1. Examples of Dynamical Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fractal Growth on the Surface of a Planet and in Orbit Around It
Wilfrid Laurier University Scholars Commons @ Laurier Physics and Computer Science Faculty Publications Physics and Computer Science 10-2014 Fractal Growth on the Surface of a Planet and in Orbit around It Ioannis Haranas Wilfrid Laurier University, [email protected] Ioannis Gkigkitzis East Carolina University, [email protected] Athanasios Alexiou Ionian University Follow this and additional works at: https://scholars.wlu.ca/phys_faculty Part of the Mathematics Commons, and the Physics Commons Recommended Citation Haranas, I., Gkigkitzis, I., Alexiou, A. Fractal Growth on the Surface of a Planet and in Orbit around it. Microgravity Sci. Technol. (2014) 26:313–325. DOI: 10.1007/s12217-014-9397-6 This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons @ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. 1 Fractal Growth on the Surface of a Planet and in Orbit around it 1Ioannis Haranas, 2Ioannis Gkigkitzis, 3Athanasios Alexiou 1Dept. of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada 2Departments of Mathematics and Biomedical Physics, East Carolina University, 124 Austin Building, East Fifth Street, Greenville, NC 27858-4353, USA 3Department of Informatics, Ionian University, Plateia Tsirigoti 7, Corfu, 49100, Greece Abstract: Fractals are defined as geometric shapes that exhibit symmetry of scale. This simply implies that fractal is a shape that it would still look the same even if somebody could zoom in on one of its parts an infinite number of times. -
An Image Cryptography Using Henon Map and Arnold Cat Map
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 An Image Cryptography using Henon Map and Arnold Cat Map. Pranjali Sankhe1, Shruti Pimple2, Surabhi Singh3, Anita Lahane4 1,2,3 UG Student VIII SEM, B.E., Computer Engg., RGIT, Mumbai, India 4Assistant Professor, Department of Computer Engg., RGIT, Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this digital world i.e. the transmission of non- 2. METHODOLOGY physical data that has been encoded digitally for the purpose of storage Security is a continuous process via which data can 2.1 HENON MAP be secured from several active and passive attacks. Encryption technique protects the confidentiality of a message or 1. The Henon map is a discrete time dynamic system information which is in the form of multimedia (text, image, introduces by michel henon. and video).In this paper, a new symmetric image encryption 2. The map depends on two parameters, a and b, which algorithm is proposed based on Henon’s chaotic system with for the classical Henon map have values of a = 1.4 and byte sequences applied with a novel approach of pixel shuffling b = 0.3. For the classical values the Henon map is of an image which results in an effective and efficient chaotic. For other values of a and b the map may be encryption of images. The Arnold Cat Map is a discrete system chaotic, intermittent, or converge to a periodic orbit. that stretches and folds its trajectories in phase space. Cryptography is the process of encryption and decryption of 3. -
WHAT IS a CHAOTIC ATTRACTOR? 1. Introduction J. Yorke Coined the Word 'Chaos' As Applied to Deterministic Systems. R. Devane
WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties that characterize chaos. We also discuss how this term can be combined with the definition of an attractor. 1. Introduction J. Yorke coined the word `chaos' as applied to deterministic systems. R. Devaney gave the first mathematical definition for a map to be chaotic on the whole space where a map is defined. Since that time, there have been several different definitions of chaos which emphasize different aspects of the map. Some of these are more computable and others are more mathematical. See [9] a comparison of many of these definitions. There is probably no one best or correct definition of chaos. In this paper, we discuss what we feel is one of better mathematical definition. (It may not be as computable as some of the other definitions, e.g., the one by Alligood, Sauer, and Yorke.) Our definition is very similar to the one given by Martelli in [8] and [9]. We also combine the concepts of chaos and attractors and discuss chaotic attractors. 2. Basic definitions We start by giving the basic definitions needed to define a chaotic attractor. We give the definitions for a diffeomorphism (or map), but those for a system of differential equations are similar. The orbit of a point x∗ by F is the set O(x∗; F) = f Fi(x∗) : i 2 Z g. An invariant set for a diffeomorphism F is an set A in the domain such that F(A) = A. -
MA427 Ergodic Theory
MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different. -
Attractors and Orbit-Flip Homoclinic Orbits for Star Flows
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 8, August 2013, Pages 2783–2791 S 0002-9939(2013)11535-2 Article electronically published on April 12, 2013 ATTRACTORS AND ORBIT-FLIP HOMOCLINIC ORBITS FOR STAR FLOWS C. A. MORALES (Communicated by Bryna Kra) Abstract. We study star flows on closed 3-manifolds and prove that they either have a finite number of attractors or can be C1 approximated by vector fields with orbit-flip homoclinic orbits. 1. Introduction The notion of attractor deserves a fundamental place in the modern theory of dynamical systems. This assertion, supported by the nowadays classical theory of turbulence [27], is enlightened by the recent Palis conjecture [24] about the abun- dance of dynamical systems with finitely many attractors absorbing most positive trajectories. If confirmed, such a conjecture means the understanding of a great part of dynamical systems in the sense of their long-term behaviour. Here we attack a problem which goes straight to the Palis conjecture: The fini- tude of the number of attractors for a given dynamical system. Such a problem has been solved positively under certain circunstances. For instance, we have the work by Lopes [16], who, based upon early works by Ma˜n´e [18] and extending pre- vious ones by Liao [15] and Pliss [25], studied the structure of the C1 structural stable diffeomorphisms and proved the finitude of attractors for such diffeomor- phisms. His work was largely extended by Ma˜n´e himself in the celebrated solution of the C1 stability conjecture [17]. On the other hand, the Japanesse researchers S. -
ROTATION THEORY These Notes Present a Brief Survey of Some
ROTATION THEORY MICHALMISIUREWICZ Abstract. Rotation Theory has its roots in the theory of rotation numbers for circle homeomorphisms, developed by Poincar´e. It is particularly useful for the study and classification of periodic orbits of dynamical systems. It deals with ergodic averages and their limits, not only for almost all points, like in Ergodic Theory, but for all points. We present the general ideas of Rotation Theory and its applications to some classes of dynamical systems, like continuous circle maps homotopic to the identity, torus homeomorphisms homotopic to the identity, subshifts of finite type and continuous interval maps. These notes present a brief survey of some aspects of Rotation Theory. Deeper treatment of the subject would require writing a book. Thus, in particular: • Not all aspects of Rotation Theory are described here. A large part of it, very important and deserving a separate book, deals with homeomorphisms of an annulus, homotopic to the identity. Including this subject in the present notes would make them at least twice as long, so it is ignored, except for the bibliography. • What is called “proofs” are usually only short ideas of the proofs. The reader is advised either to try to fill in the details himself/herself or to find the full proofs in the literature. More complicated proofs are omitted entirely. • The stress is on the theory, not on the history. Therefore, references are not cited in the text. Instead, at the end of these notes there are lists of references dealing with the problems treated in various sections (or not treated at all). -
ORBIT EQUIVALENCE of ERGODIC GROUP ACTIONS These Are Partial Lecture Notes from a Topics Graduate Class Taught at UCSD in Fall 2
1 ORBIT EQUIVALENCE OF ERGODIC GROUP ACTIONS ADRIAN IOANA These are partial lecture notes from a topics graduate class taught at UCSD in Fall 2019. 1. Group actions, equivalence relations and orbit equivalence 1.1. Standard spaces. A Borel space (X; BX ) is a pair consisting of a topological space X and its σ-algebra of Borel sets BX . If the topology on X can be chosen to the Polish (i.e., separable, metrizable and complete), then (X; BX ) is called a standard Borel space. For simplicity, we will omit the σ-algebra and write X instead of (X; BX ). If (X; BX ) and (Y; BY ) are Borel spaces, then a map θ : X ! Y is called a Borel isomorphism if it is a bijection and θ and θ−1 are Borel measurable. Note that a Borel bijection θ is automatically a Borel isomorphism (see [Ke95, Corollary 15.2]). Definition 1.1. A standard probability space is a measure space (X; BX ; µ), where (X; BX ) is a standard Borel space and µ : BX ! [0; 1] is a σ-additive measure with µ(X) = 1. For simplicity, we will write (X; µ) instead of (X; BX ; µ). If (X; µ) and (Y; ν) are standard probability spaces, a map θ : X ! Y is called a measure preserving (m.p.) isomorphism if it is a Borel isomorphism and −1 measure preserving: θ∗µ = ν, where θ∗µ(A) = µ(θ (A)), for any A 2 BY . Example 1.2. The following are standard probability spaces: (1) ([0; 1]; λ), where [0; 1] is endowed with the Euclidean topology and its Lebegue measure λ. -
Infinitely Renormalizable Quadratic Polynomials 1
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 11, Pages 5077{5091 S 0002-9947(00)02514-9 Article electronically published on July 12, 2000 INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS YUNPING JIANG Abstract. We prove that the Julia set of a quadratic polynomial which ad- mits an infinite sequence of unbranched, simple renormalizations with complex bounds is locally connected. The method in this study is three-dimensional puzzles. 1. Introduction Let P (z)=z2 + c be a quadratic polynomial where z is a complex variable and c is a complex parameter. The filled-in Julia set K of P is, by definition, the set of points z which remain bounded under iterations of P .TheJulia set J of P is the boundary of K. A central problem in the study of the dynamical system generated by P is to understand the topology of a Julia set J, in particular, the local connectivity for a connected Julia set. A connected set J in the complex plane is said to be locally connected if for every point p in J and every neighborhood U of p there is a neighborhood V ⊆ U such that V \ J is connected. We first give the definition of renormalizability. A quadratic-like map F : U ! V is a holomorphic, proper, degree two branched cover map, whereT U and V are ⊂ 1 −n two domains isomorphic to a disc and U V .ThenKF = n=0 F (U)and JF = @KF are the filled-in Julia set and the Julia set of F , respectively. We only consider those quadratic-like maps whose Julia sets are connected. -
January 3, 2019 Dynamical Systems B. Solomyak LECTURE 11
January 3, 2019 Dynamical Systems B. Solomyak LECTURE 11 SUMMARY 1. Hyperbolic toral automorphisms (cont.) d d d Let A be d × d integer matrix, with det A = ±1. Consider T = R =Z (the d- dimensional torus). d Definition 1.1. The map TA(x) = Ax (mod Z ) is called the toral automorphism asso- ciated with A. d Proposition 1.2. TA is a group automorphism; in fact, every automorphism of T has such a form. Definition 1.3. The automorphism is called hyperbolic if A is hyperbolic, that is, A has no eigenvalues of absolute value one. " # 2 1 Example 1.4 (Arnold's \cat map"). This is TA for A = . 1 1 Theorem 1.5 (see [1, x2.4]). Every hyperbolic toral automorphism is chaotic. We will see the proof for d = 2, for simplicity, following [1, 2]. The proof will be broken into lemmas. The first one was already covered on December 27. m n 2 Lemma 1.6. The points with rational coordinates f( k ; k ); m; n; k 2 Ng (mod Z ) are 2 dense in T , and they are all periodic for TA. Lemma 1.7. Let A be a hyperbolic 2×2 matrix. Thus it has two real eigenvalues: jλ1j > 1 and jλ2j < 1. Then the eigenvalues are irrational and the eigenvectors have irrational slopes. Let Es, Eu be the stable and unstable subspaces for A, respectively; they are one- dimensional and are spanned by the eigenvectors. s u Consider the point 0 = (0; 0) on the torus; it is fixed by TA. -
A BRIEF INTRODUCTION to ERGODIC THEORY 1. Dynamics
A BRIEF INTRODUCTION TO ERGODIC THEORY ALEX FURMAN Abstract. These are expanded notes from four introductory lectures on Er- godic Theory, given at the Minerva summer school Flows on homogeneous spaces at the Technion, Haifa, Israel, in September 2012. 1. Dynamics on a compact metrizable space Given a compact metrizable space X, denote by C(X) the space of continuous functions f : X ! C with the uniform norm kfku = max jf(x)j: x2X This is a separable Banach space (see Exs 1.2.(a)). Denote by Prob(X) the space of all regular probability measures on the Borel σ-algebra of X. By Riesz represen- tation theorem, the dual C(X)∗ is the space Meas(X) of all finite signed regular Borel measures on X with the total variation norm, and Prob(X) ⊂ Meas(X) is the subset of Λ 2 C(X)∗ that are positive (Λ(f) ≥ 0 whenever f ≥ 0) and normalized (Λ(1) = 1). Thus Prob(X) is a closed convex subset of the unit ball of C(X)∗, it is compact and metrizable with respect to the weak-* topology defined by weak∗ Z Z µn −! µ iff f dµn−! f dµ (8f 2 C(X)): X X Definition 1.1. Let X be a compact metrizable space and µ 2 Prob(X). 1 1 A sequence fxngn=0 is µ-equidistributed if n (δx0 +δx1 +···+δxn−1 ) weak-* converge to µ, that is if N−1 1 X Z lim f(xn) = f dµ (f 2 C(X)): N!1 N n=0 X Let T : X ! X be a continuous map and µ 2 Prob(X). -
Dynamical Systems and Ergodic Theory
MATH36206 - MATHM6206 Dynamical Systems and Ergodic Theory Teaching Block 1, 2017/18 Lecturer: Prof. Alexander Gorodnik PART III: LECTURES 16{30 course web site: people.maths.bris.ac.uk/∼mazag/ds17/ Copyright c University of Bristol 2010 & 2016. This material is copyright of the University. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. Chapter 3 Ergodic Theory In this last part of our course we will introduce the main ideas and concepts in ergodic theory. Ergodic theory is a branch of dynamical systems which has strict connections with analysis and probability theory. The discrete dynamical systems f : X X studied in topological dynamics were continuous maps f on metric spaces X (or more in general, topological→ spaces). In ergodic theory, f : X X will be a measure-preserving map on a measure space X (we will see the corresponding definitions below).→ While the focus in topological dynamics was to understand the qualitative behavior (for example, periodicity or density) of all orbits, in ergodic theory we will not study all orbits, but only typical1 orbits, but will investigate more quantitative dynamical properties, as frequencies of visits, equidistribution and mixing. An example of a basic question studied in ergodic theory is the following. Let A X be a subset of O+ ⊂ the space X. Consider the visits of an orbit f (x) to the set A. If we consider a finite orbit segment x, f(x),...,f n−1(x) , the number of visits to A up to time n is given by { } Card 0 k n 1, f k(x) A . -
On Orbit Equivalence of Quasiconformal Anosov Flows Yong Fang
On orbit equivalence of quasiconformal Anosov flows Yong Fang To cite this version: Yong Fang. On orbit equivalence of quasiconformal Anosov flows. 2005. hal-00004412 HAL Id: hal-00004412 https://hal.archives-ouvertes.fr/hal-00004412 Preprint submitted on 10 Mar 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On Orbit Equivalence of Quasiconformal Anosov Flows Yong Fang U.M.R. 7501 du C.N.R.S, Institut de Recherche Math´ematique Avanc´ee, 7 rue Ren´eDescartes, 67084 Strasbourg C´edex, France (e-mail : [email protected]) Abstract – We classify up to C∞ orbit equivalence the volume-preserving quasiconformal Anosov flows whose strong stable and strong unstable distri- butions are at least three-dimensional. If one of the strong distributions is two-dimensional, then we get a partial classification. Using these classifica- tion results, we obtain the following rigidity result : Let Φ the the orbit foliation of the geodesic flow of a closed hyperbolic manifold of dimension at least three. Let Ψ be another C∞ one-dimensional foliation. If Φ is C1 conjuguate to Ψ, then Φ is C∞ conjuguate to Ψ.