The Efficacy of Xylo-Oligosaccharides in Supporting the Gut Health, Oxidative Status and Performance of Broilers

Total Page:16

File Type:pdf, Size:1020Kb

The Efficacy of Xylo-Oligosaccharides in Supporting the Gut Health, Oxidative Status and Performance of Broilers School of Animal, Rural and Environmental Sciences The efficacy of xylo-oligosaccharides in supporting the gut health, oxidative status and performance of broilers By Alexandra Desbruslais A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy May 2020 i Copyright statement « This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed to the owner of the intellectual property rights » ii Abstract Population growth and associated food security has led to pressure on the livestock production industries to increase both production output and production sustainability. The 2006 EU ban on the use of non-therapeutic antibiotics had created a need for alternative measures to support the health and growth of livestock. In recent years there has been increasing evidence that broilers may be experience high levels of oxidative stress. This has been linked with an emerging problem with poultry muscle meat myopathies such as woody breast, white stripe and spaghetti meat. Pre-biotics are one area being explored to fill this void. Xylanase is an exogenous enzyme routinely used in broiler production to reduce the anti-nutritional effects of non-starch polysaccharides present in viscous feed grains. It has been speculated that xylanase may also act as a prebiotic by hydrolysing long-chain polysaccharides in the diet into oligosaccharides that can be utilized for fermentation by microbiota in the hind gut. Subsequently, fermentation products can have antimicrobial and energy sparing effects that may be able to enhance broiler performance and gut health. Oligosaccharides have also been shown to have antioxidant properties. A series of bird trials and in vitro studies were conducted to investigate the effect of xylanase, arabinoxylans and xylo-oligosaccharides on the performance, gut health and oxidative status of broilers. Initially a bird trial investigated the effect of an arabinoxylan extract, with and without the addition of xylanase. This study showed performance benefits of supplementing broilers with an arabinoxylan extract with birds consistently gaining more weight than the other treatments (significant during days 21-28) and finally weighing on average over 100g more than the other treatments. Pre-treating the AX extract seemed to negate any performance benefits, possibly due to a mixing or distribution effect of the pre-treatment process. iii A second bird trial investigated the effect of two XOS products derived from different base materials with and without the addition of xylanase in a 3x2 factorial study. This study revealed very few performance effect but did show that xylanase inclusion increased the tibial breaking strength at day 21 and increased calcium digestibility at day 42. An in vitro study investigated novel antioxidant assays as a way to measure the oxidative status of broilers and the antioxidative properties of broiler feed and various commercial oligosaccharides. This study provided initial indications for optimizing the use of this assay in broilers and showed that all of the XOS products investigated had some antioxidative capacity. A final bird trial investigated the dose response of Signis®, a commercial XOS and xylanase supplement. This study compared a commercially recommended dose of 0.1g/kg Signis® with a dose of 0.2g/kg. This study showed significantly improved body weight gain, average bird weight for both doses of Signis® compared to the control and significantly improved feed conversion ratio for the 0.2g/kg dose compared to the control and 0.1g/kg dose. This study did not find any significant difference in digesta viscosity, suggesting that the performance enhancing effects of XOS/xylanase may be due to alternative mechanisms such as the production of xylanase by bacteria in the GIT. This project demonstrated that broilers can gain performance benefits from the supplementation of an AX extract without the addition of xylanase, suggesting that broilers may be able to ferment AX independently and that although broilers may not be able to produce endogenous xylanase, the microbiota within the intestinal tract may be able to and that viscosity and cell wall effects may not be responsible for all beneficial effects of XOS/xylanase supplementation. iv Acknowledgements When I joined NTU as a foundation degree student 5 and a half years ago, I never dreamt I would be where I am today. A number of people have made this incredible journey possible. Without my parents I would not have had the support or capacity to return to education. The endless childcare they have provided and financial help to ensure the needs of my children were met have played a large role in getting me to where I am today. Posthumously, I must that Graham Shelbourne who provided great support during my early years at NTU and suggested that working towards a PhD would be a good aim for me. He was a “once in a lifetime” mentor and is greatly missed by all. During my time with the NTU Poultry Research team I have received immense support, help and friendship from each and every member of the team. Dr Dawn Scholey as my director of studies and Dr Emily Burton have always gone above and beyond the call of duty to ensure both my personal and professional progression. Likewise, I’d like to thank the poultry technical team. They have always helped where they could, and some will remain friends for life. I must say an enormous thank-you to my husband Nick, who joined this journey part-way through, but has always believed in me (often/always), more than I believed in myself. Without his support, childcare and encouragement, I have no doubt that I would not be here today. Finally, my children Gus and Felix need a big thank you for enduring my absence – particularly over Christmas 2019 when I was holed up in the lab ploughing through analysis and during the Corona virus lockdown of 2020 when I was writing up. v List of abbreviations AX – Arabinoxylan AXOS - Arabinoxylan oligosaccharides BWG – Body weight gain BW – Bird weight Ca – Calcium DDGHS – Distillers dried grains with solubles EPEF – European Poultry Efficiency Factor FCR – Feed Conversion Ratio FD – Freeze dried FI – Feed intake ICP-OES – Inductively coupled plasma-optical emission spectrometer KS – Kolmogorov Smirnoff ANOVA – Analysis of variance NSP Non-starch polysaccharide NDO – Non digestible oligosaccharide VFA – Volatile fatty acid XYL – xylanase XOS – xylo-oligosaccharide vi Table of Contents Abstract .................................................................................................................................................. iii Acknowledgements ................................................................................................................................. v List of abbreviations ............................................................................................................................... vi List of Figures ........................................................................................................................................xiv List of Tables .........................................................................................................................................xvi Chapter 1 Review of the literature ......................................................................................................... 1 1.1 Introduction .................................................................................................................................. 1 1.2 Population growth ........................................................................................................................ 3 1.3 Growth of the Poultry Industry ..................................................................................................... 3 1.4 The Avian Digestive Tract .............................................................................................................. 6 1.4.1 The Alimentary canal ............................................................................................................. 6 1.4.2 The Mouth Structure.............................................................................................................. 7 1.4.3 Salivary Glands ....................................................................................................................... 8 1.4.4 Pharynx and Tongue .............................................................................................................. 8 1.4.5 Oesophagus and Crop ............................................................................................................ 8 1.4.6 Proventriculus ........................................................................................................................ 9 1.4.7 Small intestine ........................................................................................................................ 9 1.4.8 Large Intestine – Caeca and Colon ....................................................................................... 11 1.5 Antibiotic growth promotors .....................................................................................................
Recommended publications
  • And Organoleptic Evaluation of XOS Added Prawn Patia and Black Rice Kheer
    Bioactive Compounds in Health and Disease 2020; 3(1): 1-14 Page 1 of 14 Research Article Open Access An in vitro study of the prebiotic properties of Xylooligosaccharide (XOS) and organoleptic evaluation of XOS added Prawn patia and Black rice kheer. Abnita Thakuria1, Mini Sheth1, Sweta Patel2, Sriram Seshadri2 1Department of Foods and Nutrition, Faculty of Family and Community Sciences, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India, 2Institute of Science, Nirma University, Ahmedabad, Gujarat, India Corresponding Author: Abnita Thakuria, PhD research scholar, Department of Foods and Nutrition, Faculty of Family and Community Sciences, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India Submission Date: December 12th, 2019 Acceptance Date: January 20th, 2020, Publication Date: January 31st, 2020 Citation: Thakuria A, Sheth M, Patel S, Sriram. An in vitro study of the prebiotic properties of Xylooligosaccharide (XOS) and organoleptic evaluation of XOS added Prawn patia and Black rice kheer. Bioactive Compounds in Health and Disease 2020; 3(1): 1-14 DOI: https://doi.org/10.31989/bchd.v3i1.682 ABSTRACT Background: There is emerging evidence that functional foods ingredients can have an impact on a number of gut related diseases and dysfunctions [1]. A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers health benefits [2]. Besides providing the health benefits, prebiotics are known to extend technological advantages in favour of improved organoleptic qualities of the food products. Xylooligosaccharides (XOS) is a stable prebiotic which can withstand heat up to 100℃ under acidic conditions (pH= 2.5-8) and has a potential to be incorporated into food products [3].
    [Show full text]
  • Effect of Prebiotic Supplementation on Performance and Health of Dairy Calves: Protocol for a Systematic Review and Meta-Analysis R
    Effect of prebiotic supplementation on performance and health of dairy calves: protocol for a systematic review and meta-analysis R. B. Lopes1, E. D. Fausak1, C. Bernal-Córdoba1, N. Silva-del-Río1* 1University of California Davis, US; [email protected] (RBL); [email protected] (EDF); [email protected] (CBC); [email protected] (NSDR) *Corresponding author: Veterinary Medicine Teaching and Research Center, University of California Davis, 18830 Road 112, Tulare, CA, 93274, Phone: 559-688-1731, Fax: 559-686- 4231. Author Contributions: RBL: Assist to develop search strategy and literature search, data screening, extraction, statistical analysis, and protocol and manuscript preparation. EDF: Develop search strategy and literature search, edit protocol. CBC: Data screening, review data extraction, review protocol and manuscript. NSDR: Assist, edit and review protocol and manuscript. Amendments: Any amendments to this protocol will be documented and justified in the final review. Support: This study is financially supported by the California Department of Food and Agriculture (CDFA) and it is part of the Antimicrobial Use and Stewardship (AUS) program. INTRODUCTION Rationale In the dairy industry, the treatment of sick calves is commonly based on the antibiotic use by systematic therapy or addition into the milk (Foutz et al., 2018; Urie et al., 2018). The overuse and misuse of antibiotics contribute to the development of antimicrobial resistance, which is a threat to both animal and human health. Thus, it is fundamental to investigate preventative strategies, such as prebiotics, to reduce the incidence of diseases and consequently the use of antibiotics. According to the International Scientific Association for Probiotics and Prebiotics, prebiotic is a “substrate that is selectively utilized by host microorganisms conferring a health benefit” (Gibson et al., 2017).
    [Show full text]
  • Analysing the Effect of Dietary Prebiotics and Probiotics on Gut Bacterial Richness and Diversity of Asian Snakehead Fingerlings Using T‐RFLP Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Rothamsted Repository Received: 26 December 2017 | Revised: 11 July 2018 | Accepted: 14 July 2018 DOI: 10.1111/are.13799 ORIGINAL ARTICLE Analysing the effect of dietary prebiotics and probiotics on gut bacterial richness and diversity of Asian snakehead fingerlings using T‐RFLP method Mohammad Bodrul Munir1 | Terence L. Marsh2 | Aimeric Blaud3 | Roshada Hashim4 | Wizilla Janti Anak Joshua1 | Siti Azizah Mohd Nor5 1Aquatic Resource Science and Management, Faculty of Resource Science Abstract and Technology, Universiti Malaysia This study was designed to evaluate the effects of three prebiotics (β‐glucan, Sarawak, Kota Samarahan, Sarawak, Malaysia galacto‐oligosaccharide [GOS], mannan‐oligosaccharide [MOS]) and two probiotics 2Department of Microbiology and (Saccharomyces cerevisiae, Lactobacillus acidophilus) on the microbiome of snakehead Molecular Genetics, Biomedical & Physical during growth of fingerlings. In addition, the experiment evaluated the capacity of Sciences, Michigan State University, East Lansing, Michigan, Channa striata fingerlings to retain the benefits derived from these supplements 3Department of Sustainable Agriculture after withdrawal. Throughout the study, it was observed that supplementation with Science, Rothamsted Research, Harpenden, < UK dietary prebiotics and probiotics led to significant (p 0.05) change in gut bacterial 4Faculty of Science and Technology, profile and improvement in gut morphology. Terminal restriction fragment length Universiti Sains Islamic Malaysia, Bandar polymorphism (T‐RFLP) was used for the comparative analysis of gut communities Baru Bangi, Malaysia ‐ 5Institute of Marine Biotechnology, and all 46 of the T RFLP detected phylotypes were present in the Lactobacillus sup- Universiti Malaysia Terengganu, Kuala plemented fish, while significantly fewer were detected in controls and other experi- Terengganu, Malaysia mental supplement regimes.
    [Show full text]
  • Ep 0646326 A1
    Europaisches Patentamt J European Patent Office © Publication number: 0 646 326 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94113646.7646.7 © Int. CI.6: A23L 1/236 @ Date of filing: 31.08.94 © Priority: 01.09.93 JP 239227/93 © Applicant: IWATA CHEMICAL CO., LTD. 15.08.94 JP 213186/94 3069, Nakaizumi Iwata-shi, @ Date of publication of application: Shizuoka-ken 438 (JP) 05.04.95 Bulletin 95/14 @ Inventor: Noguchi, Yuichi, c/o Iwata Chemical © Designated Contracting States: Co., Ltd. BE CH DE FR GB LI 3069, Nakaizumi, Iwata-shi Shizuoka-ken 438 (JP) Inventor: Moriya, Yoshiyuki, c/o Iwata Chemical Co., Ltd. 3069, Nakaizumi, Iwata-shi Shizuoka-ken 438 (JP) © Representative: Henkel, Feiler, Hanzel & Partner Mohlstrasse 37 D-81675 Munchen (DE) © Sweetening composition and process for its production. © A sweetening composition comprises an oligosaccharide in powder or granulated form that is film coated or otherwise coated with at least one synthetic sweetener selected from the group consisting of 4,1',6'-trichloro- 4,1 ',6'-trideoxygalactosucrose, 6-methyl- 3,4-dihydro-1 ,2,3-oxathiazine-4-one-2,2-dioxide-potassium, 3-(L-aspar- tyl-D-alanine-amide)-2,2,4,4-tetramethylethane and a-L-aspartyl-L-phenylalanine methyl ester. CO CM CO CO CO Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 646 326 A1 BACKGROUND OF THE INVENTION This invention relates to a sweetening composition for use in food and beverages that contains oligosaccharides as rendered less hygroscopic and more flowable so that its particles will not readily stick 5 together.
    [Show full text]
  • Dimers of Trichogin
    ACTAACTA UNIVERSITATISUNIVERSITATIS CIBINIENSISCIBINIENSIS 10.1515/aucft-2016 - 0009 SeriesSeries E:E: FoodFood technologytechnology ASSESSMENT AND DETERMINATION OF LYOPROTECTANT FOR SURVIVAL OF FREEZE-DRIED LACTOBACILLUS RHAMNOSUS Zongcheng MIAO*1, Yang ZHAO, Xiaoping HUO * Department of Applied Statistics and Science, Xijing University, Xi’an, Shaanxi 710123, China Abstract: Currently research of lactic acid bacteria focus primarily on the functional probiotics, which are major beneficial biota in the gastrointestinal tract, have been industrial manufactured. Probiotics confer health benefits on the host need adequate amounts. However, the absence of data makes it difficult to ensure the maintenance biological activities and population of probiotic. In this research, a fractional factorial design and steepest ascent experiment were used to analyze the influence of lyoprotectant as carbohydrates, prebiotics and amino acids on the survival of the probiotic Lactobacillus rhamnosus. The results indicated a maximum survival rate and population of viable bacteria of L. rhamnosus to be 55.84 % and 1.60 ×1011 CFU/g after freeze-dried by using a combination of 10 g/100mL Sucrose, 2.5 g/100mL Isomaltooligosaccharide, 12 g/100mL Hydroxyproline. To a large extent, the survival and viability were dependent on the cryoprotectant used and make probiotics more attractive from a practical application in industrial viewpoint. Keywords: Lactobacillus rhamnosus, freeze drying, lyoprotectant, prebiotic, amino acids INTRODUCTION The probiotic Lactobacillus rhamnosus (L. rhamnosus) was widely used for the health benefis on hunman beings. The role of this bacteria in host health can be summarized as prevention of cancer (Fang et al., 2014), reduction in allergies (Canani et al., 2016), increase resistance of the host to against influenza virus infection (Song et al., 2016), antibiotic-associated diarrhoea (Szajewska et al., 2016), inhibit colonization of pathogen (Beltran et al., 2016) 1 Corresponding author.
    [Show full text]
  • Effects of Mannan-Oligosaccharides and Xylo-Oligosaccharides on the Chicken
    Effects of mannan-oligosaccharides and xylo-oligosaccharides on the chicken gut microbiota By Mohsen Pourabedin Department of Animal Science McGill University, Montreal August 2015 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy © Mohsen Pourabedin, 2015 Table of contents Abstract .......................................................................................................................................... v Acknowledgements .................................................................................................................... viii Contributions of authors ............................................................................................................. ix List of tables.................................................................................................................................. xi List of figures ............................................................................................................................... xii List of abbreviations .................................................................................................................. xiv Chapter 1. General introduction ............................................................................................ 1 1.1 Objectives ....................................................................................................................... 3 1.2 References ......................................................................................................................
    [Show full text]
  • Effects of Corncob Derived Xylooligosaccharide On
    Aquaculture 495 (2018) 786–793 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aquaculture Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis T niloticus) fingerlings Hien Van Doana, Seyed Hossein Hoseinifarb, Caterina Faggioc, Chanagun Chitmanatd, ⁎ Nguyen Thi Maie, Sanchai Jaturasithaa, Einar Ringøf, a Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand b Department of Fisheries Gorgan, University of Agricultural Sciences and Natural Resources, Gorgan, Iran c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata, Messina, Italy d Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand e Department of Aquaculture, Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam f Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway. ARTICLE INFO ABSTRACT Keywords: An-eight week experiment was conducted to test efficacy of corncob derived xylooligosaccharides (CDXOS) on Corncob mucosal and serum immune, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Xylooligosaccharide Three hundred and twenty tilapia fingerlings (20.72 ± 0.02 g) were fed the following diets; 0 (Diet 1- control), − Nile tilapia added 5 – (Diet 2), 10 – (Diet 3), and 20 g kg 1 CDXOS (Diet 4). After 4 and 8 weeks feeding were mucosal, Growth performance serum immune responses, and growth performance measured. A challenge test (15 days) against Streptococcus Mucosal immune parameters agalactiae was conducted after 8 weeks post-feeding.
    [Show full text]
  • In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota
    International Journal of Molecular Sciences Article In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota Sophie Fehlbaum 1,*, Kevin Prudence 1, Jasper Kieboom 2, Margreet Heerikhuisen 2, Tim van den Broek 2, Frank H. J. Schuren 2, Robert E. Steinert 1 and Daniel Raederstorff 1 1 DSM Nutritional Products Ltd., R&D Human Nutrition and Health, 4002 Basel, Switzerland; [email protected] (K.P.); [email protected] (R.E.S.); [email protected] (D.R.) 2 The Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands; [email protected] (J.K.); [email protected] (M.H.); [email protected] (T.v.d.B.); [email protected] (F.H.J.S.) * Correspondence: [email protected] Received: 31 August 2018; Accepted: 3 October 2018; Published: 10 October 2018 Abstract: Recently, the concept of prebiotics has been revisited to expand beyond non-digestible oligosaccharides, and the requirements for selective stimulation were extended to include microbial groups other than, and additional to, bifidobacteria and lactobacilli. Here, the gut microbiota-modulating effects of well-known and novel prebiotics were studied. An in vitro fermentation screening platform (i-screen) was inoculated with adult fecal microbiota, exposed to different dietary fibers that had a range of concentrations (inulin, alpha-linked galacto-oligosaccharides (alpha-GOS), beta-linked GOS, xylo-oligosaccharides (XOS) from corn cobs and high-fiber sugar cane, and beta-glucan from oats), and compared to a positive fructo-oligosaccharide (FOS) control and a negative control (no fiber addition).
    [Show full text]
  • Metabolic Profiling of Xylooligosaccharides by Lactobacilli
    polymers Article Metabolic Profiling of Xylooligosaccharides by Lactobacilli Ilia Iliev 1,2,*, Tonka Vasileva 1, Veselin Bivolarski 1 , Albena Momchilova 3 and Iskra Ivanova 4 1 Department of Biochemistry and Microbiology, Plovdiv University, 4000 Plovdiv, Bulgaria; [email protected] (T.V.); [email protected] (V.B.) 2 Centre of Technologies, Plovdiv University, 4000 Plovdiv, Bulgaria 3 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] 4 Department of General and Applied Microbiology, Sofia University, 1164 Sofia, Bulgaria; [email protected] * Correspondence: [email protected]; Tel.: +359-322-61-449 Received: 16 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Three lactic acid bacteria (LAB) strains identified as Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus sakei isolated from meat products were tested for their ability to utilize and grow on xylooligosaccharides (XOSs). The extent of carbohydrate utilization by the studied strains was analyzed by HPLC. All three strains showed preferences for the degree of polymerization (DP). The added oligosaccharides induced the LAB to form end-products of typical mixed-acid fermentation. The utilization of XOSs by the microorganisms requires the action of three important enzymes: β-xylosidase (EC 3.2.1.37) exo-oligoxylanase (EC 3.2.1.156) and α-L-arabinofuranosidase (EC 3.2.1.55). The presence of intracellular β-D-xylosidase in Lb. brevis, Lb. plantarum, and Lb. sakei suggest that XOSs might be the first imported into the cell by oligosaccharide transporters, followed by their degradation to xylose. The studies on the influence of XOS intake on the lipids of rat liver plasma membranes showed that oligosaccharides display various beneficial effects for the host organism, which are probably specific for each type of prebiotic used.
    [Show full text]
  • Supporting Document 1 – Risk and Technical Assessment Report (Pdf
    13 December 2016 [31–16] Supporting document 1 Risk and technical assessment report – Application A1123 Isomalto-oligosaccharide as a Novel Food Executive summary FSANZ conducted a risk assessment on the request to permit isomalto-oligosaccharide (IMO) as a novel food for use as an alternative (lower energy) sweetener and bulk filler in a range of foods. This report contains a food technology report, a hazard assessment and a dietary exposure assessment. The food technology assessment concluded that when IMO is used as an ingredient to replace sugars mainly sucrose in a food, it meets the stated purposes of a bulk filler and, according to the Applicant’s reported composition of IMO and FSANZ’s proposed specification for IMO, it could be a sweetener with less sugars compared to sucrose. The Applicant did not request a separate energy factor for IMO. IMO has a history of safe use in humans. IMO is not efficiently converted to glucose in the small intestine so the majority (~60–70%) of the ingested IMO is likely to pass unchanged into the colon. There is no evidence of adverse gastro-intestinal effects (e.g. diarrhoea) in healthy humans up to a single daily dose of 40 g, and IMO did not cause any abdominal symptoms (e.g. laxative effects) in any subjects at this level. In the absence of any identifiable hazard, an Acceptable Daily Intake (ADI) ‘not specified’ is considered appropriate. However, it is anticipated that IMO will be poorly tolerated by individuals with congenital or acquired sucrase-isomaltase deficiency. A chronic dietary exposure assessment was not required due to the ADI of ‘not specified’ being assigned.
    [Show full text]
  • Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide
    nutrients Article Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide Justin L. Carlson 1,†, Jennifer M. Erickson 1,†, Julie M. Hess 1 ID , Trevor J. Gould 2 and Joanne L. Slavin 1,* 1 Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA; [email protected] (J.L.C.); [email protected] (J.M.E.); [email protected] (J.M.H.) 2 Informatics Institute, University of Minnesota, 101 Pleasant St., Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-612-624-7234 † Authors contributed equally to this work. Received: 27 October 2017; Accepted: 13 December 2017; Published: 15 December 2017 Abstract: Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 µmol/mL) compared to inulin, WholeFiber and XOS samples (p < 0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h.
    [Show full text]
  • Comparing the in Vitro Fermentations of Beta-Glucan, Inulin And
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2017 doi:10.20944/preprints201710.0171.v1 Peer-reviewed version available at Nutrients 2017, 9, 1361; doi:10.3390/nu9121361 1 Article 2 Prebiotic Dietary Fiber and Gut Health: Comparing the In Vitro 3 Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. 4 Justin L. Carlson1+, Jennifer M. Erickson1+, Julie M. Hess1, Trevor J. Gould2, Joanne L. Slavin1* 5 6 1 Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave St. Paul, MN 55108 7 2 Informatics Institute, University of Minnesota, 101 Pleasant St, Minneapolis, MN 55455 8 9 + Authors contributed equally to this work 10 * Correspondence: [email protected] ; Tel.: +1 612-624-7234 11 Abstract: Prebiotic dietary fiber supplements are commonly consumed to help meet fiber 12 recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the 13 production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of 14 this research project was to compare potential prebiotic effects and fermentability of five 15 commonly consumed fibers using an in vitro fermentation system measuring changes in fecal 16 microbiota, total gas production and formation of common SCFAs. Fecal donations were collected 17 from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell 18 (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), 19 WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. 20 Oatwell had the highest production of propionate at 12 h (4.76 μmol/mL) compared to inulin, 21 WholeFiber and XOS samples (p<0.03).
    [Show full text]