Molecular Chaperone Gp96 Is a Novel Therapeutic Target of Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Chaperone Gp96 Is a Novel Therapeutic Target of Multiple Myeloma Published OnlineFirst September 27, 2013; DOI: 10.1158/1078-0432.CCR-13-2083 Clinical Cancer Cancer Therapy: Preclinical Research Molecular Chaperone gp96 Is a Novel Therapeutic Target of Multiple Myeloma Yunpeng Hua1, Shai White-Gilbertson1, Joshua Kellner1, Saleh Rachidi1, Saad Z. Usmani2, Gabriela Chiosis3, Ronald DePinho4, Zihai Li1, and Bei Liu1 Abstract Purpose: gp96 (grp94) is a key downstream chaperone in the endoplasmic reticulum (ER) to mediate unfolded protein response (UPR) and the pathogenesis of multiple myeloma is closely linked to dysre- gulated UPR. In this study, we aimed to determine the roles of gp96 in the initiation and progression of multiple myeloma in vivo and in vitro. Experimental Design: We generated a mouse model with overexpression of XBP1s and conditional deletion of gp96 in B-cell compartment simultaneously to identify the roles of gp96 in the development of multiple myeloma in vivo. Using a short hairpin RNA (shRNA) system, we silenced gp96 in multiple human multiple myeloma cells and examined the effect of gp96 knockdown on multiple myeloma cells by cell proliferation, cell-cycle analysis, apoptosis assay, immunohistochemistry, and human myeloma xenograft model. The anticancer activity of gp96 selective inhibitor, WS13, was evaluated by apoptosis assay and MTT assay. Results: Genetic deletion of gp96 in XBP1s-Tg mice attenuates multiple myeloma. Silencing of gp96 causes severe compromise in human multiple myeloma cell growth through inhibiting Wnt-LRP-survivin pathway. We also confirmed that knockdown of gp96 decreased human multiple myeloma growth in a murine xenograft model. The targeted gp96 inhibitor induced apoptosis and blocked multiple myeloma cell growth, but did not induce apoptosis in pre-B leukemic cells. We have demonstrated that myeloma growth is dependent on gp96 both genetically and pharmacologically. Conclusions: gp96 is essential for multiple myeloma cell proliferation and survival, suggesting that gp96 is a novel therapeutic target for multiple myeloma. Clin Cancer Res; 1–10. Ó2013 AACR. Introduction pathways including activating transcription factor 6 (ATF6), As an ER chaperone, gp96 (1), also known as grp94 (2), the double-stranded RNA-activated protein kinase-like ER endoplasmin (3), ERp99 (4), and HSP90b1(5), is a para- kinase (PERK), and the spliced form of X box binding logue of HSP90 and its expression can be induced by the protein 1 (XBP1s) to induce the expression of several major accumulation of misfolded proteins (6). It binds to and ER HSPs including gp96, grp78, and calreticulin to enhance hydrolyzes ATP (7–9), and is the most abundant protein in protein folding machinery (11). UPR plays critical roles for the endoplasmic reticulum (ER) lumen. gp96 is a key plasma cell differentiation as demonstrated by lack of downstream chaperone in the ER to mediate unfolded plasma cells in the absence of XBP1 (12–14). Moreover, protein response (UPR; refs. 10). UPR is an evolutionally gp96 is induced more than 10-fold during B-cell activation conserved mechanism to maintain protein quality control (4), and it has been shown to participate in the assembly of in the secretory pathway. Accumulation of misfolded pro- B-cell receptor complexes through its association with teins in the ER triggers the activation of three well-known immunoglobulin-a (Iga) molecules (15). In addition to the critical roles of UPR in plasma cell differentiation, a picture has recently emerged of the roles of UPR, particu- larly XBP1s, in myeloma pathogenesis. XBP1s and down- 1 Authors' Affiliations: Department of Microbiology and Immunology, stream ER chaperones are consistently upregulated in mye- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina; 2Levine Cancer Institute, Charlotte, North Carolina; loma cells (16). Most strikingly, transgenic expression of 3Department of Molecular Pharmacology, Memorial Sloan Kettering Can- XBP1s in the B-cell compartment of mice results in plasma cer Center, New York, New York; and 4The University of Texas MD Anderson Cancer Center, Texas cell dyscrasia with evidence of increased monoclonal anti- bodies ("M-spike"), lytic bone lesions, plasmacytosis, and Corresponding Author: Bei Liu, Department of Microbiology and Immu- nology, Hollings Cancer Center, Medical University of South Carolina, 86 kidney damage (17). However, the roles of individual ER Jonathan Lucas Street, Charleston, SC 29425. Phone: 843-792-8994; HSPs in myeloma have not been reported. Fax: 843-792-9588; E-mail: [email protected] Using genetic strategies, we recently found that gp96 is doi: 10.1158/1078-0432.CCR-13-2083 an obligate master chaperone for multiple Toll-like recep- Ó2013 American Association for Cancer Research. tors (TLR) and integrins (18–21). However, under the www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst September 27, 2013; DOI: 10.1158/1078-0432.CCR-13-2083 Hua et al. (IL)-6. U266B1 cells were cultured in RPMI medium sup- Translational Relevance plemented with 15% heat-inactivated FCS, 1 mmol/L sodi- Multiple myeloma is an incurable plasma cell neo- um pyruvate (Gibco), 10 mmol/L HEPES (Gibco) and plasm whose pathogenesis is closely linked to dysregu- penicillin–streptomycin (Gibco). All cells were cultured in lated unfolded protein response (UPR) in the endoplas- 5% CO2 incubator. Gp96-mutant and WT pre-B-cell lines mic reticulum (ER). In this study, we demonstrated that were provided by Brian Seed (Harvard University, Cam- the persistence of plasma cells as well as the development bridge, MA). of myeloma is critically dependent on gp96, a major molecular chaperone in the ER in vivo. Furthermore, our Reagents results demonstrated that gp96 knockdown causes Antibodies used for flow cytometry were obtained from severe compromise in human multiple myeloma cell BD Biosciences and eBioscience. Antibodies against LRP6, growth through attenuating Wnt-LRP-survivin pathway. b-catenin, survivin, c-myc, and caspase-9 were purchased Targeting gp96 in multiple myeloma cells by a gp96- from Cell Signaling Technology, cyclin D1 was obtained specific inhibitor also blocks proliferation and induces from Abcam, and gp96 antibody was bought from Enzo Life apoptosis. This is the first study to uncover the critical Sciences, Inc. Ig levels were determined by a sandwich ELISA roles of gp96 in the initiation and progression of mul- kit from Southern Biotechnology Associates. All other che- tiple myeloma, suggesting that blockade of gp96 is a micals were obtained from Sigma-Aldrich and Fisher Sci- novel therapeutic strategy against this disease. entific. IL-4 and IL-21 were purchased from PeproTech. WS13, a gp96-specific Hsp90 inhibitor of the purine-scaf- fold class (22), was synthesized as previously described (23, 24) and the structure was recently reported (25). steady-state conditions, gp96 is not required for B-cell activation, germinal center formation, plasma cell differ- Flow cytometry and in vitro plasma cell differentiation entiation, and class-switching or affinity maturation (19). Surface staining of cells and analysis on FACSCalibur and It is unclear whether gp96 is required for plasma cell FACSVerse (Becton-Dickinson) were done as described biology and for the development of myeloma during (18, 26). B cells were purified from spleens using CD19 chronic ER stress conditions. In this study, we addressed magnetic beads according to the manufacturer’s protocol the roles of gp96 in myeloma using XBP1s-transgenic (Miltenyi Biotec). Purified murine splenic B cells were mice as well as multiple human multiple myeloma (MM) labeled with carboxyfluorescein succinimidyl ester (CFSE), cell lines. We demonstrated that gp96 is required for and then stimulated with anti-m antibody, agonistic CD40 myeloma progression both in vitro and in vivo.Mecha- antibody, and IL-21 for 3 days. This was followed by flow nistically, we found that gp96 critically controls the Wnt- cytometric analysis of expression levels of cell surface LRP6-survivin pathway. Our results indicated that gp96 is CD138 by dividing cells. a novel therapeutic target for multiple myeloma. Viral vectors and transduction Human gp96 and surivin short hairpin RNA (shRNA) Materials and Methods lentiviral vectors as well as control vector were purchased Mice and cell lines from Open Biosystems. Survivin retroviral vector and empty B-cell–specific gp96-deficient mice and wild-type control vector control were obtained from Origene Technologies. littermates have been described (19). B-cell–specific XBP1s- Cells were seeded in a 12-well plate and spin-infected with transgenic and gp96-deficient mice were generated by cross- recombinant virus (3,000 rpm, 32C, 90 minutes) in a ing our B-cell–specific gp96-deficient mice with XBP1s desktop centrifuge as reported (26). transgenic mice. SCID mice were kindly provided by Jenni- fer Wu (Medical University of South Carolina, Charleston, Protein extraction and Western blot analysis SC). Mice were bred and maintained according to the Protein extraction and immunoblot were performed as established guidelines and an approved protocol by Med- described previously (20). Briefly, cells were washed three ical University of South Carolina Institutional Animal Care times with ice-cold PBS and lysed in radioimmunoprecipi- and Use Committee. Human multiple myeloma cell line tation assay lysis buffer (0.01 mol/L sodium phosphate, pH RPMI-8226, U266B1, MM.1S, and MM.1R were purchased 7.2, 150 mmol/L NaCl, 2 mmol/L EDTA, 1% NP-40, 1% from American Type Culture Collection. OPM1, JK-6L, and sodium deoxycholate, 0.1% SDS, 2 mmol/L AEBSF, 130 INA-6 were kindly provided by Yubin Kang (Medical Uni- mmol/L bestatin, 14 mmol/L E-64, 0.3 mmol/L aprotinin, versity of South Carolina). Multiple myeloma cells were and 1 mmol/L leupeptin). Total cell lysates was resolved on cultured in RPMI medium (Sigma-Aldrich) supplemented denaturing and reducing 10% to 12% SDS-PAGE, and the with 10% heat-inactivated fetal calf serum (FCS; Atlas proteins were transferred from the gel onto Immobilon-P Biologicals), 55 mmol/L 2- mercaptoethanol (2-ME, Gibco), membranes.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • At Elevated Temperatures, Heat Shock Protein Genes Show Altered Ratios Of
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 900, 2021 At elevated temperatures, heat shock protein genes show altered ratios of different RNAs and expression of new RNAs, including several novel HSPB1 mRNAs encoding HSP27 protein isoforms XIA GAO1,2, KEYIN ZHANG1,2, HAIYAN ZHOU3, LUCAS ZELLMER4, CHENGFU YUAN5, HAI HUANG6 and DEZHONG JOSHUA LIAO2,6 1Department of Pathology, Guizhou Medical University Hospital; 2Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University; 3Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China; 4Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; 5Department of Biochemistry, China Three Gorges University, Yichang, Hubei 443002; 6Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China Received December 16, 2020; Accepted May 10, 2021 DOI: 10.3892/etm.2021.10332 Abstract. Heat shock proteins (HSP) serve as chaperones genes may engender multiple protein isoforms. These results to maintain the physiological conformation and function of collectively suggested that, besides increasing their expres‑ numerous cellular proteins when the ambient temperature is sion, certain HSP and associated genes also use alternative increased. To determine how accurate the general assumption transcription start sites to produce multiple RNA transcripts that HSP gene expression is increased in febrile situations is, and use alternative splicing of a transcript to produce multiple the RNA levels of the HSF1 (heat shock transcription factor 1) mature RNAs, as important mechanisms for responding to an gene and certain HSP genes were determined in three cell increased ambient temperature in vitro. lines cultured at 37˚C or 39˚C for three days.
    [Show full text]
  • Cell Surface GRP94 As a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy
    cells Review Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy Ji Woong Kim † , Yea Bin Cho † and Sukmook Lee * Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; [email protected] (J.W.K.); [email protected] (Y.B.C.) * Correspondence: [email protected]; Tel.: +82-2-910-6763 † These authors contributed equally to this work. Abstract: Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function.‘Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer. Keywords: GRP94; cancer; therapeutic target; therapy; monoclonal antibody Citation: Kim, J.W.; Cho, Y.B.; Lee, S. Cell Surface GRP94 as a Novel 1. Introduction Emerging Therapeutic Target for Cancer, the second leading cause of death behind cardiovascular disease, remains a Monoclonal Antibody Cancer major global public health problem [1]. Overall, the burden of cancer incidence and mortal- Therapy. Cells 2021, 10, 670.
    [Show full text]
  • Essential Roles of Grp94 in Gut Homeostasis Via Chaperoning Canonical Wnt Pathway
    Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway Bei Liua, Matthew Staronb, Feng Honga, Bill X. Wua,c, Shaoli Sund, Crystal Moralesa, Craig E. Crossonc, Stephen Tomlinsona, Ingyu Kime, Dianqing Wue, and Zihai Lia,1 aDepartment of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; bDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; cStorm Eye Institute, Medical University of South Carolina, Charleston, SC 29425; dDepartment of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425; and eDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT 06520 Edited by Arthur L. Horwich, Yale University School of Medicine, New Haven, CT, and approved March 13, 2013 (received for review February 14, 2013) Increasing evidence points to a role for the protein quality control grp94 and Wnt pathway has not been reported. Furthermore, in the endoplasmic reticulum (ER) in maintaining intestinal homeo- a direct role for MesD or LRP5/6 in controlling adult intestinal stasis. However, the specific role for general ER chaperones in this homeostasis has not been demonstrated because of lack of ap- process remains unknown. Herein, we report that a major ER heat propriate genetic models. shock protein grp94 interacts with MesD, a critical chaperone for Here, we report that grp94 interacts with MesD, which is the Wnt coreceptor low-density lipoprotein receptor-related pro- necessary for proper cell surface expression of LRP6 and ca- tein 6 (LRP6). Without grp94, LRP6 fails to export from the ER to nonical Wnt signaling.
    [Show full text]
  • Quantitative Proteomic Analysis Shows Differentially Expressed HSPB1 In
    Gimenez et al. BMC Cancer (2015) 15:481 DOI 10.1186/s12885-015-1473-9 RESEARCH ARTICLE Open Access Quantitative proteomic analysis shows differentially expressed HSPB1 in glioblastoma as a discriminating short from long survival factor and NOVA1 as a differentiation factor between low-grade astrocytoma and oligodendroglioma Marcela Gimenez1, Suely Kazue Nagahashi Marie2,4, Sueli Oba-Shinjo2, Miyuki Uno2, Clarice Izumi1, João Bosco Oliveira3 and Jose Cesar Rosa1* Abstract Background: Gliomas account for more than 60 % of all primary central nervous system neoplasms. Low-grade gliomas display a tendency to progress to more malignant phenotypes and the most frequent and malignant gliomas are glioblastomas (GBM). Another type of glioma, oligodendroglioma originates from oligodendrocytes and glial precursor cells and represents 2–5 % of gliomas. The discrimination between these two types of glioma is actually controversial, thus, a molecular distinction is necessary for better diagnosis. Methods: iTRAQ-based quantitative proteomic analysis was performed on non-neoplastic brain tissue, on astrocytoma grade II, glioblastoma with short and long survival and oligodendrogliomas. Results: We found that expression of nucleophosmin (NPM1), glucose regulated protein 78 kDa (GRP78), nucleolin (NCL) and heat shock protein 90 kDa (HSP90B1) were increased, Raf kinase inhibitor protein (RKIP/PEBP1) was decreased in glioblastoma and they were associated with a network related to tumor progression. Expression level of heat shock protein 27 (HSPB1/HSP27) discriminated glioblastoma presenting short (6 ± 4 months, n =4) and long survival (43 ± 15 months, n =4)(p = 0.00045). Expression level of RNA binding protein nova 1 (NOVA1) differentiated low-grade oligodendroglioma and astrocytoma grade II (p = 0.0082).
    [Show full text]
  • Grp94, Mammalian Heat Shock Pr
    Drosophila Glycoprotein 93 Is an Ortholog of Mammalian Heat Shock Protein gp96 (grp94, HSP90b1, HSPC4) and Retains Disulfide Bond-Independent Chaperone Function for This information is current as TLRs and Integrins of October 3, 2021. Crystal Morales, Shuang Wu, Yi Yang, Bing Hao and Zihai Li J Immunol 2009; 183:5121-5128; Prepublished online 28 September 2009; Downloaded from doi: 10.4049/jimmunol.0900811 http://www.jimmunol.org/content/183/8/5121 References This article cites 46 articles, 8 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/183/8/5121.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 3, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Drosophila Glycoprotein 93 Is an Ortholog of Mammalian Heat Shock Protein gp96 (grp94, HSP90b1, HSPC4) and Retains Disulfide Bond-Independent Chaperone Function for TLRs and Integrins1 Crystal Morales,2* Shuang Wu,2* Yi Yang,3* Bing Hao,† and Zihai Li4* Mammalian heat shock protein gp96 is an obligate chaperone for multiple integrins and TLRs, the mechanism of which is largely unknown.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Genome-Wide Screening in Human Kidney Organoids Identifies Novel Aspects of Nephrogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445745; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide screening in human kidney organoids identifies novel aspects of nephrogenesis Rosemarie Ungricht1, Laure Guibbal1, Marie-Christine Lasbennes1, Vanessa Orsini1, Martin Beibel1, Annick Waldt1, Rachel Cuttat1, Walter Carbone1, Anne Basler1, Guglielmo Roma1, Florian Nigsch1, Jan Tchorz1, Dominic Hoepfner1, Philipp S. Hoppe1,2 1Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland 2Lead contact *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445745; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Human organoids allow studying proliferation, lineage specification, and three-dimensional tissue development. Due to the inherent multicellular complexity, interrogation by systematic genetic methodologies is challenging. Here, we present the first genome-wide CRISPR screen in iPSC-derived kidney organoids. The combination of genome editing, longitudinal sampling and sorting of specific cell populations enabled us to uncover novel biology from development to tubular morphogenesis. We validated the high quality of our screen by individual hit follow up and comparisons to kidney disease datasets. The discovery of a novel regulatory mechanism which controls epithelial proliferation via a trans-activating but cis-inhibitory effect of the Notch ligand Jagged1 proves how mosaic knockouts generated by pooled CRISPR screening in organoids can identify novel ways of communication between heterogeneous cell populations in complex tissues.
    [Show full text]
  • Origin and Evolution of Fungal HECT Ubiquitin Ligases Ignacio Marín
    www.nature.com/scientificreports OPEN Origin and evolution of fungal HECT ubiquitin ligases Ignacio Marín Ubiquitin ligases (E3s) are basic components of the eukaryotic ubiquitination system. In this work, the Received: 29 December 2017 emergence and diversifcation of fungal HECT ubiquitin ligases is described. Phylogenetic and structural Accepted: 11 April 2018 data indicate that six HECT subfamilies (RSP5, TOM1, UFD4, HUL4, HUL4A and HUL5) existed in Published: xx xx xxxx the common ancestor of all fungi. These six subfamilies have evolved very conservatively, with only occasional losses and duplications in particular fungal lineages. However, an early, drastic reduction in the number of HECT genes occurred in microsporidians, in parallel to the reduction of their genomes. A signifcant correlation between the total number of genes and the number of HECT-encoding genes present in fungi has been observed. However, transitions from unicellularity to multicellularity or vice versa apparently had no efect on the evolution of this family. Likely orthologs or co-orthologs of all fungal HECT genes have been detected in animals. Four genes are deduced to be present in the common ancestor of fungi, animals and plants. Protein-protein interactions detected in both the yeast Saccharomyces cerevisiae and humans suggest that some ancient functions of HECT proteins have been conserved since the animals/fungi split. Protein ubiquitination is involved in the control of multiple essential functions in all eukaryotic species1–3. Given its importance, there is a signifcant interest in understanding the evolution of the ubiquitination system, from its early origin4–6 to its complex patterns of diversifcation in eukaryotic phyla, in which the ubiquitination machinery typically involves hundreds of proteins7.
    [Show full text]
  • Suppressing TRAP1 Sensitizes Glioblastoma Multiforme Cells to Temozolomide
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 1246, 2021 Suppressing TRAP1 sensitizes glioblastoma multiforme cells to temozolomide NAN WANG1, PEINING ZHU1, RENXUAN HUANG1, LIANKUN SUN2, DELU DONG2 and YUFEI GAO1 1Department of Neurosurgery, China‑Japan Union Hospital, Jilin University; 2Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China Received August 27, 2020; Accepted March 11, 2021 DOI: 10.3892/etm.2021.10681 Abstract. Glioma is a common malignant tumor of the and sensitized the GBM cells to the effects of TMZ treatment. central nervous system, accounting for ~50% of intracranial Thus, suppressing the function of TRAP1 sensitized GBM tumors. The current standard therapy for glioma is surgical cells to TMZ lysis by inducing mtUPR and the subsequent resection followed by postoperative adjuvant radiotherapy ROS burst. TRAP1 is therefore considered to be a promising and temozolomide (TMZ) chemotherapy. However, resistance target for GBM therapy. to TMZ is one of the factors affecting prognosis. It has been reported that TNF receptor‑associated protein 1 (TRAP1) is Introduction overexpressed in numerous types of tumor and that interfering with its function may abrogate chemotherapy resistance. Glioblastoma multiforme (GBM) accounts for 40‑50% of all TRAP1 inhibitor Gamitrinib triphenylphosphonium (G‑TPP) gliomas (1,2). Patients with GBM have a progression‑free and shRNA were used in the present study to suppress the survival of only 6.2‑7.5 months after diagnosis and a median function of this molecule in glioblastoma multiforme (GBM) survival of 14.6‑16.7 months (3‑5), while the 5‑year survival cell lines.
    [Show full text]
  • Supporting Information
    Supporting Information Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma Anahita Kyani+,[a] Shuzo Tamura+,[a] Suhui Yang+,[a] Andrea Shergalis+,[a] Soma Samanta,[a] Yuting Kuang,[a] Mats Ljungman,[b] and Nouri Neamati*[a] cmdc_201700629_sm_miscellaneous_information.pdf Author Contributions A.K. Data curation: Lead; Formal analysis: Lead; Investigation: Equal; Writing ± original draft: Lead; Writing ± review & editing: Equal S.T. Data curation: Equal; Formal analysis: Equal; Writing ± review & editing: Equal S.Y. Data curation: Equal; Formal analysis: Equal; Writing ± original draft: Supporting; Writing ± review & editing: Equal A.S. Data curation: Equal; Formal analysis: Supporting; Writing ± review & editing: Equal S.S. Data curation: Supporting; Writing ± review & editing: Supporting Y.K. Data curation: Supporting; Writing ± review & editing: Supporting M.L. Conceptualization: Supporting; Formal analysis: Supporting; Project administration: Supporting; Resources: Equal; Supervision: Supporting; Writing ± review & editing: Supporting N.N. Conceptualization: Lead; Data curation: Lead; Funding acquisition: Lead; Project administration: Lead; Resour- ces: Lead; Supervision: Lead; Writing ± review & editing: Supporting. Table of Contents Table S1. 35G8 analogues available from the NCI database ............................................................................ S2 Figure S1. Docking poses of 35G8 analogues.................................................................................................
    [Show full text]
  • Microrna-223 Is a Novel Negative Regulator of HSP90B1 In
    Rodríguez-Vicente et al. BMC Cancer (2015) 15:238 DOI 10.1186/s12885-015-1212-2 RESEARCH ARTICLE Open Access MicroRNA-223 is a novel negative regulator of HSP90B1 in CLL Ana E Rodríguez-Vicente1, Dalia Quwaider1, Rocío Benito1, Irena Misiewicz-Krzeminska1,2, María Hernández-Sánchez1, Alfonso García de Coca3, Rosa Fisac4,José-MaríaAlonso5,CarolinaZato6, Juan Francisco de Paz6,JuanLuisGarcía7, Ma Eugenia Sarasquete1,JoséÁngelHernández8, Juan M Corchado6, Marcos González1, Norma C Gutiérrez1 and Jesús-María Hernández-Rivas1* Abstract Background: MicroRNAs are known to inhibit gene expression by binding to the 3′UTR of the target transcript. Downregulation of miR-223 has been recently reported to have prognostic significance in CLL. However, there is no evidence of the pathogenetic mechanism of this miRNA in CLL patients. Methods: By applying next-generation sequencing techniques we have detected a common polymorphism (rs2307842), in 24% of CLL patients, which disrupts the binding site for miR-223 in HSP90B13′UTR. We investigated whether miR-223 directly targets HSP90B1 through luciferase assays and ectopic expression of miR-223. Quantitative real-time polymerase chainreactionandwesternblotwereusedtodetermineHSP90B1 expression in CLL patients. The relationship between rs2307842 status, HSP90B1 expression and clinico-biological data were assessed. Results: HSP90B1 is a direct target for miR-223 by interaction with the putative miR-223 binding site. The analysis in paired samples (CD19+ fraction cell and non-CD19+ fraction cell) showed that the presence of rs2307842 and IGHV unmutated genes determined HSP90B1 overexpression in B lymphocytes from CLL patients. These results were confirmed at the protein level by western blot. Of note, HSP90B1 overexpression was independently predictive of shorter time to the first therapy in CLL patients.
    [Show full text]