Advances in Robust and Adaptive Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Robust and Adaptive Optimization Advances in Robust and Adaptive Optimization: Algorithms, Software, and Insights by Iain Robert Dunning B.E.(Hons), University of Auckland (2011) Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2016 ○c Massachusetts Institute of Technology 2016. All rights reserved. Author................................................................ Sloan School of Management May 13, 2016 Certified by. Dimitris Bertsimas Boeing Professor of Operations Research Thesis Supervisor Accepted by . Patrick Jaillet Dugald C. Jackson Professor, Department of Electrical Engineering and Computer Science Co-director, Operations Research Center 2 Advances in Robust and Adaptive Optimization: Algorithms, Software, and Insights by Iain Robert Dunning Submitted to the Sloan School of Management on May 13, 2016, in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH Abstract Optimization in the presence of uncertainty is at the heart of operations research. There are many approaches to modeling the nature of this uncertainty, but this thesis focuses on developing new algorithms, software, and insights for an approach that has risen in popularity over the last 15 years: robust optimization (RO), and its extension to decision making across time, adaptive optimization (AO). In the first chapter, we perform a computational study of two approaches for solving RO problems: “reformulation” and “cutting planes”. Our results provide useful evidence for what types of problems each method excels in. In the second chapter, we present and analyze a new algorithm for multistage AO problems with both integer and continuous recourse decisions. The algorithm oper- ates by iteratively partitioning the problem’s uncertainty set, using the approximate solution at each iteration. We show that it quickly produces high-quality solutions. In the third chapter, we propose an AO approach to a general version of the process flexibility design problem, whereby we must decide which factories produce which products. We demonstrate significant savings for the price of flexibility versus simple but popular designs in the literature. In the fourth chapter, we describe computationally practical methods for solving problems with “relative” RO objective functions. We use combinations of absolute and relative worst-case objective functions to find “Pareto-efficient” solutions that combine aspects of both. We demonstrate through three in-depth case studies that these solutions are intuitive and perform well in simulation. In the fifth chapter, we describe JuMPeR, a software package for modeling RO and AO problems that builds on the JuMP modeling language. It supports many features including automatic reformulation, cutting plane generation, linear decision rules, and general data-driven uncertainty sets. Thesis Supervisor: Dimitris Bertsimas Title: Boeing Professor of Operations Research 3 4 Acknowledgments I would like to acknowledge and thank my supervisor Dimitris Bertsimas, who has been both a friend and mentor to me during my time at the ORC. I’ll always appre- ciate his patience during the early years of the degree, and his encouragement as I started to hit my stride. I am grateful to my doctoral committee members Juan Pablo Vielma and Vivek Farias, as well as Patrick Jaillet for serving on my general exami- nation committee and co-advising me during my first two years. I’m also grateful to Laura Rose and Andrew Carvalho for all their help over the years. I must especially thank Miles Lubin for being a constant friend throughout the last four years, and an outstanding collaborator. I’d also like to thank Joey Huchette for joining us on our Julia-powered optimization mission, and all the Julia contributors at both MIT and around the world. I’d like to thank everyone in my cohort for the conversations, the parties, the studying, and the support. I’d especially like to acknowledge John Silberholz, who has been an excellent friend and collaborator. I’d also like to acknowledge everyone who I worked with on the IAP software tools class, as well as all my co-TAs throughout the years. Special mention must go to Martin Copenhaver, Jerry Kung, and Yee Sian Ng, for all the conversations about life, the universe, and everything. Finally, I’d like to acknowledge my family for their support not only during my time at MIT, but over my whole life – I would not be where or what I am today without them. I’d like to thank my friends David and Alec who have been supporting me for almost 15 years now – looking forward to many more. Last, but not least, I’d like to acknowledge my wife Kelly, who changed my life and makes it all worthwhile. 5 6 Contents 1 Introduction 15 1.1 Overview of Robust Optimization . 17 1.2 Overview of Adaptive Optimization . 21 1.3 Overview of Thesis . 22 2 Reformulation versus Cutting-planes for Robust Optimization 27 2.1 Introduction . 27 2.2 Problem and Method Descriptions . 30 2.2.1 Cutting-plane method for RLO . 31 2.2.2 Cutting-plane method for RMIO . 32 2.2.3 Polyhedral uncertainty sets . 36 2.2.4 Ellipsoidal uncertainty sets . 38 2.3 Computational Benchmarking . 39 2.3.1 Results for RLO . 42 2.3.2 Results for RMIO . 43 2.3.3 Implementation Considerations . 47 2.4 Evaluation of Hybrid Method . 50 2.4.1 Results for RLO . 51 2.4.2 Results for RMIO . 52 2.4.3 Implementation Considerations . 53 2.5 Discussion . 56 7 3 Multistage Robust Mixed Integer Optimization with Adaptive Par- titions 59 3.1 Introduction . 59 3.2 Partition-and-bound Method for Two-Stage AMIO . 65 3.2.1 Partitioning Scheme . 66 3.2.2 Description of Method . 69 3.2.3 Calculating Lower Bounds . 73 3.2.4 Worked Example: Two-stage Inventory Control Problem . 74 3.2.5 Incorporating Affine Adaptability . 77 3.3 Analysis of the Partition-and-Bound Method . 78 3.3.1 Convergence Properties . 78 3.3.2 Growth in Partitioning Scheme . 80 3.4 Partition-and-Bound Method for Multistage AMIO . 83 3.4.1 Multistage Partitions and Nonanticipativity Constraints . 85 3.4.2 Multistage Method and Implementation . 88 3.5 Computational Experiments . 89 3.5.1 Capital Budgeting . 90 3.5.2 Multistage Lot Sizing . 92 3.6 Concluding Remarks . 97 4 The Price of Flexibility 99 4.1 Introduction . 99 4.2 Process Flexibility as Adaptive Robust Optimization . 103 4.2.1 Adaptive Robust Optimization Model . 104 4.2.2 Relative Profit ARO Model . 105 4.2.3 Solving the ARO Model . 108 4.2.4 Selecting the Uncertainty Set . 110 4.2.5 Extensibility of Formulation . 111 4.3 Pareto Efficiency in Manufacturing Operations . 113 4.3.1 Pareto Efficiency for Two-stage Problems . 114 8 4.3.2 Relaxed Pareto Efficiency . 118 4.4 Insights from Computations . 119 4.4.1 Tractability of Adaptive Formulation . 120 4.4.2 Impact of Parameter Selections . 122 4.4.3 Utility of Pareto Efficient Designs . 126 4.4.4 Quality of Designs . 128 4.4.5 Price of Flexibility . 130 4.5 Concluding Remarks . 132 5 Relative Robust and Adaptive Optimization 135 5.1 Introduction . 135 5.2 Offline Problem is a Concave Function of Uncertain Parameters . 141 5.2.1 Reformulation of Robust Regret Problem . 142 5.2.2 Reformulation of Competitive Ratio Problem . 144 5.2.3 Integer Variables in Offline Problem . 145 5.3 Offline Problem is a Convex Function of Uncertain Parameters . 147 5.3.1 Reformulating the Inner Problem as a MILO Problem . 148 5.4 Combining Objective Functions – Pareto-efficient Solutions . 151 5.4.1 Worked Example: Portfolio Optimization . 153 5.5 Computations and Insights . 155 5.5.1 Minimum-cost Flow . 156 5.5.2 Multistage Inventory Control . 162 5.5.3 Two-stage Facility and Stock Location . 166 5.6 Conclusions . 172 6 JuMPeR: Algebraic Modeling for Robust and Adaptive Optimiza- tion 177 6.1 Overview of JuMPeR . 180 6.1.1 Uncertain Parameters and Adaptive Variables . 182 6.1.2 Expressions and Constraints . 183 6.2 Uncertainty Sets . 184 9 6.3 Case Studies . 188 6.3.1 Portfolio Construction . 189 6.3.2 Multistage Inventory Control . 191 6.3.3 Specialized Uncertainty Set (Budget) . 194 6.4 Comparisons with Other Tools . 199 A Notes for “Multistage Robust MIO with Adaptive Partitions” 203 A.1 Comparison of partitioning schemes for a large gap example . 203 A.2 Admissability of rule for enforcing nonanticipativity . 205 A.3 Comparison of partitioning schemes for multistage lot sizing . 206 B Reformulation of Stock Location Problem from “Relative Robust” 211 10 List of Figures 2-1 Performance profiles for RLO instances . 48 2-2 Performance profiles for RMIO instances . 49 2-3 Hybrid method runtimes . 54 3-1 Partitioning of simple uncertainty sets using Voronoi diagrams . 69 3-2 Visualization of the partitions and active uncertain parameter tree across multiple iterations . 71 3-3 Partitioning for Example 2 without adjustments for multistage case . 85 3-4 Partitioning for Example 2 with adjustments for multistage case . 89 3-5 Capital budgeting: partitions with iteration, and improvement versus time . 91 3-6 Capital budgeting: improvement and bound gap versus time . 93 3-7 Multistage lot sizing problem: improvement and bound gap versus time 96 4-1 Examples of process flexibility designs . 101 4-2 Progress of a MIO solver for a flexibility instance . 122 4-3 Visualization of MIO gap versus time for flexibility problem . 123 4-4 Visualization of time to reach 90% MIO gap for flexibility problem . 123 4-5 Parameters (Γ,B) versus objective function value for “long chain” and ”dedicated” designs for flexibility problem . 125 4-6 Parameters (휌,B) versus objective function value for “long chain” and ”dedicated” designs for flexibility problem .
Recommended publications
  • Globally Optimal Model-Based Clustering Via Mixed Integer Nonlinear Programming
    Globally Optimal Model-based Clustering via Mixed Integer Nonlinear Programming Patrick Flaherty Pitchaya Wiratchotisatian Department of Mathematics & Statistics Data Science Program UMass Amherst Worcester Polytechnic Institute Amherst, MA 01002 Worcester, MA 01609 [email protected] [email protected] Andrew C. Trapp Foise Business School Worcester Polytechnic Institute Worcester, MA 01609 [email protected] Abstract We present an approach for solving for the optimal partition of a data set via global optimization of a maximum a-posteriori (MAP) estimation problem. Our approach formulates the MAP estimation problem for the Gaussian mixture model as a mixed-integer nonlinear optimization problem (MINLP). Our method provides a certificate of global optimality, can accommodate side constraints, and is extendable to other finite mixture models. We propose an approximation to the MINLP that transforms it into a mixed integer quadratic program (MIQP) which preserves global optimality within desired accuracy and improves computational aspects. Numerical experiments compare our method to standard estimation approaches and show that our method finds the globally optimal MAP for some standard data sets, providing a benchmark for comparing estimation methods. 1 Introduction In the application of clustering models to real data there is often rich prior information about the relationships among the samples or the relationships between the samples and the parameters. For example, in biological or clinical experiments, it may be known that two samples are technical replicates and should belong to the same cluster, or it may be known that the mean value for certain control samples is in a certain range. However, standard model-based clustering methods make it difficult to enforce such hard logical constraints.
    [Show full text]
  • Attenuation Imaging by Wavefield Reconstruction Inversion with Bound
    Attenuation imaging by wavefield reconstruction inversion with bound constraints and total variation regularization Hossein S. Aghamiry 12, Ali Gholami 1 and St´ephaneOperto 2 INTRODUCTION ABSTRACT Wavefield reconstruction inversion (WRI) extends the Full waveform inversion (FWI) is a high-resolution non- search space of Full Waveform Inversion (FWI) by al- linear imaging technology which can provide accurate sub- lowing for wave equation errors during wavefield re- surface model by matching observed and calculated wave- construction to match the data from the first iteration. forms (Tarantola, 1984; Pratt et al., 1998; Virieux and Then, the wavespeeds are updated from the wavefields Operto, 2009). However, it is well acknowledged that it by minimizing the source residuals. Performing these suffers from two main pathologies. The first one is the two tasks in alternating mode breaks down the non- nonlinearity associated with cycle skipping: When the linear FWI as a sequence of two linear subproblems, distance between the observed and calculated data is the relaying on the bilinearity of the wave equation. We least-squares norm of their differences, FWI remains stuck solve this biconvex optimization with the alternating- into spurious local minima when the initial velocity model direction method of multipliers (ADMM) to cancel out does not allow to match traveltimes with an error lower efficiently the data and source residuals in iterations than half a period. To mitigate cycle skipping, many vari- and stabilize the parameter estimation with appropri- ants of FWI have been proposed with more convex dis- ate regularizations. Here, we extend WRI to viscoa- tances such as those based on matching filters (Warner coustic media for attenuation imaging.
    [Show full text]
  • Arxiv:1608.04430V3 [Math.OC] 28 Dec 2018 R R 0 Counts the Number of Nonzero Elements in a Vector
    Sparsity Constrained Minimization via Mathematical Programming with Equilibrium Constraints Ganzhao Yuan [email protected] School of Data & Computer Science, Sun Yat-sen University (SYSU), P.R. China Bernard Ghanem [email protected] King Abdullah University of Science & Technology (KAUST), Saudi Arabia Editor: Abstract Sparsity constrained minimization captures a wide spectrum of applications in both machine learning and signal processing. This class of problems is difficult to solve since it is NP-hard and existing solutions are primarily based on Iterative Hard Thresholding (IHT). In this paper, we consider a class of continuous optimization techniques based on Mathematical Programs with Equilibrium Constraints (MPECs) to solve general sparsity constrained problems. Specifically, we reformulate the problem as an equivalent biconvex MPEC, which we can solve using an exact penalty method or an alternating direction method. We elaborate on the merits of both proposed methods and analyze their convergence properties. Finally, we demonstrate the effectiveness and versatility of our methods on several important problems, including feature selection, segmented regression, trend filtering, MRF optimization and impulse noise removal. Extensive experiments show that our MPEC-based methods outperform state-of-the-art techniques, especially those based on IHT. Keywords: Sparsity Constrained Optimization, Exact Penalty Method, Alternating Direction Method, MPEC, Convergence Analysis 1. Introduction In this paper, we mainly focus on the following generalized sparsity constrained minimization prob- lem: min f(x); s:t: kAxk0 ≤ k (1) x where x 2 n, A 2 m×n and k (0 < k < m) is a positive integer. k · k is a function that arXiv:1608.04430v3 [math.OC] 28 Dec 2018 R R 0 counts the number of nonzero elements in a vector.
    [Show full text]
  • Specifying “Logical” Conditions in AMPL Optimization Models
    Specifying “Logical” Conditions in AMPL Optimization Models Robert Fourer AMPL Optimization www.ampl.com — 773-336-AMPL INFORMS Annual Meeting Phoenix, Arizona — 14-17 October 2012 Session SA15, Software Demonstrations Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1 New and Forthcoming Developments in the AMPL Modeling Language and System Optimization modelers are often stymied by the complications of converting problem logic into algebraic constraints suitable for solvers. The AMPL modeling language thus allows various logical conditions to be described directly. Additionally a new interface to the ILOG CP solver handles logic in a natural way not requiring conventional transformations. Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2 AMPL News Free AMPL book chapters AMPL for Courses Extended function library Extended support for “logical” conditions AMPL driver for CPLEX Opt Studio “Concert” C++ interface Support for ILOG CP constraint programming solver Support for “logical” constraints in CPLEX INFORMS Impact Prize to . Originators of AIMMS, AMPL, GAMS, LINDO, MPL Awards presented Sunday 8:30-9:45, Conv Ctr West 101 Doors close 8:45! Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 3 AMPL Book Chapters now free for download www.ampl.com/BOOK/download.html Bound copies remain available purchase from usual
    [Show full text]
  • A Practical Guide to Robust Optimization
    A Practical Guide to Robust Optimization Bram L. Gorissen, Ihsan Yanıkoğlu, Dick den Hertog Tilburg University, Department of Econometrics and Operations Research, 5000 LE Tilburg, Netherlands {b.l.gorissen,d.denhertog}@tilburguniversity.edu, [email protected] Abstract Robust optimization is a young and active research field that has been mainly developed in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it leads to computationally tractable formulations. It is therefore remarkable that real-life applications of robust optimization are still lagging behind; there is much more potential for real-life applications than has been exploited hitherto. The aim of this paper is to help practitioners to understand robust optimization and to successfully apply it in practice. We provide a brief introduction to robust optimization, and also describe important do’s and don’ts for using it in practice. We use many small examples to illustrate our discussions. 1 Introduction Real-life optimization problems often contain uncertain data. Data can be inherently stochas- tic/random or it can be uncertain due to errors. The reasons for data errors could be measure- ment/estimation errors that come from the lack of knowledge of the parameters of the mathematical model (e.g., the uncertain demand in an inventory model) or could be implementation errors that come from the physical impossibility to exactly implement a computed solution in a real-life set- ting. There are two approaches to deal with data uncertainty in optimization, namely robust and stochastic optimization. Stochastic optimization (SO) has an important assumption, i.e., the true probability distribution of uncertain data has to be known or estimated.
    [Show full text]
  • Cosparse Regularization of Physics-Driven Inverse Problems Srdan Kitic
    Cosparse regularization of physics-driven inverse problems Srdan Kitic To cite this version: Srdan Kitic. Cosparse regularization of physics-driven inverse problems. Signal and Image Processing. Université Rennes 1, 2015. English. NNT : 2015REN1S152. tel-01237323v3 HAL Id: tel-01237323 https://hal.archives-ouvertes.fr/tel-01237323v3 Submitted on 19 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale MATISSE présentée par Srđan Kitić préparée à l’unité de recherche 6074 IRISA (Institut de Recherche en Informatique et Systèmes Aléatoires) Thèse soutenue à l’IRISA le 26 novembre 2015 devant le jury composé de : Cosparse regularization Laurent DAUDET Professeur, Université Paris 7, Laboratoire Ondes et of physics-driven Acoustiques / rapporteur Patrick FLANDRIN Directeur de recherche CNRS, ENS de Lyon, inverse problems Membre de l’Académie des Sciences / rapporteur Michael DAVIES Professeur, University of Edinburgh / examinateur Laurent DUVAL Ingénieur de Recherche, chef de projet, IFP Energies Nouvelles / examinateur Laurent ALBERA Maître de conférences, Université de Rennes 1, LTSI / membre invité Rémi GRIBONVAL Directeur de recherche INRIA / directeur de thèse Nancy BERTIN Chargé de recherche CNRS / co-directrice de thèse Dedicated to my family Acknowledgements I am deeply thankful to my supervisors for their guidance during the last three years.
    [Show full text]
  • AIMMS 4 Release Notes
    AIMMS 4 Release Notes Visit our web site www.aimms.com for regular updates Contents Contents 2 1 System Requirements 3 1.1 Hardware and operating system requirements ......... 3 1.2 ODBC and OLE DB database connectivity issues ........ 4 1.3 Viewing help files and documentation .............. 5 2 Installation Instructions 7 2.1 Installation instructions ....................... 7 2.2 Solver availability per platform ................... 8 2.3 Aimms licensing ............................ 9 2.3.1 Personal and machine nodelocks ............. 9 2.3.2 Installing an Aimms license ................ 12 2.3.3 Managing Aimms licenses ................. 14 2.3.4 Location of license files ................... 15 2.4 OpenSSL license ............................ 17 3 Project Conversion Instructions 20 3.1 Conversion of projects developed in Aimms 3.13 and before 20 3.2 Conversionof Aimms 3 projects to Aimms 4 ........... 22 3.2.1 Data management changes in Aimms 4.0 ........ 24 4 Getting Support 27 4.1 Reporting a problem ......................... 27 4.2 Known and reported issues ..................... 28 5 Release Notes 29 What’s new in Aimms 4 ........................ 29 Chapter 1 System Requirements This chapter discusses the system requirements necessary to run the various System components of your Win32 Aimms 4 system successfully. When a particular requirements requirement involves the installation of additional system software compo- nents, or an update thereof, the (optional) installation of such components will be part of the Aimms installation procedure. 1.1 Hardware and operating system requirements The following list provides the minimum hardware requirements to run your Hardware Aimms 4 system. requirements 1.6 Ghz or higher x86 or x64 processor XGA display adapter and monitor 1 Gb RAM 1 Gb free disk space Note, however, that performance depends on model size and type and can vary.
    [Show full text]
  • Distributionally Robust Optimization for Engineering Design Under Uncertainty
    Distributionally Robust Optimization for Engineering Design under Uncertainty Michael G. Kapteyn∗ Massachusetts Institute of Technology, Cambridge, MA 02139, USA Karen E. Willcoxy The University of Texas at Austin, Austin, TX 78712, USA Andy B. Philpottz The University of Auckland, Auckland 1010, New Zealand This paper addresses the challenge of design optimization under uncertainty when the de- signer only has limited data to characterize uncertain variables. We demonstrate that the error incurred when estimating a probability distribution from limited data affects the out- of-sample performance (i.e., performance under the true distribution) of optimized designs. We demonstrate how this can be mitigated by reformulating the engineering design prob- lem as a distributionally robust optimization (DRO) problem. We present computationally efficient algorithms for solving the resulting DRO problem. The performance of the DRO approach is explored in a practical setting by applying it to an acoustic horn design prob- lem. The DRO approach is compared against traditional approaches to optimization under uncertainty, namely, sample-average approximation and a multi-objective optimization in- corporating a risk reduction objective. In contrast with the multi-objective approach, the proposed DRO approach does not use an explicit risk reduction objective but rather speci- fies a so-called ambiguity set of possible distributions, and optimizes against the worst-case distribution in this set. Our results show that the DRO designs in some cases significantly outperform those designs found using the sample-average or multi-objective approaches. I. Introduction The importance of considering the nature of the uncertain parameters in engineering design has long been established,1{3 the primary reason being that simply considering all parameters to be deterministic tends to over-fit designs to the chosen parameter values.
    [Show full text]
  • Spatially Explicit Techno-Economic Optimisation Modelling of UK Heating Futures
    Spatially explicit techno-economic optimisation modelling of UK heating futures A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy UCL Energy Institute University College London Date: 3rd April 2013 Candidate: Francis Li Supervisors: Robert Lowe, Mark Barrett I, Francis Li, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Francis Li, 3rd April 2013 2 For Eugenia 3 Abstract This thesis describes the use of a spatially explicit model to investigate the economies of scale associated with district heating technologies and consequently, their future technical potential when compared against individual building heating. Existing energy system models used for informing UK technology policy do not employ high enough spatial resolutions to map district heating potential at the individual settlement level. At the same time, the major precedent studies on UK district heating potential have not explored future scenarios out to 2050 and have a number of relevant low-carbon heat supply technologies absent from their analyses. This has resulted in cognitive dissonance in UK energy policy whereby district heating is often simultaneously acknowledged as both highly desirable in the near term but ultimately lacking any long term future. The Settlement Energy Demand System Optimiser (SEDSO) builds on key techno-economic studies from the last decade to further investigate this policy challenge. SEDSO can be distinguished from other models used for investigating UK heat decarbonisation by employing a unique combination of extensive spatial detail, technical modelling which captures key cost-related nonlinearities, and a least-cost constrained optimisation approach to technology selection.
    [Show full text]
  • AIMMS 4 Linux Release Notes
    AIMMS 4 Portable component Linux Intel version Release Notes for Linux Visit our web site www.aimms.com for regular updates Contents Contents 2 1 System Overview of the Intel Linux Aimms Component 3 1.1 Hardware and operating system requirements ......... 3 1.2 Feature comparison with the Win32/Win64 version ...... 3 2 Installation and Usage 5 2.1 Installation instructions ....................... 5 2.2 Solver availability per platform ................... 6 2.3 Licensing ................................ 6 2.4 Usage of the portable component ................. 10 2.5 The Aimms command line tool ................... 10 3 Getting Support 13 3.1 Reporting a problem ......................... 13 3.2 Known and reported issues ..................... 14 4 Release Notes 15 What’s new in Aimms 4 ........................ 15 Chapter 1 System Overview of the Intel Linux Aimms Component This chapter discusses the system requirements necessary to run the portable System Intel Linux Aimms component. The chapter also contains a feature comparison overview with the regular Windows version of Aimms. 1.1 Hardware and operating system requirements The following list of hardware and software requirements applies to the por- Hardware table Intel x64 Linux Aimms 4 component release. requirements Linux x64 Intel x64 compatible system Centos 6, Red Hat 6, or Ubuntu 12.04 Linux operating system 1 Gb RAM 1 Gb free disk space Note, however, that performance depends on model size and type and can Performance vary. It can also be affected by the number of other applications that are running concurrently with Aimms. In cases of a (regular) performance drop of either Aimms or other applications you are advised to install sufficiently additional RAM.
    [Show full text]
  • Notes 1: Introduction to Optimization Models
    Notes 1: Introduction to Optimization Models IND E 599 September 29, 2010 IND E 599 Notes 1 Slide 1 Course Objectives I Survey of optimization models and formulations, with focus on modeling, not on algorithms I Include a variety of applications, such as, industrial, mechanical, civil and electrical engineering, financial optimization models, health care systems, environmental ecology, and forestry I Include many types of optimization models, such as, linear programming, integer programming, quadratic assignment problem, nonlinear convex problems and black-box models I Include many common formulations, such as, facility location, vehicle routing, job shop scheduling, flow shop scheduling, production scheduling (min make span, min max lateness), knapsack/multi-knapsack, traveling salesman, capacitated assignment problem, set covering/packing, network flow, shortest path, and max flow. IND E 599 Notes 1 Slide 2 Tentative Topics Each topic is an introduction to what could be a complete course: 1. basic linear models (LP) with sensitivity analysis 2. integer models (IP), such as the assignment problem, knapsack problem and the traveling salesman problem 3. mixed integer formulations 4. quadratic assignment problems 5. include uncertainty with chance-constraints, stochastic programming scenario-based formulations, and robust optimization 6. multi-objective formulations 7. nonlinear formulations, as often found in engineering design 8. brief introduction to constraint logic programming 9. brief introduction to dynamic programming IND E 599 Notes 1 Slide 3 Computer Software I Catalyst Tools (https://catalyst.uw.edu/) I AIMMS - optimization software (http://www.aimms.com/) Ming Fang - AIMMS software consultant IND E 599 Notes 1 Slide 4 What is Mathematical Programming? Mathematical programming refers to \programming" as a \planning" activity: as in I linear programming (LP) I integer programming (IP) I mixed integer linear programming (MILP) I non-linear programming (NLP) \Optimization" is becoming more common, e.g.
    [Show full text]
  • Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty
    Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty Dimtris Bertsimas¤ Aur¶elieThieley March 2006 Abstract Traditional models of decision-making under uncertainty assume perfect information, i.e., ac- curate values for the system parameters and speci¯c probability distributions for the random variables. However, such precise knowledge is rarely available in practice, and a strategy based on erroneous inputs might be infeasible or exhibit poor performance when implemented. The purpose of this tutorial is to present a mathematical framework that is well-suited to the limited information available in real-life problems and captures the decision-maker's attitude towards uncertainty; the proposed approach builds upon recent developments in robust and data-driven optimization. In robust optimization, random variables are modeled as uncertain parameters be- longing to a convex uncertainty set and the decision-maker protects the system against the worst case within that set. Data-driven optimization uses observations of the random variables as direct inputs to the mathematical programming problems. The ¯rst part of the tutorial describes the robust optimization paradigm in detail in single-stage and multi-stage problems. In the second part, we address the issue of constructing uncertainty sets using historical realizations of the random variables and investigate the connection between convex sets, in particular polyhedra, and a speci¯c class of risk measures. Keywords: optimization under uncertainty; risk preferences; uncertainty sets; linear program- ming. 1 Introduction The ¯eld of decision-making under uncertainty was pioneered in the 1950s by Dantzig [25] and Charnes and Cooper [23], who set the foundation for, respectively, stochastic programming and ¤Boeing Professor of Operations Research, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, [email protected] yP.C.
    [Show full text]