The History of Telescopes and Binoculars: an Engineering Perspective

Total Page:16

File Type:pdf, Size:1020Kb

The History of Telescopes and Binoculars: an Engineering Perspective Plenary Paper The History of Telescopes and Binoculars: An Engineering Perspective John E. Greivenkamp∗ and David L. Steed College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, AZ 85721 ABSTRACT The design of the refracting telescope advanced rapidly following its invention in 1608, reaching its modern configuration in about a century. Even though the development of binoculars began almost simultaneously, nearly three hundred years elapsed before practical prismatic binoculars became available. The impediments to practical binoculars were not only in optical design, but in mechanical design, manufacturing, and materials. This paper will document the history of telescopes and binoculars from an engineering perspective looking at the evolution of basic optical system layout as well as some of the mechanical issues faced. This development will be illuminated using examples from the Museum of Optics at the College of Optical Sciences at the University of Arizona. Keywords: Binoculars, Telescopes, History of Optics, Antique Optics, Optical Design, Optical Instrumentation 1. INTRODUCTION The development of practical handheld refracting telescopes and binoculars is much more than the story of optical design. It must be told in conjunction with advances in mechanical design, manufacturing technology and materials development. A strong argument can be made that the path to modern optical instrumentation is as dependent on the availability of precision brass tubing in the mid-1700s as it is on the innovations in the optical designs of the instruments. Because of this, collections of antique optical instruments are often referred to as “glass and brass.” While the most obvious differences between handheld telescopes and binoculars and astronomical telescopes are the diameters of the objective lenses and the system size, the more significant difference may be that handheld telescopes and binoculars were produced in far greater numbers. This trend continues to the present. These instruments are mostly intended for terrestrial applications and produce erect images. The early uses were primarily nautical and military; consumer use including sports and theater followed later. These telescopes and binoculars were not one-off instruments and the design and engineering had to be consistent with a production environment. Hans Lipperhay of the Netherlands is credited with inventing the telescope in 1608. His patent application was followed a week later with a request from the examining committee “to ascertain … whether he could improve it so that one could look through it with both eyes” [1]. Within several months, Lipperhay constructed and demonstrated this first pair of binoculars. The development of telescopes and binoculars began almost simultaneously, yet the telescope reached its modern design configuration in about a century while it took almost three hundred years for the modern form of prismatic binoculars to become practical. This delay was due to the fact that binoculars are more than just two telescopes. There are significant engineering challenges in the requirements that the optical axes of the two telescopes be parallel or collimated and that the two magnifications must be matched [2]. The ability to adjust the interpupillary separation to match that of the user is another important design feature. This paper will document the development of handheld telescopes and binoculars using examples from the Museum of Optics at the College of Optical Sciences at the University of Arizona. ∗ [email protected] www.optics.arizona.edu/museum Novel Optical Systems Design and Optimization XIV, edited by R. John Koshel, G. Groot Gregory, Proc. of SPIE Vol. 8129, 812902 · © 2011 SPIE CCC code: 0277-786X/11/$18 · doi: 10.1117/12.904614 Proc. of SPIE Vol. 8129 812902-1 Downloaded from SPIE Digital Library on 02 Jul 2012 to 150.135.248.41. Terms of Use: http://spiedl.org/terms 2. REFRACTING TELESCOPES Following the demonstration of the Galilean or Dutch form of the telescope (a positive focal length objective lens with a negative focal length eye lens) in 1608, the telescope evolved rapidly. Some of the important dates in the development of the refracting telescope are [1, 3-8]: - 1611: proposal by Johannes Kepler of the astronomical telescope consisting of two positive lenses. - 1617: first recorded construction of a Keplerian telescope by Christoph Scheiner - Circa 1625: introduction of a single erecting lens in the Keplerian telescope to produce an erect image by Christoph Scheiner. - 1645: Anton Maria Schyrle de Rheita used a two element erecting couplet to produce a practical terrestrial telescope with an erect image and acceptable magnification and field of view. - 1662: two-lens eyepiece incorporating both an eye lens and a field lens was invented by Christian Huygens. This combination of a Schyrle erecting system and a Huygens eyepiece represents the basic optical system layout of the terrestrial or relayed-Keplerian telescope that survives to this day. Figure 1 schematically illustrates the evolution of the refracting telescope. In most situations, all of the optical elements except the objective lens are mounted with fixed spacing in the last draw or eye draw of the telescope. Additional improvements that were incorporated into the design are a field stop placed between the two elements of the Huygens eyepiece, and a glare stop at the intermediate pupil location between the two erecting lenses. The intermediate pupil is the image of the objective lens aperture formed by the first erecting lens. Telescopes incorporating the Schyrle erecting system (three-lens eyepiece) were into production and available in the last half of the 1600s. There is some evidence that the four-lens eyepiece was in use in the late 1600s, however it fell out of favor until the mid-1700s [7]. At that time, telescopes using Schyrle-Huygens erecting systems with both four and five- lens eyepieces were in production. While there were improvements to follow, most notably the achromatic objective in the mid-1700s, the modern design form of the terrestrial refracting telescope was firmly established by this time. 2.1 Chromatic Aberration and the Achromatic Doublet The primary limitation of the image quality that was produced with early telescopes was chromatic aberration of the objective lens. Because of the color dispersion of the glass in a simple objective lens, different wavelengths have different focal lengths and are brought to focus at different distances. The longitudinal blur associated with chromatic aberration limits the angular resolution of the telescope. For a given focal length lens and glass type, the only method to reduce the blur was to use a lens with a small diameter or to use an aperture to reduce the effective lens diameter. This situation is shown in Figure 2. In the early 1700s, it was believed that chromatic aberration was fundamental and could not be corrected. There was a tradeoff between resolution and light collecting ability, and most handheld telescopes of this era had very small objective lenses, often with an effective aperture diameter of 10-15 mm. An example of a pre- achromatic telescope with a Schyrle erecting system is shown in Figure 3. An interesting and unusual configuration that occurred with pre-achromatic telescopes is the reverse taper telescope. The angular field of view largely determines the required diameters of the erecting lenses and especially the field lens. In higher magnification telescopes, the objective lens could be smaller than the lenses in the eye draw. The objective end of the telescope is smaller in diameter than the eyepiece end. A reverse taper telescope is shown in Figure 4. Achromatic objectives correct chromatic aberration by combining a positive lens made from a low-dispersion glass with a negative lens made from a high-dispersion glass. The original inventor of the achromatic objective is Chester Moor Hall, a barrister in London [9]. In 1733, he commissioned two different opticians, Edward Scarlett and James Mann, to each make one of the lens elements. By chance, both opticians subcontracted the work to the same man, George Bass. Chester Moor Hall then continued to keep his invention secret. Around 1750, Bass told optician John Dollond about the achromatic lens he had made. Dollond’s son, Peter, saw the commercial advantages and once they had made test lenses, patented the invention in 1758. Chester Moor Hall twice attempted to challenge the patent. He lost his case on the grounds that the person who should profit by the invention is the one who benefits the public by it, not one who keeps it locked in his desk drawer. This was a landmark decision in patent law that remains in place to this day. Proc. of SPIE Vol. 8129 812902-2 Downloaded from SPIE Digital Library on 02 Jul 2012 to 150.135.248.41. Terms of Use: http://spiedl.org/terms The achromatic doublet was a significant optical improvement for telescopes. It allows for improved resolution with much larger objective lenses and more light-gathering capability. Most handheld telescopes could have objective lenses with diameters of 25-50 mm or larger. Dollond went on to become the dominant manufacturer of telescopes in the late 1700s and early 1800s. The name “Dollond” became a synonym for a telescope. Scheiner Erecting System Exit Pupil fObjective 2fRelay 2fRelay fEye Objective Erecting or Relay Lens Eye Lens Schyrle Erecting System Exit Glare Field Pupil Stop Stop fObjective fRelay 2fRelay fRelay fEye Objective Erecting or Relay Couplet Eye Lens Schyrle Erecting System with Huygens Eyepiece Glare Field Exit Stop Stop Pupil Field Eye Lens Lens fObjective fRelay 2fRelay fEye Objective Erecting or Relay Couplet Eye Piece Figure 1. The evolution of the design of the terrestrial or relayed-Keplerian telescope. The separation between the elements in the erecting couplet was often twice the lens focal length, but this is not required. The Schyrle erecting system is often referred to as a three-lens eyepiece, and the Schyrle-Huygens erecting system as a four-lens eyepiece.
Recommended publications
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • A Passion for Opera the DUCHESS and the GEORGIAN STAGE
    A Passion for Opera THE DUCHESS AND THE GEORGIAN STAGE A Passion for Opera THE DUCHESS AND THE GEORGIAN STAGE PAUL BOUCHER JEANICE BROOKS KATRINA FAULDS CATHERINE GARRY WIEBKE THORMÄHLEN Published to accompany the exhibition A Passion for Opera: The Duchess and the Georgian Stage Boughton House, 6 July – 30 September 2019 http://www.boughtonhouse.co.uk https://sound-heritage.soton.ac.uk/projects/passion-for-opera First published 2019 by The Buccleuch Living Heritage Trust The right of Paul Boucher, Jeanice Brooks, Katrina Faulds, Catherine Garry, and Wiebke Thormählen to be identified as the authors of the editorial material and as the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording or in any information storage or retrieval system, without permission in writing from the authors. ISBN: 978-1-5272-4170-1 Designed by pmgd Printed by Martinshouse Design & Marketing Ltd Cover: Thomas Gainsborough (1727-1788), Lady Elizabeth Montagu, Duchess of Buccleuch, 1767. Portrait commemorating the marriage of Elizabeth Montagu, daughter of George, Duke of Montagu, to Henry, 3rd Duke of Buccleuch. (Cat.10). © Buccleuch Collection. Backdrop: Augustus Pugin (1769-1832) and Thomas Rowlandson (1757-1827), ‘Opera House (1800)’, in Rudolph Ackermann, Microcosm of London (London: Ackermann, [1808-1810]). © The British Library Board, C.194.b.305-307. Inside cover: William Capon (1757-1827), The first Opera House (King’s Theatre) in the Haymarket, 1789.
    [Show full text]
  • Compound Light Microscopes Magnification
    Compound Light Microscopes • Frequently used tools of biologists. • Magnify organisms too small to be seen with the unaided eye. • To use: – Sandwich specimen between transparent slide and thin, transparent coverslip. – Shine light through specimen into lenses of microscope. • Lens closest to object is objective lens. • Lens closest to your eye is the ocular lens. • The image viewed through a compound light microscope is formed by the projection of light through a mounted specimen on a slide. Eyepiece/ ocular lens Magnification Nosepiece Arm Objectives/ • Magnification - the process of objective lens enlarging something in appearance, not Stage Clips Light intensity knob actual physical size. Stage Coarse DiaphragmDiaphragm Adjustment Fine Adjustment Light Positioning knobs Source Base Always carry a microscope with one hand holding the arm and one hand under the base. What’s my power? Comparing Powers of Magnification To calculate the power of magnification or total magnification, multiply the power of the ocular lens by the We can see better details with higher power of the objective. the powers of magnification, but we cannot see as much of the image. Which of these images would be viewed at a higher power of magnification? 1 Resolution Limit of resolution • Resolution - the shortest distance • As magnifying power increases, we see between two points more detail. on a specimen that • There is a point where we can see no can still be more detail is the limit of resolution. distinguished as – Beyond the limit of resolution, objects get two points. blurry and detail is lost. – Use electron microscopes to reveal detail beyond the limit of resolution of a compound light microscope! Proper handling technique Field of view 1.
    [Show full text]
  • Determination of Focal Length of a Converging Lens and Mirror
    Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and mirror. Apparatus: Biconvex glass lens, spherical concave mirror, meter ruler, optical bench, lens holder, self-illuminated object (generally a vertical arrow), screen. Background In class you have studied the physics of thin lenses and spherical mirrors. In today's lab, we will analyze several physical configurations using both biconvex lenses and concave mirrors. The components of the experiment, that is, the optics device (lens or mirror), object and image screen, will be placed on a meter stick and may be repositioned easily. The meter stick is used to determine the position of each component. For our object, we will make use of a light source with some distinguishing marking, such as an arrow or visible filament. Light from the object passes through the lens and the resulting image is focused onto a white screen. One characteristic feature of all thin lenses and concave mirrors is the focal length, f, and is defined as the image distance of an object that is positioned infinitely far way. The focal lengths of a biconvex lens and a concave mirror are shown in Figures 1 and 2, respectively. Notice the incoming light rays from the object are parallel, indicating the object is very far away. The point, C, in Figure 2 marks the center of curvature of the mirror. The distance from C to any point on the mirror is known as the radius of curvature, R.
    [Show full text]
  • 502-13 Magnifiers and Telescopes
    13-1 I and Instrumentation Design Optical OPTI-502 © Copyright 2019 John E. Greivenkamp E. John 2019 © Copyright Section 13 Magnifiers and Telescopes 13-2 I and Instrumentation Design Optical OPTI-502 Visual Magnification Greivenkamp E. John 2019 © Copyright All optical systems that are used with the eye are characterized by a visual magnification or a visual magnifying power. While the details of the definitions of this quantity differ from instrument to instrument and for different applications, the underlying principle remains the same: How much bigger does an object appear to be when viewed through the instrument? The size change is measured as the change in angular subtense of the image produced by the instrument compared to the angular subtense of the object. The angular subtense of the object is measured when the object is placed at the optimum viewing condition. 13-3 I and Instrumentation Design Optical OPTI-502 Magnifiers Greivenkamp E. John 2019 © Copyright As an object is brought closer to the eye, the size of the image on the retina increases and the object appears larger. The largest image magnification possible with the unaided eye occurs when the object is placed at the near point of the eye, by convention 250 mm or 10 in from the eye. A magnifier is a single lens that provides an enlarged erect virtual image of a nearby object for visual observation. The object must be placed inside the front focal point of the magnifier. f h uM h F z z s The magnifying power MP is defined as (stop at the eye): Angular size of the image (with lens) MP Angular size of the object at the near point uM MP d NP 250 mm uU 13-4 I and Instrumentation Design Optical OPTI-502 Magnifiers – Magnifying Power Greivenkamp E.
    [Show full text]
  • Telescopes and Binoculars
    Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet.
    [Show full text]
  • How Does the Light Adjustable Lens Work? What Should I Expect in The
    How does the Light Adjustable Lens work? The unique feature of the Light Adjustable Lens is that the shape and focusing characteristics can be changed after implantation in the eye using an office-based UV light source called a Light Delivery Device or LDD. The Light Adjustable Lens itself has special particles (called macromers), which are distributed throughout the lens. When ultraviolet (UV) light from the LDD is directed to a specific area of the lens, the particles in the path of the light connect with other particles (forming polymers). The remaining unconnected particles then move to the exposed area. This movement causes a highly predictable change in the curvature of the lens. The new shape of the lens will match the prescription you selected during your eye exam. What should I expect in the period after cataract surgery? Please follow all instructions provided to you by your eye doctor and staff, including wearing of the UV-blocking glasses that will be provided to you. As with any cataract surgery, your vision may not be perfect after surgery. While your eye doctor selected the lens he or she anticipated would give you the best possible vision, it was only an estimate. Fortunately, you have selected the Light Adjustable Lens! In the next weeks, you and your eye doctor will work together to optimize your vision. Please make sure to pay close attention to your vision and be prepared to discuss preferences with your eye doctor. Why do I have to wear UV-blocking glasses? The UV-blocking glasses you are provided with protect the Light Adjustable Lens from UV light sources other than the LDD that your doctor will use to optimize your vision.
    [Show full text]
  • Contents 1 Properties of Optical Systems
    Contents 1 Properties of Optical Systems ............................................................................................................... 7 1.1 Optical Properties of a Single Spherical Surface ........................................................................... 7 1.1.1 Planar Refractive Surfaces .................................................................................................... 7 1.1.2 Spherical Refractive Surfaces ................................................................................................ 7 1.1.3 Reflective Surfaces .............................................................................................................. 10 1.1.4 Gaussian Imaging Equation ................................................................................................. 11 1.1.5 Newtonian Imaging Equation.............................................................................................. 13 1.1.6 The Thin Lens ...................................................................................................................... 13 1.2 Aperture and Field Stops ............................................................................................................ 14 1.2.1 Aperture Stop Definition ..................................................................................................... 14 1.2.2 Marginal and Chief Rays ...................................................................................................... 14 1.2.3 Vignetting ...........................................................................................................................
    [Show full text]
  • Lab 11: the Compound Microscope
    OPTI 202L - Geometrical and Instrumental Optics Lab 9-1 LAB 9: THE COMPOUND MICROSCOPE The microscope is a widely used optical instrument. In its simplest form, it consists of two lenses Fig. 9.1. An objective forms a real inverted image of an object, which is a finite distance in front of the lens. This image in turn becomes the object for the ocular, or eyepiece. The eyepiece forms the final image which is virtual, and magnified. The overall magnification is the product of the individual magnifications of the objective and the eyepiece. Figure 9.1. Images in a compound microscope. To illustrate the concept, use a 38 mm focal length lens (KPX079) as the objective, and a 50 mm focal length lens (KBX052) as the eyepiece. Set them up on the optical rail and adjust them until you see an inverted and magnified image of an illuminated object. Note the intermediate real image by inserting a piece of paper between the lenses. Q1 ● Can you demonstrate the final image by holding a piece of paper behind the eyepiece? Why or why not? The eyepiece functions as a magnifying glass, or simple magnifier. In effect, your eye looks into the eyepiece, and in turn the eyepiece looks into the optical system--be it a compound microscope, a spotting scope, telescope, or binocular. In all cases, the eyepiece doesn't view an actual object, but rather some intermediate image formed by the "front" part of the optical system. With telescopes, this intermediate image may be real or virtual. With the compound microscope, this intermediate image is real, formed by the objective lens.
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Astronomical Binoculars
    30˚E 15˚E OWNER’S MANUAL ASTRONOMICAL BINOCULARS ZHUMELL 20X80 SUPERGIANT ASTRONOMICAL BINOCULARS 0˚ 15˚W 75˚W 60˚W 30˚W 45˚W Zhumell customers know that there are plenty of ways to experience the world. They also understand that, however you choose to explore it, the best experience is one that fully immerses you in the world’s most striking details. That’s where our optics products come in. We strive to put high-performance products in the hands of our customers so that they can experience the world up close, with their own eyes. With Zhumell, you get field-tested, precision-crafted optics at the best possible value. So even if you’re just starting out as an amateur birder or astronomer, you don’t have to settle for entry-level products. Zhumell customers enjoy life’s pursuits, hobbies, and adventures in rich, colorful detail- the kind of detail that only high-performance optics can produce. At Zhumell, we design our binoculars, telescopes, and spotting scopes for discerning, price-conscious users who are uncompromising on quality. If you’re looking for accessibly priced optics that will bring your world within reach, you’re looking for Zhumell. Enjoy the view. 2 ENJOYING YOUR ZHUMELL ASTRONOMICAL BINOCULARS 1. Caring For Your Binoculars 2. Using Your Binoculars i. Tripod Mounting ii. Interpupillary Distance iii. Center and Diopter Focus 3. Terrestrial and Astronomical Viewing 4. Astronomical Observation Tips i. Selecting a Viewing Site ii. Seeing and Transparency iii. Dark-Adapting iv. Tracking Celestial Objects 5. Cool Views i. The Moon ii.
    [Show full text]