, Hf, and Rb) mimic other more abundant elements and thus are less likely to form their own species.
    [Show full text]
  • An Evolutionary System of Mineralogy, Part II: Interstellar and Solar Nebula Primary Condensation Mineralogy (> 4.565
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7447 1 REVISION #2—07 May 2020—American Mineralogist 2 3 An evolutionary system of mineralogy, part II: Interstellar and solar 4 nebula primary condensation mineralogy (> 4.565 Ga) 5 1 1,* 6 SHAUNNA M. MORRISON AND ROBERT M. HAZEN 7 1Earth and Planets Laboratory, Carnegie Institution for Science, 8 5251 Broad Branch Road NW, Washington DC 20015, U. S. A. 9 10 11 ABSTRACT 12 The evolutionary system of mineralogy relies on varied physical and chemical attributes, 13 including trace elements, isotopes, solid and fluid inclusions, and other information-rich 14 characteristics, to understand processes of mineral formation and to place natural condensed 15 phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest 16 refractory phases that condense at T > 1000 K within the turbulent expanding and cooling 17 atmospheres of highly evolved stars. Part II considers the subsequent formation of primary 18 crystalline and amorphous phases by condensation in three distinct mineral-forming environments, 19 each of which increased mineralogical diversity and distribution prior to the accretion of 20 planetesimals > 4.5 billion years ago: 21 1) Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing 22 primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the 23 interstellar medium (10 < T < 20 K; P < 10-13 atm). With the possible exception of some 24 nano-scale organic condensates preserved in carbonaceous meteorites, the existence of Always consult and cite the final, published document.
    [Show full text]
  • MOLLUSK SHELL) and Al2o3 POWDERS
    Ceramics-Silikáty 62 (4), 355-363 (2018) www.ceramics-silikaty.cz doi: 10.13168/cs.2018.0031 REFRACTORY CERAMICS SYNTHESIS BY SOLID-STATE REACTION BETWEEN CaCO3 (MOLLUSK SHELL) AND Al2O3 POWDERS #JOSÉ G. MIRANDA-HERNÁNDEZ*, MAYAHUEL ORTEGA-AVILÉS**, HÉCTOR HERRERA-HERNÁNDEZ*, CARLOS O. GONZÁLEZ-MORÁN*, GEORGINA GARCÍA-PACHECO***, ENRIQUE ROCHA-RANGEL**** *Universidad Autónoma del Estado de México, Centro Universitario UAEM Valle de México, Laboratorio de Investigación y Desarrollo de Materiales Industriales, Atizapán de Zaragoza, Estado de México, México **Instituto Politécnico Nacional, CNMN, Ciudad de México, México ***Instituto Politécnico Nacional, ESIME TICOMAN, Ciudad de México, México ****Universidad Politécnica de Victoria, Departamento de postgrado, Ciudad Victoria, Tamaulipas, México #E-mail: [email protected] Submitted June 19, 2018; accepted September 11, 2018 Keywords: Refractories, Calcite, Alumina, Snail shells (mollusk shells), Refractory calcium aluminate ceramics, Sintering process, Mechanical properties, Thermal shock resistance Calcium aluminate-based refractory ceramic was developed as an innovative refractory material, using garden snail (Helix aspersa) shells as a natural source of CaCO3. A 1:1 molar ratio mixture of CaCO3 from snail shells and commercial Al2O3 powder was prepared by means of high-energy mechanical milling. The mixed powder was compacted in cylindrical samples (disks) and consolidated by sintering at 1450°C and 1500°C for 1h. The density and porosity were evaluated using the Archimedes principle, while the mechanical properties (hardness, fracture toughness, and shear modulus) were determined by indentation and ultrasonic methods, respectively. The thermal shock resistance was tested by heating samples to temperatures between 900 and 1400°C and subsequent quenching in water at room temperature. X-ray diffraction patterns of sintered samples indicate the formation of different calcium aluminate phases, such as CaAl12O19 (krotite/monoclinic), CaAl4O7 (grossite/monoclinic) and CaAl2O4 (hibonite-5H/hexagonal).
    [Show full text]
  • 2011-09 R&C Newsletter
    Research & Collections Newsletter September 2011 re•search (rī-sûrch′, rē′sûrch) n. 1. Scholarly or scientific investigation or inquiry. See synonyms at inquiry. 2. Close, careful study. 3. When performed on collections, the raison d’être of all great natural history museums. Collection News Dinosaur Institute After more than five years in development, the New Di- nosaur Hall opened its doors to the public on July 16th. The 14,000 square foot Hall features nearly 300 speci- mens, including 20 full skeleton mounts, and includes specimens from the Dinosaur Institute, Vertebrate Pa- leontology, Invertebrate Paleontology, Mineralogy, and Ornithology collections. The project was headed by Luis Chiappe and project manager Jennifer Morgan. The staff of the DI worked on prepping specimens for the exhibit beginning in 2008 with “Thomas” the T. rex. Many of the specimens in the Hall have never before been on display, including the growth series of three T. rex specimens, the full mount of Triceratops, and the excep- tional marine specimens of Platecarpus and Polycotylus. All of the specimens that had been mounted in the old hall, such as the skeletons of Mamenchisaurus, Morenosaurus, Plotosaurus, Camptosaurus, Stegosaurus, Allosaurus, and others, have been restored and re-mounted by Phil Fraley Productions in New Jersey and Pittsburgh and Research Casting International in Ontario. The architectural design of the exhibit was developed by Evidence Design out of New York, and the graphic design was created by KBDA out of Santa Monica. The DI’s Stephanie Abramowicz created much of the artwork seen on the 1 graphic panels on the platforms, and various reconstructions including the post cranial skeleton of the 2-year-old T.
    [Show full text]