Filter Effects and Filter Artifacts in the Analysis of Electrophysiological Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Detection of Perceived Ringing Regions in Compressed Images
International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 4, Number 5 (2011), pp. 491-516 © International Research Publication House http://www.irphouse.com Automatic Detection of Perceived Ringing Regions in Compressed Images D. Minola Davids Research Scholar, Singhania University, Rajasthan, India Abstract An efficient approach toward a no-reference ringing metric intrinsically exists of two steps: first detecting regions in an image where ringing might occur, and second quantifying the ringing annoyance in these regions. This paper presents a novel approach toward the first step: the automatic detection of regions visually impaired by ringing artifacts in compressed images. It is a no- reference approach, taking into account the specific physical structure of ringing artifacts combined with properties of the human visual system (HVS). To maintain low complexity for real-time applications, the proposed approach adopts a perceptually relevant edge detector to capture regions in the image susceptible to ringing, and a simple yet efficient model of visual masking to determine ringing visibility. Index Terms: Luminance masking, per-ceptual edge, ringing artifact, texture masking. Introduction In current visual communication systems, the most essential task is to fit a large amount of visual information into the narrow bandwidth of transmission channels or into a limited storage space, while maintaining the best possible perceived quality for the viewer. A variety of compression algorithms, for example, such as JPEG[1] and MPEG/H.26xhave been widely adopted in image and video coding trying to achieve high compression efficiency at high quality. These lossy compression techniques, however, inevitably result in various coding artifacts, which by now are known and classified as blockiness, ringing, blur, etc. -
Generalizing Sampling Theory for Time-Varying Nyquist Rates Using Self-Adjoint Extensions of Symmetric Operators with Deficiency Indices (1,1) in Hilbert Spaces
Generalizing Sampling Theory for Time-Varying Nyquist Rates using Self-Adjoint Extensions of Symmetric Operators with Deficiency Indices (1,1) in Hilbert Spaces by Yufang Hao A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Applied Mathematics Waterloo, Ontario, Canada, 2011 c Yufang Hao 2011 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Sampling theory studies the equivalence between continuous and discrete representa- tions of information. This equivalence is ubiquitously used in communication engineering and signal processing. For example, it allows engineers to store continuous signals as discrete data on digital media. The classical sampling theorem, also known as the theorem of Whittaker-Shannon- Kotel'nikov, enables one to perfectly and stably reconstruct continuous signals with a con- stant bandwidth from their discrete samples at a constant Nyquist rate. The Nyquist rate depends on the bandwidth of the signals, namely, the frequency upper bound. Intuitively, a signal's `information density' and ‘effective bandwidth' should vary in time. Adjusting the sampling rate accordingly should improve the sampling efficiency and information storage. While this old idea has been pursued in numerous publications, fundamental problems have remained: How can a reliable concept of time-varying bandwidth been defined? How can samples taken at a time-varying Nyquist rate lead to perfect and stable reconstruction of the continuous signals? This thesis develops a new non-Fourier generalized sampling theory which takes samples only as often as necessary at a time-varying Nyquist rate and maintains the ability to perfectly reconstruct the signals. -
Analysis of Ringing Artifact in Image Fusion Using Directional Wavelet
Special Issue - 2021 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NTASU - 2020 Conference Proceedings Analysis of Ringing Artifact in Image Fusion Using Directional Wavelet Transforms y z x Ashish V. Vanmali Tushar Kataria , Samrudhha G. Kelkar , Vikram M. Gadre Dept. of Information Technology Dept. of Electrical Engineering Vidyavardhini’s C.O.E. & Tech. Indian Institute of Technology, Bombay Vasai, Mumbai, India – 401202 Powai, Mumbai, India – 400076 Abstract—In the field of multi-data analysis and fusion, image • Images taken from multiple sensors. Examples include fusion plays a vital role for many applications. With inventions near infrared (NIR) images, IR images, CT, MRI, PET, of new sensors, the demand of high quality image fusion fMRI etc. algorithms has seen tremendous growth. Wavelet based fusion is a popular choice for many image fusion algorithms, because of its We can broadly classify the image fusion techniques into four ability to decouple different features of information. However, categories: it suffers from ringing artifacts generated in the output. This 1) Component substitution based fusion algorithms [1]–[5] paper presents an analysis of ringing artifacts in application of 2) Optimization based fusion algorithms [6]–[10] image fusion using directional wavelets (curvelets, contourlets, non-subsampled contourlets etc.). We compare the performance 3) Multi-resolution (wavelets and others) based fusion algo- of various fusion rules for directional wavelets available in rithms [11]–[15] and literature. The experimental results suggest that the ringing 4) Neural network based fusion algorithms [16]–[19]. artifacts are present in all types of wavelets with the extent of Wavelet based multi-resolution analysis decouples data into artifact varying with type of the wavelet, fusion rule used and levels of decomposition. -
Fourier Analysis and Sampling Theory
Reading Required: Shirley, Ch. 9 Recommended: Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Fourier analysis and Don P. Mitchell and Arun N. Netravali, “Reconstruction Filters in Computer Computer sampling theory Graphics ,” Computer Graphics, (Proceedings of SIGGRAPH 88). 22 (4), pp. 221-228, 1988. Brian Curless CSE 557 Fall 2009 1 2 What is an image? Images as functions We can think of an image as a function, f, from R2 to R: f(x,y) gives the intensity of a channel at position (x,y) Realistically, we expect the image only to be defined over a rectangle, with a finite range: • f: [a,b]x[c,d] Æ [0,1] A color image is just three functions pasted together. We can write this as a “vector-valued” function: ⎡⎤rxy(, ) f (,xy )= ⎢⎥ gxy (, ) ⎢⎥ ⎣⎦⎢⎥bxy(, ) We’ll focus in grayscale (scalar-valued) images for now. 3 4 Digital images Motivation: filtering and resizing In computer graphics, we usually create or operate What if we now want to: on digital (discrete)images: smooth an image? Sample the space on a regular grid sharpen an image? Quantize each sample (round to nearest enlarge an image? integer) shrink an image? If our samples are Δ apart, we can write this as: In this lecture, we will explore the mathematical underpinnings of these operations. f [n ,m] = Quantize{ f (n Δ, m Δ) } 5 6 Convolution Convolution in 2D One of the most common methods for filtering a In two dimensions, convolution becomes: function, e.g., for smoothing or sharpening, is called convolution. -
2D Signal Processing (III): 2D Filtering
6.003 Signal Processing Week 11, Lecture A: 2D Signal Processing (III): 2D Filtering 6.003 Fall 2020 Filtering and Convolution Time domain: Frequency domain: 푋[푘푟, 푘푐] ∙ 퐻[푘푟, 푘푐] = 푌[푘푟, 푘푐] Today: More detailed look and further understanding about 2D filtering. 2D Low Pass Filtering Given the following image, what happens if we apply a filter that zeros out all the high frequencies in the image? Where did the ripples come from? 2D Low Pass Filtering The operation we did is equivalent to filtering: 푌 푘푟, 푘푐 = 푋 푘푟, 푘푐 ∙ 퐻퐿 푘푟, 푘푐 , where 2 2 1 푓 푘푟 + 푘푐 ≤ 25 퐻퐿 푘푟, 푘푐 = ቊ 0 표푡ℎ푒푟푤푠푒 2D Low Pass Filtering 2 2 1 푓 푘푟 + 푘푐 ≤ 25 Find the 2D unit-sample response of the 2D LPF. 퐻퐿 푘푟, 푘푐 = ቊ 0 표푡ℎ푒푟푤푠푒 퐻 푘 , 푘 퐿 푟 푐 ℎ퐿 푟, 푐 (Rec 8A): 푠푛 Ω 푛 ℎ 푛 = 푐 퐿 휋푛 Ω푐 Ω푐 The step changes in 퐻퐿 푘푟, 푘푐 generated overshoot: Gibb’s phenomenon. 2D Convolution Multiplying by the LPF is equivalent to circular convolution with its spatial-domain representation. ⊛ = 2D Low Pass Filtering Consider using the following filter, which is a circularly symmetric version of the Hann window. 2 2 1 1 푘푟 + 푘푐 2 2 + 푐표푠 휋 ∙ 푓 푘푟 + 푘푐 ≤ 25 퐻퐿2 푘푟, 푘푐 = 2 2 25 0 표푡ℎ푒푟푤푠푒 2 2 1 푓 푘푟 + 푘푐 ≤ 25 퐻퐿1 푘푟, 푘푐 = ቐ Now the ripples are gone. 0 표푡ℎ푒푟푤푠푒 But image more blurred when compare to the one with LPF1: With the same base-width, Hann window filter cut off more high freq. -
Handout 04 Filtering in the Frequency Domain
Digital Image Processing (420137), SSE, Tongji University, Spring 2013, given by Lin ZHANG Handout 04 Filtering in the Frequency Domain 1. Basic Concepts (1) Any periodic functions, no matter how complex it is, can be represented as the sum of a series of sine and cosine functions with different frequencies. (2) The signal’s frequency components can be clearly observed in the frequency domain. (3) Fourier transform is invertible. That means after the Fourier transform and the inverse Fourier transform, no information will be lost. (4) Usually, the Fourier transform F(u) is a complex number, from which we can define its magnitude, power spectrum, and the phase angle. (5) The impulse function, or Dirac function, is widely used in theoretical analysis of linear systems. It can be considered as an infinitely high, infinitely thin spike at the origin, with total area one under the spike. (6) Dirac function has a sift property, defined as f ()tttdtft (00 ) ( ). (7) The basic theorem linking the spatial domain to the frequency domain is the convolution theorem, ft()*() ht F ( ) H ( ). (8) The Fourier transform of a Gaussian function is also of a Gaussian shape in the frequency domain. (9) For visualization purpose, we often use fftshift to shift the origin of an image’s Fourier transform to its center position. (10) The basic steps for frequency filtering comprise the following, (11) Edges and other sharp intensity transitions, such as noise, in an image contribute significantly to the high frequency content of its Fourier transform. (12) The drawback of the ideal low-pass filter is that the filtering result has obvious ringing artifacts. -
Video Compression Optimized for Racing Drones
Video compression optimized for racing drones Henrik Theolin Computer Science and Engineering, master's level 2018 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Video compression optimized for racing drones November 10, 2018 Preface To my wife and son always! Without you I'd never try to become smarter. Thanks to my supervisor Staffan Johansson at Neava for providing room, tools and the guidance needed to perform this thesis. To my examiner Rickard Nilsson for helping me focus on the task and reminding me of the time-limit to complete the report. i of ii Video compression optimized for racing drones November 10, 2018 Abstract This thesis is a report on the findings of different video coding tech- niques and their suitability for a low powered lightweight system mounted on a racing drone. Low latency, high consistency and a robust video stream is of the utmost importance. The literature consists of multiple comparisons and reports on the efficiency for the most commonly used video compression algorithms. These reports and findings are mainly not used on a low latency system but are testing in a laboratory environment with settings unusable for a real-time system. The literature that deals with low latency video streaming and network instability shows that only a limited set of each compression algorithms are available to ensure low complexity and no added delay to the coding process. The findings re- sulted in that AVC/H.264 was the most suited compression algorithm and more precise the x264 implementation was the most optimized to be able to perform well on the low powered system. -
Destriping of Landsat MSS Images by Filtering Techniques
Destriping of Landsat MSS Images by Filtering Techniques Jeng-Jong Panl TGS Technology, Inc., EROS Data Center, Sioux Falls, SD 57198 Chein-I Chang ., Department of Electrical Engineering, University of Maryland, Balhmore County Campus, Balhmore, MD 21228-5398 ABSTRACT: The removal of striping noise encountered in the Landsat Multispectral Scanner (MSS) images can be gen erally done by using frequency filtering techniques. Frequency do~ain filteri~g has, how~ver, se,:era~ prob~ems~ such as storage limitation of data required for fast Fourier transforms, nngmg artl~acts appe~nng at hlgh-mt,enslty.dlscon tinuities, and edge effects between adjacent filtered data sets. One way for clrcu~,,:entmg the above difficulties IS, to design a spatial filter to convolve with the images. Because it is known that the,stnpmg a.lways appears at frequencies of 1/6, 1/3, and 1/2 cycles per line, it is possible to design a simple one-dimensIOnal spat~a~ fll,ter to take advantage of this a priori knowledge to cope with the above problems. The desired filter is the type of ~mlte Impuls~ response which can be designed by a linear programming and Remez's exchange algorithm coupled ~lth an adaptIve tec,hmque. In addition, a four-step spatial filtering technique with an appropriate adaptive approach IS also presented which may be particularly useful for geometrically rectified MSS images. INTRODUCTION striping lines, it still suffers from several common probleI?s such as a large amount of data storage needed, for .a fast ~our~er HE STRIPING THAT OCCURS IN THE Landsat Multispectral. -
Locally-Adaptive Image Contrast Enhancement Without Noise and Ringing Artifacts
Locally-adaptive image contrast enhancement without noise and ringing artifacts Citation for published version (APA): Cvetkovic, S. D., Schirris, J., & With, de, P. H. N. (2009). Locally-adaptive image contrast enhancement without noise and ringing artifacts. In Proceedings of the IEEE International Conference on Image Processing (ICIP 2007), October 16-19, 2007, San Antonio, Texas (pp. 557-560). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICIP.2007.4379370 DOI: 10.1109/ICIP.2007.4379370 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. -
Digital Signal Processing Tom Davinson
First SPES School on Experimental Techniques with Radioactive Beams INFN LNS Catania – November 2011 Experimental Challenges Lecture 4: Digital Signal Processing Tom Davinson School of Physics & Astronomy N I VE R U S I E T H Y T O H F G E D R I N B U Objectives & Outline Practical introduction to DSP concepts and techniques Emphasis on nuclear physics applications I intend to keep it simple … … even if it’s not … … I don’t intend to teach you VHDL! • Sampling Theorem • Aliasing • Filtering? Shaping? What’s the difference? … and why do we do it? • Digital signal processing • Digital filters semi-gaussian, moving window deconvolution • Hardware • To DSP or not to DSP? • Summary • Further reading Sampling Sampling Periodic measurement of analogue input signal by ADC Sampling Theorem An analogue input signal limited to a bandwidth fBW can be reproduced from its samples with no loss of information if it is regularly sampled at a frequency fs 2fBW The sampling frequency fs= 2fBW is called the Nyquist frequency (rate) Note: in practice the sampling frequency is usually >5x the signal bandwidth Aliasing: the problem Continuous, sinusoidal signal frequency f sampled at frequency fs (fs < f) Aliasing misrepresents the frequency as a lower frequency f < 0.5fs Aliasing: the solution Use low-pass filter to restrict bandwidth of input signal to satisfy Nyquist criterion fs 2fBW Digital Signal Processing D…igi wtahl aSt ignneaxtl? Processing Digital signal processing is the software controlled processing of sequential data derived from a digitised analogue signal. Some of the advantages of digital signal processing are: • functionality possible to implement functions which are difficult, impractical or impossible to achieve using hardware, e.g. -
Aliasing, Image Sampling and Reconstruction
https://youtu.be/yr3ngmRuGUc Recall: a pixel is a point… Aliasing, Image Sampling • It is NOT a box, disc or teeny wee light and Reconstruction • It has no dimension • It occupies no area • It can have a coordinate • More than a point, it is a SAMPLE Many of the slides are taken from Thomas Funkhouser course slides and the rest from various sources over the web… Image Sampling Imaging devices area sample. • An image is a 2D rectilinear array of samples • In video camera the CCD Quantization due to limited intensity resolution array is an area integral Sampling due to limited spatial and temporal resolution over a pixel. • The eye: photoreceptors Intensity, I Pixels are infinitely small point samples J. Liang, D. R. Williams and D. Miller, "Supernormal vision and high- resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884- 2892 (1997) 1 Aliasing Good Old Aliasing Reconstruction artefact Sampling and Reconstruction Sampling Reconstruction Slide © Rosalee Nerheim-Wolfe 2 Sources of Error Aliasing (in general) • Intensity quantization • In general: Artifacts due to under-sampling or poor reconstruction Not enough intensity resolution • Specifically, in graphics: Spatial aliasing • Spatial aliasing Temporal aliasing Not enough spatial resolution • Temporal aliasing Not enough temporal resolution Under-sampling Figure 14.17 FvDFH Sampling & Aliasing Spatial Aliasing • Artifacts due to limited spatial resolution • Real world is continuous • The computer world is discrete • Mapping a continuous function to a -
Analyze Bus Goals & Constraints
16: Windowed-Sinc Filters * Acknowledgment: This material is derived and adapted from “The Scientist and Engineer's Guide to Digital Signal processing”, Steven W. Smith WOO-CCI504-SCI-UoN 1 Windowed-sinc filter . Windowed-sinc filters are used to separate one band of frequencies from another. For this, they are very stable, consistent, and can deliver high performance levels. The exceptional frequency domain characteristics are obtained, however, at the expense of poor performance in the time domain, including excessive ripple and overshoot in the step response. When carried out by standard convolution, windowed-sinc filters are easy to program, but slow to execute. the FFT can be used to dramatically improve the computational speed of these filters. WOO-CCI504-SCI-UoN 2 Strategy of the Windowed-Sinc WOO-CCI504-SCI-UoN 3 Strategy of the Windowed-Sinc . the idea behind the windowed-sinc filter. [see Figure 16-1] . The frequency response of the ideal low-pass filter: . All frequencies below the cutoff frequency, fC, are passed with unity amplitude, while all higher frequencies are blocked. The passband is perfectly flat, the attenuation in the stopband is infinite, and the transition between the two is infinitesimally small. Taking the Inverse Fourier Transform of this ideal frequency response produces the ideal filter kernel (impulse response) which is the sinc function, given by: WOO-CCI504-SCI-UoN 4 Strategy of the Windowed-Sinc Figure 16-1 WOO-CCI504-SCI-UoN 5 Strategy of the Windowed-Sinc . Convolving an input signal with this (sinc) filter kernel should provides a perfect low-pass filter. Problem: the sinc function continues to both negative and positive infinity without dropping to zero amplitude.