2018

letnik 39 številka 178/179 strani 63–202 volume 39 number 178/179 pages 63–202 RAPTOR INFORMATION SYSTEM, SCOPUS, ZOOLOGICAL RECORD

Oblikovanje / Design: Jasna Andrič Prelom / Typesetting: NEBIA d. o. o. Tisk / Print: Schwarz print d. o. o. Naklada / Circulation: 1500 izvodov / copies

Ilustracija na naslovnici / Front page: črni škarnik / Black Kite Milvus migrans risba / drawing: Janez Plestenjak

Ilustracija v uvodniku / Editorial page: repaljščica / Whinchat Saxicola rubetra risba / drawing: Jan Hošek Acrocephalus 39 (178/179): 63–70, 2018

Sobivanje ptic in kmetijstva? Cohabitation between birds and agriculture?

Intenzifikacija kmetijstva se je v Evropi pričela med drugo svetovno vojno iz potrebe po samooskrbi s pridelki. Kmetje so z uporabo različnih tehnologij želeli povečati učinkovitost obdelovanja zemlje in njeno produktivnost. Intenzifikacija je temeljila predvsem na uvedbi nove mehanizacije, gnojilih in pesticidih, nekoliko manj pa na izsuševanju površin ter žlahtnjenju rastlin. Spremembe v kmetijstvu so na ptice vplivale in še vedno vplivajo neposredno (izguba habitata, negativni vpliv mehanizacije, motenj in pesticidov na smrtnost ali gnezditveni uspeh) in posredno (spremembe v količini hrane, kvaliteti gnezdišč in prehranjevališč) (Fuller 2000, Newton 2004). Če so nekdaj ptice kmetijske krajine uspevale zaradi kmetovalnih praks, pa sedaj životarijo prav zaradi njih. Dokazov o negativnem vplivu intenzifikacije kmetijstva na ptice je ogromno, članki na to temo so skoraj nepreštevni. Naravovarstvena stroka se strinja o obstoju tega perečega problema, v zadnjem desetletju ali dveh pa je pričela že tudi ponujati rešitve. Te zahtevajo sodelovanje z obdelovalci in lastniki zemljišč, predvsem pa angažiranje stroke pri oblikovanju pravil skupne kmetijske politike, konkretno na primer kmetijsko-okoljsko-podnebnih ukrepov (KOPOP). Sobivanje modernega kmetijstva in ptic v primerih nekaterih vrst zahteva zgolj manjše prilagoditve kmetovanja, v drugih primerih pa so sodobne kmetijske prakse nezdružljive z dolgoročnim preživetjem vrst (npr. pri koscu Crex crex, repaljščici Saxicola rubetra) in bi za njihovo varstvo potrebovali večja sklenjena območja, kjer bi kmetijstvo narekovali varstveni režimi. Ker je nerealno pričakovati, da se bo proces intenzifikacije kmetijstva v Evropi kmalu zaustavil ali celo obrnil, ptice pa gnezdijo tudi na najbolj enoličnih in intenzivnih njivah, si pred problemom ne moremo zatiskati oči. V nadaljevanju so predstavljene nekatere možnosti varovanja gnezdilk na njivah. Poljski škrjanec Alauda arvensis, katerega evropska populacija je v obdobju 1980–2016 upadla za 53 % (EBCC 2019), slovenska pa v pičlem desetletju (2008–2018) za 59,7 % (Kmecl & Šumrada 2018), je izvorno sicer gnezdilec step, vendar je dandanes v Evropi najpogostejši na velikih njivah. V Veliki Britaniji, Nemčiji, Švici in na Danskem so znanstveniki ugotovili, da so gnezditvena gostota, gnezditveni uspeh, telesna kondicija speljanih mladičev in/ali število poskusov gnezdenja poljskega škrjanca v sezoni večji na njivah s ploskvami golih tal kot na konvencionalno zasejanih njivah. Zaplate golih tal so ustvarili tako, da so med setvijo ugasnili sejalnico; skupna površina golih tal na hektar površine je znašala 32–144 m2, razdeljena je bila na dve do štiri ploskve (Odderskær et al. 1997, Morris et al. 2004, Fischer et al. 2009, Schmidt et al. 2017). Zgolj ohranjanje omejkov, torej travnatih robov med njivami, na primer na Nizozemskem za poljskega škrjanca ni dalo želenih rezultatov, saj je za robne habitate značilna velika stopnja plenjenja (Kuiper et al. 2015). Hribski škrjanec Lullula arborea pri nas gnezdi v dveh povsem različnih 63 Uvodnik / Editorial

habitatih – na zahodu Slovenije na suhih travnikih in pašnikih z redko lesno vegetacijo, na Goričkem pa predvsem na njivah s praho ali žitom. Te so zaradi časovnega ujemanja s kmetijskimi opravili (oranje, brananje, setev, nanos fitofarmacevtskih sredstev in umetnih gnojil) zanj lahko ekološka past (Denac 2018a). V letošnjem letu bomo skupaj s kolegi iz Javnega zavoda Krajinski park Goričko obiskali avstrijske ornitologe, ki so razvili različne kmetijsko-okoljske ukrepe za njive, s katerimi želijo izboljšati njegov gnezditveni uspeh na Zgornjem Štajerskem. Med ukrepi so prepoved opravljanja kmetijskih del na njivah med 15. 4. in 31. 5., spodbujanje malopovršinskega (0,5–1,5 ha) ekstenzivnega kmetovanja na ovršnih delih gričev, gojenja okopavin in spomladanskih žit, ohranjanje strnišč do 15. 2., izogibanje uporabi gnojil in pesticidov pri gojenju zimskih žit, zasaditev in vzdrževanje mejic ter posameznih dreves, vzpostavljanje večletnih cvetnih pasov, zasejanih z avtohtono plevelno vegetacijo (Uhl et al. 2008, Uhl & Rubenser 2012). Poleg varstva ekstenzivnih suhih travnikov, ki smo se ga lotili v okviru projekta Gorička krajina, bo na Goričkem namreč treba najti učinkovite in dolgoročne načine varovanja na njivah gnezdečih hribskih škrjancev. V Angliji so populacijo plotnega strnada Emberiza cirlus povečali za skoraj štirikrat s finančnim spodbujanjem gojenja jarega žita, sejanega na površinah, kjer so čez zimo pustili strnišče in mu s tem zagotovili zimska prehranjevališča. Vrsti je koristila tudi uvedba obveznega puščanja prahe leta 1992 ter zasaditev mejic (Aebischer et al. 2000). Zasaditev lesne vegetacije zelo koristi tudi rjavemu srakoperju Lanius collurio, ki za gnezdenje ne potrebuje velikih in gostih sestojev grmovja, pač pa mu zadoščajo že posamezni trnasti grmi (Kuźniak 1991, Casale et al. 2013), zasajeni ob rob travnika, pašnika, kolovoza ali njive. Druga možnost je, da ob robovih obdelovalnih površin postavimo t.i. Benjeseve mejice, to so v 1 – 2 m visok kup zložene odrezane veje (trnastega) grmovja. Dostopnost plena mu lahko izboljšamo s postavitvijo lovnih prež, 1–5 m visokih lesenih kolov, s katerih poletava na tla (van Nieuwenhuyse et al. 1999). Postavitev kolov je smiselna na meji med habitati z različno visoko in strukturirano vegetacijo, npr. med travnikom in njivo ali med travnikom in kolovozom. Enak ukrep se je kot zelo uspešen izkazal tudi na Ajdovskem polju za črnočelega srakoperja Lanius minor (Denac 2015) ter na Goričkem za zlatovranko Coracias garrulus (Domanjko & Gjergjek 2014, Denac et al. 2014, 2017) in velikega skovika Otus scops (Denac 2018b). Slednja vzporedno z izboljševanjem prehranjevalnih razmer potrebujeta tudi gnezdišča, ki jih najhitreje zagotovimo s postavitvijo gnezdilnic, dolgoročno pa z zasaditvijo visokodebelnega sadovnjaka ali drevesne mejice. Prosnik Saxicola torquata je poleg poljskega škrjanca tipična gnezdilka intenzivne kmetijske krajine v Sloveniji, kar je bilo ugotovljeno na Dravskem polju (Vogrin & Vogrin 1998) in na Goričkem (DOPPS lastni podatki). Njegova populacija v slovenski kmetijski krajini je v obdobju 2008–2018 strmo upadla (Kmecl & Šumrada 2018), najverjetneje zaradi izginjanja drobnih elementov, ki mu v intenzivni krajini omogočajo preživetje. Tako je z nekaterih delov Goričkega izginil po opravljenih komasacijah, ki jim je sledila odstranitev že tako pičle lesne vegetacije in omejkov (K. Malačič osebno). Na Dravskem polju se pojavlja le na njivah, ki imajo na robu kakšen grm oz. na katerih 64 Acrocephalus 39 (178/179): 63–70, 2018

rastejo visoke steblike, npr. osati Cirsium spp. (Vogrin & Vogrin 1998). Prosniku bi torej lahko pomagali z ohranjanjem omejkov (po komasaciji bi morali ohraniti drobno strukturiranost parcel), posameznih grmov ali manjših otokov lesne vegetacije na robu njiv in s postavitvijo nizkih lovnih prež (1–2 m) v robne habitate. Tudi za pribo Vanellus vanellus so tuji strokovnjaki razvili vrsto ukrepov, ki pa za zdaj – z redkimi izjemami – še ne dajejo želenih rezultatov, saj na gnezdeče pribe poleg kmetijskih opravil na njivah vpliva tudi visoka stopnja plenjenja. Večanje deleža površin s praho in spomladi sejanimi poljščinami (jaro žito, okopavine) (Sheldon et al. 2004), ustvarjanje cvetnih pasov, kamor se lahko zatečejo mladiči po izvalitvi in zakasnitev kmetijskih del vsaj do izvalitve mladičev (Müller et al. 2009) so finančno razmeroma nepotratni ukrepi, ki jih lahko kmet uresniči sam. Pri bolj vsebinsko in časovno zahtevnih ukrepih je nujna pomoč strokovnjaka, na primer pri iskanju in diskretnem označevanju gnezd, ki se jim nato kmet ob obdelavi tal izogne ali pa se gnezdo začasno odstrani in se ga po opravljenih delih namesti nazaj (Müller et al. 2009, Beyer et al. 2015, Bergmann 2016, Skibbe 2016, Eikhorst & Eikhorst 2017), pri prekrivanju gnezd z vedri med nanašanjem pesticidov in gnojil (Müller et al. 2009), fizičnem varovanju gnezd z železno kletko, nameščeno čeznje (Beyer et al. 2015, Skibbe 2016), ki lahko zaradi svoje očitnosti povečajo stopnjo plenjenja (Beyer et al. 2015, Eikhorst & Eikhorst 2017), ali pa pri ograditvi njiv z gnezdi z 90 cm visoko električno ograjo, ki zmanjša stopnjo plenjenja (Müller et al. 2009, Rickenbach et al. 2011). V prihodnjih nekaj letih bomo tudi v Sloveniji preskusili nekatere varstvene ukrepe za ptice kmetijske krajine, predvsem v okviru različnih projektov, financiranih iz shem kohezijskega sklada in LIFE. Če bodo imeli pozitiven učinek na ciljne in druge vrste, se bomo trudili za njihovo vključitev med KOPOP za naslednje finančno obdobje (2021–2027). V veljavnih KOPOP za obdobje 2015–2020 namreč obstaja le en pticam namenjen ukrep, in sicer “Habitati ptic vlažnih ekstenzivnih travnikov” (VTR), ki je osredotočen na kosca Crex crex. Umestitev med KOPOP omogoča – seveda ob ustrezno visoki subvenciji za kmeta in terenski podpori kmetijskih svetovalcev – da ukrep doseže večjo površino (in s tem svoj namen) in trajnost. Zadnje, kar si namreč želimo, je, da ukrepi po izteku projekta ostanejo mrtva črka na papirju. Naša naloga je, da pri iskanju učinkovitih ukrepov sodelujemo z izkušenimi tujimi strokovnjaki, da ukrepe preskusimo v naših razmerah in da jim izbojujemo mesto v državni kmetijski politiki. Kajti slabo stanje “nekih metuljčkov in ptičkov” je tesno povezano s kvaliteto našega, človeškega bivalnega okolja in bi moralo pri ljudeh že davno prižgati vse alarme.

***

In Europe, agricultural intensification began to be practised during World War II in need of food self-sufficiency. With utilization of various technologies, farmers strove to increase the efficiency of soil cultivation and its productivity. The intensification was based primarily on the introduction of new mechanization, fertilizers and pesticides and, to a 65 Uvodnik / Editorial

lesser extent, on land claiming and “ennobling” of plants. The changes in agricultural practice affected (and still affect) birds directly (habitat loss, negative impacts of mechanization, disturbances and pesticides on mortality or breeding success) and indirectly (changes in food quantity and quality of breeding and feeding sites) (Fuller 2000, Newton 2004). If birds in agricultural landscape once proliferated owing to agricultural practices, they now live a miserable existence on the very account of them. There is enormous evidence of the agricultural intensification's negative impacts on birds as well as countless articles on this particular subject. Nature conservationists agree on the existence of this urgent problem, and in the last decade or two they indeed began to offer certain solutions. These demand cooperation with land tillers and owners and, above all, the experts' engagement in the making of common agricultural policy rules, concretely the agri-environment-climate measures (AECM). In cases of certain species, coexistence of modern agriculture and birds demands just some minor farming adaptions, while in other cases the modern agricultural practices are incompatible with long term survival of species (e.g. Corn Crake Crex crex, Whinchat Saxicola rubetra), which means that larger unfragmented areas would be needed for their conservation, where agriculture would be dictated by conservation regimes. But as it is totally unrealistic to expect that the process of agricultural intensification in Europe will soon stop or even reverse, we cannot turn a blind eye to the problem, given that birds breed in most monotonous and intensely farmed fields as well. Some possibilities of how to conserve field-breeders are presented in the ensuing text. The SkylarkAlauda arvensis, the European population of which decreased in the 1980–2016 period by 53% (EBCC 2019), whereas its Slovenian population fell in a mere decade (2008–2018) by 59.7% (Kmecl & Šumrada 2018), is originally a steppe-breeder, but is in Europe nowadays most abundant in large fields. In Great Britain, Germany, Switzerland and Denmark, scientists assessed that the breeding density, breeding success, body condition of fledged young and/or number of attempts by Skylark to breed in the season are greater in fields with bare soil surfaces than in conventionally sawn fields. Patches of bare soil were created by simply turning off the seeder during sowing; the total area of bare soil amounted to 32–144 m2, divided in two to four planes (Odderskær et al. 1997, Morris et al. 2004, Fischer et al. 2009, Schmidt et al. 2017). In the Netherlands, for example, the pure retainment of hedgerows, i.e. grassy edges between fields, gave no desired results for the Skylark, as boundary habitats are characterized by high predation level (Kuiper et al. 2015). In our country, the Woodlark Lullula arborea breeds in two totally different habitats – in western Slovenia in dry grasslands and pastures with sparse woody vegetation, while in the Goričko region (NE Slovenia) it breeds primarily in fields with set-aside land (fallow ground) or cereals. Owing to the time coincidence with agricultural activities (ploughing, harrowing, sowing, utilization of phytopharmaceutical agents and artificial fertilizers), these can turn out to be an ecological trap for this species (Denac 2018a). This year we are planning to visit, together with our colleagues from the Public Institute of Goričko Landscape Park, our Austrian colleagues, who 66 Acrocephalus 39 (178/179): 63–70, 2018

have developed various agricultural-environmental measures for fields, with the aid of which they wish to improve the Woodlark's breeding success in the Upper Styria. Among these measures are prohibition of agricultural activities in fields between 15 April and 31 May, promotion of small-scale (0.5–1.5 ha) extensive farming on the upper parts of hillocks, growing of root crops and spring cereals, retainment of stubbles till 15 February, avoiding application of fertilizers and pesticides for winter cereals, planting and maintenance of hedgerows and individual trees, and creation of multiyear flower strips planted with indigenous weed vegetation Uhl( et al. 2008, Uhl & Rubenser 2012). Apart from conserving extensively farmed dry grasslands, which we embarked upon within the framework of the “Gorička krajina project” , some effective and long-term conservation methods will have to be found for Woodlarks breeding in the fields. In England, the population of Cirl Bunting Emberiza cirlus been increased almost four – fold thanks to the financial stimulation for growing spring cereals, sown in places where stubbles were left over the winter to provide winter feeding sites for the species. Cirl Buntings also benefited from the introduction (1992) of compulsory letting the land lie fallow and planting of hedgerows (Aebischer et al. 2000). Planting of woody vegetation is highly beneficial also for the Red-backed Shrike Lanius collurio, which requires no large and thick shrub stands for breeding, but is satisfied merely by individual thorn bushes Kuźniak( 1991, Casale et al. 2013), planted on the edge of a meadow, pasture, cart track or field. Another possibility is to plant the Benjes (deadwood) hedges, 1–2 m high piles of stacked cut branches of (thorny) shrubs along the edges of tilled land. Prey access can be improved for the Red-backed Shrike by erecting perches, 1–5 m high wood poles from which it descends to the ground (van Nieuwenhuyse et al. 1999). The poles should be erected on the boundary between habitats with diversely structured vegetation of various heights, e.g. between grassland and field or between grassland and cart track. The same measure turned out to be very effective also at the Ajdovsko polje for the Lesser Grey Shark Lanius minor (Denac 2015), and at Goričko for the Roller Coracias garrulus (Domanjko & Gjergjek 2014, Denac et al. 2014, 2017) and the Scops Owl Otus scops (Denac 2018b). Parallel to the enhancement of feeding conditions, the last two species require breeding sites as well, which can quickly be established with nest boxes and, in the long run, with planting of either traditional orchard (with high-stemmed trees) or hedgerow trees. Stonechat Saxicola torquata is, apart from Skylark, a typical intensive agricultural landscape breeder in Slovenia, which was corroborated at Dravsko polje (Vogrin & Vogrin 1998) and Goričko (Bird Watching and Bird Study Association of Slovenia's own data). In Slovenian agricultural landscape, its population sharply declined in the 2008–2018 period (Kmecl & Šumrada 2018), most probably due to disappearance of tiny elements that enable its survival in intensive landscape. From some parts of Goričko, the species consequently disappeared after the carried out commassations, which were followed by removal of the already scanty wood vegetation and hedgerows (K. Malačič personal communication). At Dravsko polje it occurs only in fields bordered by a couple of bushes, or in which high-stemmed plants are striving, such as thistle Cirsium spp. 67 Uvodnik / Editorial

(Vogrin & Vogrin 1998). Consequently, the species could be helped by preserving hedgerows (after commassation, minute structuralization of plots should be retained), individual bushes or small islands of wood vegetation on the edges of fields and by erecting low perches (1 – 2 m) in boundary habitats. For the Lapwing Vanellus vanellus, too, foreign experts developed a series of measures which have not produced, with a very few exceptions, desired results as yet, given that breeding Lapwings are affected not only by agricultural activities in the fields, but by high predation level as well. The increased share of set-aside land and cereals (spring cereals and root crops) (Sheldon et al. 2004), creation of flower strips where young can seek shelter soon after hatching, as well as postponed agricultural activities until the young are hatched (Müller et al. 2009) are, in financial terms, relatively frugal measures that can be implemented by farmers themselves. In more demanding measures with respect to contents and time, an expert's help is implicit, e.g. in the search and discrete marking of nests that can be avoided by farmers during tillage, or a nest is temporarily removed and then returned after the carried out jobs Müller( et al. 2009, Beyer et al. 2015, Bergmann 2016, Skibbe 2016, Eikhorst & Eikhorst 2017), in covering of nests with buckets during the application of pesticides and fertilizers (Müller et al. 2009), physical protection of nests with iron cages placed over them (Beyer et al. 2015, Skibbe 2016), which can due to their obviousness increase the predation level (Beyer et al. 2015, Eikhorst & Eikhorst 2017), or in fencing of fields with nests with app. 90 cm electric fences that decrease the predation level (Müller et al. 2009, Rickenbach et al. 2011). In the ensuing few years, some protection measures for the birds of agricultural landscape will be tested in Slovenia as well, particularly within the framework of various projects financed from the Cohesion Fund schemes and LIFE. If they turn out to have a positive effect on target and other species, we shall do our best to include them among AECM for the ensuing financial period (2021–2027). Specifically, only one measure intended for birds subsists for the 2015–2020 period, i.e. the “wet extensive meadow bird habitats” , which is focused on the Corn Crake Crex crex. Its placing among AECM enables – with adequately high subsidy for farmers and field support of agricultural consultants, of course – a measure to reach a larger surface area (and its purpose with it) as well as sustainability. The very last thing we would wish for is that after the project termination the measures remain a dead letter. Our task is to participate with experienced foreign experts in the search for effective measures, to test the measures in our own conditions and to win a place for them in the national agricultural policy. For the fact is that a bad condition of some “little butterflies and birds” is closely associated with the quality of our human living environment and should have turned all alarms on in people ages ago.

68 Acrocephalus 39 (178/179): 63–70, 2018

Literatura / References:

Aebischer N. J., Green R. E., Evans A.D. (2000): From science to recovery: four case studies of how research has been translated into conservation action in the UK. pp. 43-54. In: Aebischer N. J., Evans A. D., Grice P. V., Vickery J. A. (eds.): Ecology and Conservation of Lowland Farmland Birds. Proceedings of the 1999 British Ornithologists' Union Spring Conference, University of Southampton, UK, 27–28 March 1999. Bergmann M. (2016): Gelege – und Kükenschutz in der Wesermarsch. Ergebnisbericht 2016. –Büro für Ökologie und Landschaftsplanung. Beyer M., Brockmann O., Dresing N., Kempf G., Menke K., Pfützke S., Schoppenhorst A. (2015): Gelege – und Kükenschutzprogramm Bremen. Bericht der Brutperioden 2014/2015. – Bund Friends of the Earth Germany & Landesverband Bremen e. V. Casale F., Bionda R., Falco R., Siccardi P., Toninelli V., Rubolini D., Brambilla M. (2013): Misure gestionali in campo agro-pastorale per la conservazione dell’averla piccola, Lanius collurio. – Rivista Italana di Ornitologia 82 (1– 2): 20– 24. EBCC (2019): Trends of common birds in Europe, 2018 update. – [https:// pecbms.info/trends-and-indicators/species-trends/species/alauda-arvensis/], 05/02/2019. Eikhorst W., Eikhorst I. (2017): Gelegeschutzmaßnahmen in der Hunteniederung und im Moorriemer Moorland im Sommer 2017. – Limosa, Bremen. Fuller R. J. (2000): Relationships between recent changes in lowland British agriculture and farmland bird populations: an overview. pp. 5-16. In: Aebischer N. J., Evans A. D., Grice P. V., Vickery J. A. (eds.): Ecology and Conservation of Lowland Farmland Birds. Proceedings of the 1999 British Ornithologists' Union Spring Conference, University of Southampton, UK, 27-28 March 1999. Denac K. (2015): Črnočeli srakoper Lanius minor. pp. 106–124. In: Denac K., Mihelič T., Kmecl P., Denac D., Bordjan D., Figelj J., Božič L., Jančar T.: Monitoring populacij izbranih vrst ptic – popisi gnezdilk 2015. Poročilo. Naročnik: Ministrstvo za kmetijstvo, gozdarstvo in prehrano. –DOPPS, Ljubljana. Denac K. (2018a): Ugotavljanje rabe habitata hribskega škrjanca Lullula arborea za določitev varstveno prioritetnih površin na območju Natura 2000 Goričko. Poročilo. Projekt Gorička krajina (OP20.06.02.006/1). Naložbo sofinancirata Republika Slovenija in Evropska unija iz Evropskega sklada za regionalni razvoj. – DOPPS, Ljubljana. Denac K. (2018b): V jedilnici velikega skovika. – [http://www.park-goricko. org/sl/informacija.asp?id_meta_type=52&id_jezik=0&id_language=0&id_ informacija=897], 04/02/2019. Denac K., Basle T., Bordjan D., Mihelič T., Šalamun Ž., Remžgar T. (2014): Mladinski ornitološki raziskovalni tabor Goričko 2014. Poročilo o delu raziskovalnih skupin. – DOPPS, Ljubljana. Denac K., Kmecl P., Domanjko G., Denac D. (2017): Trendi ptic kmetijske krajine na Goričkem. – Acrocephalus 38 (174/175): 127–159. Domanjko G., Gjergjek R. (2014): Vrnitev “plavih vran” na Goričko. – Svet ptic 20 (3): 39–40. Fischer J., Jenny M., Jenni L. (2009): Suitability of patches and in-field strips for Sky Larks Alauda arvensis in a small-parcelled mixed farming area. – Bird Study 56 (1): 34–42. Kmecl P., Šumrada T. (2018): Monitoring splošno razširjenih vrst ptic za določitev slovenskega indeksa ptic kmetijske krajine – končno poročilo za leto 2018. – DOPPS, Ljubljana. 69 Uvodnik / Editorial

Kuiper M. W., Ottens H. J., van Ruijven J., Koks B. J., de Snoo G. R., Berendse F. (2015): Effects of breeding habitat and field margins on the reproductive performance of Skylarks (Alauda arvensis) on intensive farmland. – Journal of Ornithology 156: 557–568. Kuźniak S. (1991): Breeding ecology of the Red-Backed Shrike Lanius collurio in the Wielkopolska region (Western Poland). – Acta Ornithologica 26: 67–84. Morris A. J., Holland J. M., Smith B., Jones N. E. (2004): Sustainable Arable Farming For an Improved Environment (SAFFIE): managing winter wheat sward structure for Skylarks Alauda arvensis. – Ibis 146 (Suppl. 2): 155–162. Müller W., Glauser C., Sattler T., Schifferli L. (2009): The effect of measures for the Northern Lapwing Vanellus vanellus in Switzerland and recommendations for its conservation. – Der Ornithologische Beobachter 106 (3): 327–350. Newton I. (2004): The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. – Ibis 146: 579–600. van Nieuwenhuyse D., Nollet F., Evans A. (1999): The ecology and conservation of Red-backed Shrike Lanius collurio breeding in Europe. – Aves 36 (1–3): 179–192. Odderskær P., Prang A., Poulsen J. G., Andersen P. N., Elmegaard N. (1997): Skylark (Alauda arvensis) utilisation of micro-habitats in spring barley fields. – Agriculture, Ecosystems and Environment 62: 21–29. Rickenbach O., Grübler M. U., Schaub M., Koller A., Naef-Daenzer B., Schifferli L. (2011): Exclusion of ground predators improves Northern Lapwing Vanellus vanellus chick survival. –Ibis 153: 531–542. Sheldon R., Bolton M., Gillings S., Wilson A. (2004): Conservation management of Lapwing Vanellus vanellus on lowland arable farmland in the UK. – Ibis 146 (Suppl. 2): 41–49. Schmidt J.-U., Eilers A., Schimkat M., Krause-Heiber J. Timm A., Nachtigall W., Kleber A. (2017): Effect of Sky Lark plots and additional tramlines on territory densities of the Sky Lark Alauda arvensis in an intensively managed agricultural landscape. – Bird Study 64 (1): 1–11. Skibbe H. (2016): Konzeption eines Gelege – und Kükenschutzprogramms für Wiesenlimikolen in der Gemeinde Ganderkesee in Niedersachsen. BSc thesis. – University of Applied Sciences, Hochschule Neubrandenburg, Fachbereich Landschaftswissenschaften und Geomatik. Uhl H., Frühauf J., Krieg H., Rubenser H., Schmalz A. (2008): Heidelerche im Mühlviertel. Erhebung der Brutvorkommen und Artenschutzprojekt 2007. Projektbericht zum ÖPUL-Blauflächenprojekt des Landes Oberösterreiches für die Heidelerche. – BirdLife Österreich, Wien. Uhl H., Rubenser H. (2012): Von den Reizen, die Heidelerche im Mühlviertel zu erforschen. – ÖKO·L 34 (1): 9–17. Vogrin M., Vogrin N. (1998): Bird communities of intensively cultivated fields in North-eastern Slovenia. – Acta Ornithologica 33: 173–179.

Katarina Denac

70 Acrocephalus 39 (178/179): 71–83, 2018 10.1515/acro-2018-0006

Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat Črni škarnik Milvus migrans v Sloveniji – razširjenost, fenologija, gnezditev in habitat

Dejan Bordjan

Oddelek za gozdarstvo in obnovljive gozdne vire, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 83, SI-1000 Ljubljana, e-mail: [email protected]

Between 1984 and 2017, 1,388 Black Kites were recorded, mostly in lowlands with 70% of observations made at Dravsko polje. They were observed from sea level to around 1,600 m a.s.l. with an average elevation of 271 m a.s.l. The species was present in Slovenia from mid-March to early December with indistinct spring and autumn migrations. The highest number of observations was recorded in May. The Black Kite was observed in 71 out of 238 10x10 km grid squares in Slovenia (29.8%), with more observations around known breeding sites and at sites with higher observer effort. Both the number of observations and the number of probable and confirmed breeding pairs increased. In 2011–2018, 10 breeding pairs were found at 7 sites (3–7 per year). Additionally, 11 probable breeding pairs at 9 sites (0–6 pairs per year) were found. The breeding population in 2011–2018 is estimated at 10–21 pairs with an average breeding density of 0.3–0.9 breeding pairs per 100 km2. The highest density was recorded at Dravsko polje with 0.6–2.2 breeding pairs per 100 km2. If possible breeding (breeding attempts) were also taken into consideration, the estimate would be up to five breeding pairs higher. The species was recorded at known breeding sites in most years after the breeding was confirmed. Black Kites were observed closer to larger water bodies and to rubbish tips than expected by chance. More Black Kites were recorded in areas with a lower percentage of forest and arable land and a higher percentage of meadows, settlements and wetlands.

Key words: breeding population, breeding density Ključne besede: gnezdeča populacija, gnezditvena gostota

1. Introduction range (BirdLife International 2018). The European population of Black Kite is estimated at The Black KiteMilvus migrans inhabits open 81,200–109,000 pairs (BirdLife International landscapes of Europe, Asia, Africa and Australia 2015), representing less than 24% of the global (Del Hoyo et al. 1994). It inhabits almost all of population (Birdlife international 2004). The Europe, with the exception of northern latitudes largest European breeding populations are in Russia and most Mediterranean and Atlantic islands (30,000–50,000), France (22,500–26,300), Spain (Cramp 1998), representing around 11% of global (2,500–10,000) and Germany (2,700–4,100). 71 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

With the exception of Italy (700–1,200 pairs), and one with unusual influx Hanžel( 2015). our neighbouring countries have small breeding Considering all our journals, papers on Griffon populations in the range of 50 to 500 pairs Vulture Gyps fulvus (Mihelič & Genero 2005), (Birdlife international 2004). White-tailed Eagle Haliaeetus albicilla (Vrezec In the 19th and early 20th century, Black Kite et al. 2009), Common Kestrel Falco tinnunculus was present in Slovenia, but was rare and with (Šumrada & Hanžel 2012) and Red Kite Milvus no breeding record (Freyer 1824, Schiavuzzi milvus (Bordjan 2017) submit a more detailed 1883, Schulz 1890, Reiser 1925). It had the review of the status of certain birds of prey in same status in the first half of the 20th century, Slovenia. Moreover, in the past 50 years, out of 38 when the species was a non-breeding visitor in NE Raptor species (also including Birds of Prey) 71% Slovenia (Matvejev & Vasič 1973). Until 1990, were part of a monitoring scheme and only 18% when breeding was documented for the first time of species were part of national monitoring, while at Leško polje (Kozinc 1991), its breeding status others were included in more or less local studies in Slovenia was uncertain (Geister 1995). In (Vrezec 2012). The purpose of this article is to 1999, the second breeding pair was confirmed at give a more detailed overview of the Black Kite’s the confluence of the Sava and Ljubljanica distribution, phenology, breeding population (hereinafter referred to as “Confluence”), central development and habitat in Slovenia in the light of Slovenia (Košir 1997, Kozamernik 2000), with new knowledge and data. the breeding population estimated at 1–3 breeding pairs at that time (Birdlife international 2. Methods 2004). Between 2000 and 2011, several breeding pairs were confirmed or considered probable. Data on the Black Kite in Slovenia was obtained Confirmations were as follows: at Medvedce from the ornithological literature, as well as directly water reservoir in 2004 (hereinafter referred to from observers. All volumes of the following as “Medvedce”; Kerček 2005, Bordjan & Božič journals were checked: Acrocephalus, Biota, Falco 2009), in the Vipava valley in 2008 (Figelj 2007a), and Svet ptic up to and including the last issue second and third pairs at Dravsko polje in 2009 published in 2017. Additionally, Google Scholar and 2011. Nest building was observed near Žovnek was used with key words “Črni škarnik” and water reservoir in 2009 (J. Novak pers. comm.). “Milvus migrans” or “Black Kite” for Slovenia. Data In 2011, the breeding population was estimated from online data base NOAGS (Atlas ptic 2018) at 10–20 breeding pairs (Denac et al. 2011). were obtained. Observations were also collected Thereupon, breeding was confirmed in the eastern directly and indirectly from other observers. part of Ljubljansko barje (Denac 2016). Data till the end of 2017 were used for temporal In Slovenia, Birds of Prey (Accipitriformes and spatial distribution, but for breeding the and Falconiformes) were mostly included in 2018 breeding season was included as well. Data multiple species studies (e.g. Kmecl & Rižner were drawn in map using program ArcGis 10.4.1 1993, Gregori & Šere 2005, Bordjan & Božič (ESRI 2015) and also used to calculate altitude 2009, Škornik 2012, Bordjan 2012, 2015) and and distance to the nearest large water body (rivers only rarely did they constitute a central part of and lakes or fishponds with min. 3 ha of water study. Thus in more than 30 years of Acrocephalus surface), rubbish dump and settlements. Data on magazine, there are only 19 articles with Birds of altitude were clustered in 100 meter groups to mask Prey as a central part of study, with most of them potential discrepancies between actual observation covering local problems of distribution (Bračko and point in the map. For breeding distribution 1990, 1998, Božič 1992, Gjerkeš & Lipej 1992, coarser, 10x10 km squares were used, as well as Trebušak et al. 1999, Mihelič & Brajnik 2006, smaller 2x2 km squares for habitat analysis. All Figelj 2007b, Denac 2010) or nesting (Smerdu entered points were overlaid with the 2x2 km grid 1981, Škornik 1985, Kozinc 1991, Marenče (containing 5,405 squares) and percentage of land 1998). One deals with the bird’s diet (Kozinc use (MKGP 2017) was calculated for squares with 1999), one with conservation (Luskovec 1990) Black Kite observations (1,021 observations in 184 72 Acrocephalus 39 (178/179): 71–83, 2018

squares). For habitat analysis, 1,100 random points breeding site at Medvedce. The number of observed were generated in Arc GIS in 2x2 km grid, and Black Kites rose steadily with 7.6 individuals per those that were outside Slovenia were later removed year before 2001 and 124.4 between 2011 and 2017 (amounting to 1,090 points in 1,000 2x2 km (Pearson’s r: 0.84; N = 32; P < 0.001). Even without squares). Distance to large water body, rubbish individuals from Medvedce, the number of obser- dump and settlements and share of land use was vations rose from average 7.3 to 20.1 individuals per calculated for random points and 2x2 km squares year (Pearson’s r: 0.61; N = 32; P < 0.001). Most with random points. For labelling breeding status, observations (1,021) involved single individuals confirmed and probable breeding was used. Data (780) with more than ten individuals simultane- were labelled as confirmed breeding in proximity ously observed only three times; 12 individuals of known nest sites or when one or two individuals were observed at Ljubljana rubbish dump (central remained in the same area for longer period (two or Slovenia), 15 near Kromberk (Gorica, SW Slovenia) more observations distanced at least one month) and 16 around Medvedce (NE Slovenia). in combination with courtship display, copulation, Black Kite was present in Slovenia between observation of fledged young (together with parents mid-March and the beginning of December up to first half of August) or regular (at least two (Figure 2). The earliest observation dates to 14 observations at least one week apart in breeding Mar when one individual was observed near period) flights to a potential nest site. Observations Maribor (NE Slovenia) in 2002 (Lončar 2003) were labelled as probable breeding when one or and one at Ljubljansko barje (central Slovenia) in two individuals remained in the same area for a 2009 (Rubinić pers. comm.). Spring migration in longer period within main breeding period (20 Slovenia was weak in March and the number of May–25 July), or observation of courtship display observations peaked in May (Figure 2). In Slovenia, or copulation with the absence of later observations. the maximum of observed individuals dates to mid- Exception is the area of Krška ravan where breeding May. After the spring migration peak, observations status given by Denac et al. (2009) was used. decreased steadily until the beginning of October Observations in the western part of the Vipava valley with some observations made between the end were separated due to distance between two clusters of October and December (Figure 2). The latest of observations that are located more than 10 km observation was from 8 Dec at Lake Cerknica from known nest site. Although Black Kites may go (A. Škoberne & M. Cvetko pers. comm.). as far as 20 km from the nest in search of food during The seasonal distribution was monitored nesting, most feeding flights are made within 10 km more closely on breeding grounds at Medvedce from nest (Meyburg & Meyburg 2009). For the (NE Slovenia) in 2002–2018. Black Kites were purpose of seasonal dynamics, we distributed data in present continuously between mid-March and 37 ten-day periods that are explained in more detail late September (Figure 3) with one observation by Bordjan & Božič (2009). A regular monitoring in November (Bordjan 2004). The probability of waterbirds and birds of prey has been conducted of observing a Black Kite at Medvedce in this at Medvedce since 2002 (Bordjan & Božič 2009) particular period was on average 0.47 observations and Rački ribniki – Požeg Country Park since 2011. per visit and varied widely from 0.04–0.71 obs / visit From study at Medvedce, the average temporal (Figure 3). It was highest between late April and late distribution of Black Kite presence per visit was July. Lowest probability was in 2002 (0.17 obs / visit) calculated in a ten-day period. and in 2008 (0.25 obs. / visit) and highest in 2018 (0.63 obs. / visit). 3. Results 3.2. Spatial distribution 3.1. Temporal distribution Black Kite was observed in 71 out of 238 10x10 km We gathered data on 1,388 individuals between squares covering Slovenia (29.8%; Figure 4). Ob- 1984 and 2017 (Figure 1). 70.7% of observations servations were made in most flatlands of Slovenia come from Dravsko polje and 61.5% from the with the exception of land around the Mura . 73 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

180

160

140

120

100

80

60

No. of individuals / Št. osebkov 40

20

0 2011 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017

Figure 1: Number of Black Kites Milvus migrans observed between 1984 and 2017 in Slovenia. Black columns refer to observations at Medvedce water reservoir (NE Slovenia) and grey to observations from the rest of Slovenia).

Slika 1: Število črnih škarnikov Milvus migrans, opazovanih med letoma 1984 in 2017 v Sloveniji. Črni stolpci ponazarjajo opazovanja z zadrževalnika Medvedce (SV Slovenija), sivi pa opazovanja iz preostale Slovenije.

160

140

120

100

80

60 No. of individuals / št. osebkov 40

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

I II III IV V VI VII VIII IX X XI XII

10-day period / month / Dekada / Mesec

Figure 2: Number of Black Kites Milvus migrans observed in separate 10-day periods in Slovenia

Slika 2: Število črnih škarnikov Milvus migrans, opazovanih po posameznih dekadah v Sloveniji 74 Acrocephalus 39 (178/179): 71–83, 2018

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1 No. of observations per visit / Št. opazovanj na obisk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

I II III IV V VI VII VIII IX X XI XII

10-day period / month / Dekada / Mesec

Figure 3: Seasonal dynamics of Black Kite Milvus migrans at Medvedce water reservoir (NE Slovenia) during 10-day periods between 2002 and 2010

Slika 3: Sezonska dinamika opazovanj črnega škarnika Milvus migrans na zadrževalniku Medvedce (SV Slovenija) po dekadah v obdobju 2002–2010

Highest densities of observations were recorded tions indicate that pairs at the confirmed breeding in the squares with confirmed breeding sites and sites bred there more or less regularly (Figure 6), squares with higher observation effort (i.e. Lake with above mentioned exceptions and Leško polje Cerknica). Black Kite observations were missing where breeding data were absent for 22 years. The from extensive forested and mountainous areas. only pairs that were observed at breeding sites Black Kite was recorded on the Slovenian continuously were those at Medvedce and in Rački coast in Sečovlje saltpans at sea level (Jančar ribniki – Požeg Country Park, both with regular 1991, Sovinc & Šere 1993). Highest altitude was monitoring. From 2005 onwards, 3–7 pairs were recorded during bird of prey count on Breginjski registered in any given year. stol in 2010 (Denac 2010) just below 1,600 m In Slovenia, eleven pairs at nine sites meet a.s.l. Only eight records were made above 1,000 m criteria for probable breeding (Figure 7). With a.s.l. Average altitude of Black Kite observations the exception of western part of the Vipava valley, is 271 m a.s.l. and 309 m a.s.l., if Medvedce data N part of Ljubljana basin and NE part of Dravsko are excluded. Black Kites were observed more often polje, the observations of Black Kites were more than would be expected at random below 300 m irregular then those for confirmed pairs. From a.s.l. (Figure 5). 2000 onward, 0–6 probable pairs were observed in any given year. 3.3. Breeding of Black Kite Milvus migrans in The breeding population of Black Kites Slovenia (considering confirmed and probable pairs in any given year) has risen steadily from 1–4 breeding Between 1990 and 2018, ten confirmed breeding pairs between 1990 and 2000 to 2–11 pairs pairs were observed at seven sites (Figure 6). Three in 2000–2010 and 6–12 pairs in 2011–2018 were observed only in a single year. The observa- (Figure 6). The 10 confirmed or probable pairs 75 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

Figure 4: Distribution of Black Kite Milvus migrans in Slovenia with the number of observations in 10x10 km squares

Slika 4: Razširjenost črnega škarnika Milvus migrans v Sloveniji s prikazom števila opazovanj po posameznih kvadratih 10x10 km

> 600 m

500 - 599 m

400 - 499 m

300 - 399 m

200 - 299 m

100 - 199 m Altitudinal belt / Višinski pas [m] Altitudinal belt / Višinski

0- 99 m

0 1 2 3 4 5

Figure 5: Distribution of Black Kite Milvus migrans in altitude belts compared to available area per altitudinal belt including data from Medvedce water reservoir (white) and without (black)

Slika 5: Razširjenost črnega škarnika Milvus migrans po nadmorskih pasovih glede na razpoložljivo površino posameznega nadmorskega pasu, vključujoč podatke z zadrževalnika Medvedce (belo) in brez (črno) 76 Acrocephalus 39 (178/179): 71–83, 2018

Landscape Park Rački ribniki - Požeg 2

Water reservoir Medvedce 3

Ljubljana Marshes (E)

Landscape Park Rački ribniki - Požeg 1

Water reservoir Žovnek

Water reservoir Medvedce 2

Vipava valley (W)

Water reservoir Medvedce 1

Confluence of Sava and Ljubljanica rivers

Leško polje 2018 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 6: Yearly presence of Black Kites Milvus migrans at confirmed breeding sites

Slika 6: Pojavljanje črnega škarnika Milvus migrans na potrjenih gnezdiščih v posameznih letih

Nanoščica valley

Krška ravan 2

Bela krajina

Vipava valley (W)

Ljubljana valley (N)

Dramlje

Tolmin

Dravsko polje (NE) 2

Dravsko polje (NE) 1

Krška ravan 1

Ljubljana Marshes (W) 2011 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018

Figure 7: Yearly presence of Black Kites Milvus migrans at probable breeding sites

Slika 7: Pojavljanje črnega škarnika Milvus migrans na verjetnih gnezdiščih v posameznih letih 77 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

14

12

10

8

6

4 No. of individuals / Št. osebkov

2

0 2011 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018

Year / Leto

Figure 8: The dynamics of Black Kite Milvus migrans breeding pair numbers in Slovenia. Data includes confirmed and probable breeding attempts as well as possible breeding at otherwise confirmed breeding sites.

Slika 8: Dinamika števila gnezdečih črnih škarnikov Milvus migrans v Sloveniji. Podatki vključujejo potrjene in verjetne pare ter možne pare na sicer potrjenih gnezdiščih. from the past ten years can be considered regular less than 25% of forest cover and 85% of less than breeders, and as there was a total of 21 confirmed 50% as opposed to squares with random points or probable breeding pairs, the population was (15% and 38%). Also, Black Kites were observed estimated at 10–21 breeding pairs in Slovenia. more often in squares with higher share of arable The breeding distribution is shown in figure land (on average arable land covered 28% 2x2 km 9. From the first observation of possible breeding squares), meadows (24%), urban area (11%) and in 1987 to the estimated breeding population in wetlands (3%; Table 2). 2018, the population has been estimated to rise by 0.34 pairs/year (Figure 8). The average breeding 4. Discussion density of Black Kites is 0.3–0.9 bp/100 km2 with the highest at Dravsko polje, i.e. 0.6–2.2 The number of observed Black Kites and their bp/100 km2 (Table 1). No semi-colonial breeding breeding population in Slovenia rose during the was observed. Closest nests were little less than five past three decades to 10–21 breeding pairs and more kilometres apart for three pairs near Medvedce in than 120 observations per year on average. This 2018. trend is similar to that in Carinthia (Petutsching & Probst 2017), but could merely reflect a trend 3.4. Habitat in our knowledge of breeding population in Slovenia and also the intensified observation Black Kite observations were recorded closer effort with surveys for the national Breeding Bird to larger water bodies and rubbish dumps Atlas (Mihelič 2002), Natura 2000 Monitoring than expected from random points, but not to Schemes (Mihelič 2005), Farmland Bird Index settlements (Table 2). Black Kites were observed (Božič 2007), local monitoring schemes; i.e. in squares with less forest cover than would be Medvedce (Bordjan & Božič 2009), Lake expected (Table 2). More than half (58%) of all Cerknica (Bordjan 2012), accumulations on the 2x2 km squares with Black Kite observations had Drava river (L. Božič pers. comm.) and new available 78 Acrocephalus 39 (178/179): 71–83, 2018

Figure 9: Breeding distribution of Black Kite Milvus migrans in Slovenia of confirmed (red) and probable breeding pairs (yellow) in 10x10 km squares

Slika 9: Razširjenost potrjenih (rdeče) in verjetnih (rumeno) gnezdečih parov črnega škarnika Milvus migrans v Sloveniji v kvadratih 10x10 km

Table 2: T-test values between habitat variables of Black Kite Milvus migrans observations (N = 1482) and random points (N = 1090). Area represents an average share of individual land uses per 2x2 km square.

Tabela 2: Rezultati T-testa med habitatnimi spremenljivkami opazovanj črnih škarnikov Milvus migrans (N = 1482) ter naključnih točk (N = 1090). Površina ponazarja delež povprečne rabe na kvadrat 2x2 km.

Random Black Kite Mean SD Mean SD t-value P Large water body 3621.7 2698.4 1176.4 1523.7 18.56 < 0.01 Distance Rubbish dump 9981.4 5164.1 6097.4 3520.3 14.95 < 0.01 [m] Settlement 367.8 382.9 396.6 350.3 -1.39 0.16 Arable land 0.10 0.18 0.28 0.24 -12.28 < 0.01 Meadows 0.19 0.14 0.24 0.18 -4.35 < 0.01 Forest 0.57 0.27 0.25 0.22 15.02 < 0.01 Area Urban area 0.05 0.08 0.11 0.14 -7.92 < 0.01 Wetland 0.01 0.03 0.03 0.07 -8.10 < 0.01 Other 0.08 0.10 0.08 0.09 -0.73 0.46 79 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

databases (Mihelič 2016). This is possible since in apparently suitable habitat (low altitude and it is in contradiction with the broader European open mosaic landscape with many water bodies) trend, where the breeding population suffered a in NE Slovenia is somewhat surprising. There were substantial decline in the past century (Viñuela only few records indicating possible breeding along & Sunyer 1994, Birdlife International 2004) the lower Mura River so far (i.e. Božič 1998). One and its current trend is uncertain (BirdLife In- of the reasons may lie in arable land, since Black ternational 2015). On the other hand at least Kites tend to avoid intensive farmland (Tanferna locally, i.e. Dravsko polje, the population has risen et al. 2013) and their breeding density decreases substantially (from 1 to 7 pairs) and it may be with the size of intensive arable land (Sergio et similar to the population increase in Sicily (Sará al. 2003). On the other hand, Dravsko polje is 2003) that does not reflect national trend in Italy also known for its ample intensively farmed land, (Sergio & Boto 1999), where negative trends but this may be compensated with many shallow prevail (Sergio et al. 2003). Similarly, the trend fishponds and drainage ditches. One explanation differs in different parts of Austria with Carinthian may be that colonisation has not reached Pomurje population rising (Petutsching & Probst 2017) as yet. It is increasing on Dravsko polje but it is still and the population in Donau-Auen National Park rare in Styria, Austria (R. Probst pers. comm.). decreasing (Probst & Schuhbauer 2010). Overall Although Black Kite can cross high mountains it seems that the population trend in Slovenia is at on its migration (R. Probst pers. comm.), it is a least stable, with some local increases. The estimate lowland species (Salvati et al. 2001), which is of breeding population is similar to the one given also in agreement with observations in Slovenia. by Denac et al. (2011) but includes only confirmed In Northern Italy, Black Kite breeds between and probable and not possible breeding pairs. With 240 and 870 m a.s.l. with average at 515 m a.s.l. the latter, the estimate would probably be higher by (Sergio & Boto 1999), although breeding density up to 5 pairs. rises with lowering altitude (Sergio et al. 2003). In Slovenia, Black Kite habitat is similar to In Switzerland, most pairs breed below 600 m habitat requirements in other countries, i.e. low a.s.l., and individuals observed higher in the Alps forest cover and proximity to wetlands (Cramp are thought to be non-breeding individuals on 1998, Probst & Schuhbauer 2010). Wetlands foraging trips (Schmid et al 1998), just like those and large water bodies that are rich in food are on Breginjski stol (Denac 2010). essential for Black Kite (Sergio et al. 2003, 2005) Migrating individuals in March correspond with increased breeding density and success in their to peak migration across the Strait of Gibraltar proximity (Sergio & Boto 1999, Salvati et al. and Suez (Panuccio et al. 2014). Similar to the 2001, Sergio et al. 2003). Fish are important part central Mediterranean (Panuccio & Agostini of the Black Kite’s diet (Probst & Schuhbauer 2010), the spring migration in Slovenia is weak in 2010). Thus it is not surprising that most of our March, but unlike the Straight of Messina it does records were made at or near wetlands. The breeding not peak in mid-April (Corso 2001), but rather in density even rises with the size of wetland, but also May. It is often difficult to separate breeding from with the size of open land (Sergio et al. 2005), as is migrating individuals, especially as the percentage the case in Slovenia. Open rubbish dumps represent of immature individuals is significant during the important feeding areas for Black Kite (Blanco second part of migration (Panuccio & Agostini 1994) and most of our breeding pairs include one 2010). Seasonal dynamics differs from that in in their territory. Algeria, where peak in the number of individuals If the Black Kite’s absence from the Alps (N is in August but similarly, Black Kites leave their and NW Slovenia) and hills of W, S and E Slovenia breeding area at the end of September (Boumaaza (hills of Zasavje, Snežnik, Kočevje, Polhograjsko, et al. 2016). Although no Black Kites were observed Škofjeloško and Cerkljansko) could be explained in winter, such observations are expected in the with higher altitudes and forest cover (Cramp 1998), future since wintering population is increasing in the reason for its absence from Pomurje is more Europe, including all our neighbouring countries complex. Almost complete absence of observations (Literák et al. 2017). 80 Acrocephalus 39 (178/179): 71–83, 2018

5. Povzetek Mihelič B., Mihelič R., Mihelič T., Mlakar M.M., Novak J., Ploj A., Poljanec L., Poljanec N., Premzl Med letoma 1984 in 2017 je bilo opazovanih 1388 M., Remžgar T., Rijavec A., Rubinić B., Sešlar M., osebkov črnega škarnika večinoma po nižinah z Slameršek A., Šalamun Ž., Šinigoj E., Škoberne A., glavnino opazovanj na Dravskem polju (70,0 %). Tomažič A., Tome D., Vrezec A., Vukelič E. Opazovanja so razporejena od morske gladine do nekaj pod 1600 m n.m. s povprečno nadmorsko 6. References višino 271 m. Črni škarnik se v Sloveniji pojavlja med sredino marca in začetkom decembra z Atlas ptic (2018): Black kite Milvus migrans. – [http:// neizrazito spomladansko in jesensko selitvijo. atlas.ptice.si/atlas], 01/08/2018 Največje število opazovanj je v maju. Črni škarnik Birdlife international (2004): Birds in Europe: population estimates, trends and conservation je bil opazovan v 71 od 238 kvadratih 10 x10 km status. – BirdLife Conservation Series No. 12. (29,8 %), z večjim deležem opazovanj na gnezdiščih BirdLife International, Cambridge. in območjih z večjim številom opazovalnih dni. BirdLife International (2015): European Red list of Tako število opazovanj v posameznem letu kot tudi Birds. – Luxembourg: Office for Official publications število potrjenih in verjetnih gnezdečih parov je v of the European communities. Sloveniji naraščalo. V obdobju 2011–2018 je bilo BirdLife International (2018): Species factsheet: najdenih 10 gnezdečih parov na sedmih lokacijah Milvus migrans. – http://www.birdlife.org (07/02/2018). Blanco G. (1994): Seasonal Abundance of Black Kites (3–7 v vsakem letu). Ob teh je bilo najdenih še 11 Associated with the Rubbish Dump of Madrid, verjetno gnezdečih parov na devetih lokacijah (0–6 Spain. Journal of Raptor research 28 (4): 242–245. v vsakem letu). Gnezdeča populacija v obdobju Bordjan D. (2004): Črni škarnik Milvus migrans. 2011–2018 šteje 10–21 verjetno in potrjeno Acrocephalus 25 (122): 162. gnezdečih parov s povprečno gnezditveno gostoto Bordjan D. (2012): Vodne ptice in ujede Cerkniškega 0,3–0,9 gp/100 km2. Najvišja gostota parov je polja (južna Slovenija) v letih 2007 in 2008, s 2 pregledom zanimivejših opazovanj do konca leta na Dravskem polju (0,6–2,2 gp/100km ). Ob 2010. – Acrocephalus 33 (152/153): 25–104. upoštevanju možnih gnezditev bi bila ocena višja za Bordjan D. (2015): Spring migration of waterbirds and do 5 gp. Na potrjenih gnezdiščih je gnezdil v večini raptors at Medvedce reservoir (Dravsko polje, NE let po potrditvi, najbolj konstantno na območju Slovenia). – 36 (164/165): 21–43 rednih monitoringov vodnih ptic in ujed. Črni Bordjan D. (2017): Occurrence of the Red Kite Milvus škarnik je pogosteje opazovan ob večjih vodnih milvus in Slovenia. – Acrocephalus 38 (172/173): telesih in bližje smetiščem, kot bi pričakovali 55–59 Bordjan D., Božič L. (2009): Pojavljanje vodnih ptic in naključno. Hkrati so bila opazovanja razporejena ujed na območju vodnega zadrževalnika Medvedce na območjih z nižjim deležem gozda in njivskih (Dravsko polje, SV Slovenija) v obdobju 2002–2008. površin ter z višjim deležem travnikov, naselij in Acrocephalus 30 (141/142/143): 55–163. mokrišč. Boumaaza O., Bara M., Khemis M.D.E.-H., Boucherit K., Elafri A., Bouslama Z., Houhamdi M. (2016): Acknowledgments Breeding biology of the black kite Milvus migrans (Accipitridae) at Ras El Ma ravine (Guelma, northeast Algeria). – Journal of Entomology and My special thanks are due to Tomaž Mihelič for Zoology studies 4 (5): 480–483. exporting data on Black Kite from online data base. Božič L. (1992): Spomladanski prelet sršenarjev Pernis I am also indebted to all who unselfishly shared apivorus prek Maribora. Acrocephalus 13 (54): their observations with me to enrich knowledge 144–145. on the species. List of contributors in alphabetical Božič L. (1998): Črni škarnik Milvus migrans. order: Basle T., Bernard G., Blažič B., Bombek D., Acrocephalus 19 (90/91): 167. Božič, L. (2007): Monitoring splošno razširjenih vrst Božič L., Cvetko M., Denac D., Denac K., Denac ptic v letu 2007 za določitev slovenskega indeksa ptic M., Domanjko G., Fekonja D., Figelj A., Figelj J., kmetijske krajine. – DOPPS, Maribor. Gamser M., Gjergjek R., de Groot M., Hanžel J., Bračko F. (1990): Prezimovanje pepelastega lunja Horvat E., Jančar A., Jančar T., Kerček M., Kmecl Circus cyaneus v severovzhodni Sloveniji v obdobju P., Koren A., Kotnik A., Kozina A., Martinc U., 1982–90. Acrocephalus 11 (46): 95–101. 81 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat

Bračko, F. (1998): Pojavljanje planinskega orla Aquila s poudarkom na preletu in prezimovanju. – chrysaetos na Pohorju. Acrocephalus 19 (87/88): Acrocephalus 14 (56/57): 4–31. 60–63. Košir M. (1997): Zanimivosti od koderkoli: Sava pri Corso A. (2001): Raptor migration across the strait of Ljubljani. Acrocephalus 18 (83): 121–124. Messina, southern Italy. – British birds 94: 196-202. Kozinc B. (1991): Gnezdenje črnega škarnika Milvus Cramp S. (ed.) (1998): The complete birds of the western migrans pri Lescah. – Acrocephalus 12 (48): 57–70. Palearctic on CD–ROM. – Oxford University Press, Kozinc B. (1999): Analiza ostankov plena iz gnezda Oxford. škrjančarja Falco subbuteo. Acrocephalus 20 (93): Del Hoyo J., Elliott A., Sargatal J. eds. (1994): 50–52. Handbook of the Birds of the World. Vol. 2. New Kozamernik J.J. (2000): Črni škarnik Milvus migrans. world vultures to Guineafowl, Lynx Editions, Acrocephalus 21 (102/103): 277. Barcelona. Literák I., Horal D., Alivizatos H., Matušík (2017): Denac D., Smole J., Vrezec A. (2009): Naravovarstveno Common wintering of black kites (Milvus migrans vrednotenje avifavne ob Savi med Krškim in migrans) in Greece, and new data on their wintering Jesenicami na Dolenjskem s predlogom novega elsewhere in Europe. – Slovak Raptor Journal 11: mednarodno pomembnega območja (IBA) za ptice v 1–12 Sloveniji. – Naturae Sloveniae 11 (1): 25–57 Lončar T. (2003): Črni škarnik Milvus migras. Denac K. (2010): Census of migrating raptors at Acrocephalus 24 (119): 148. Breginjski Stol (NW Slovenia) – the first confirmed Luskovec V. (1990): Predlog za popolno varstvo bottleneck site in Slovenia. Acrocephalus 31 kragulja Accipiter gentilis in skobca Accipiter nisus. (145/146): 77−92. Acrocephalus 11(43/44): 1–2. Denac K., Mihelič T., Božič L., Kmecl P., Jančar T., Marenče M. (1998): Planinski orel Aquila chrysaetos v Figelj J., Rubinić B. (2011): Strokovni predlog za Triglavskem narodnem parku. Acrocephalus 19 (89): revizijo posebnih območij varstva (SPA) z uporabo 104–108. najnovejših kriterijev za določitev mednarodno Meyburg B.–U., Meyburg C. (2009):GPS–Satelliten– pomembnih območij za ptice (IBA). – Končno Telemetrie bei einem adulten Schwarzmilan (Milvus poročilo (dopolnjena verzija). Naročnik: Ministrstvo migrans): Aufenthaltsraum während der Brutzeit, za okolje in prostor. DOPPS – BirdLife, Ljubljana. Zug und Überwinterung. Populationsökologie Denac M. (2016): Črni škarnik Milvus migrans. – Greifvogel– und Eulenarten 6: 243–284. Acrocephalus 37 (170/171): 234. Matvejev S.D., Vasić V.F. (1973): Catalogus faunae ESRI (2015): ArcGIS 10.4.1 for Desktop. – ESRI, Jugoslaviae IV/3. Aves. – Slovenska akademija Redlands, California znanosti in umetnosti, Ljubljana. Figelj J. (2007a): Črni škarnik Milvus migrans. Mihelič T. (2002): Novi ornitološki atlas gnezdilk Acrocephalus 28 (134): 129. Slovenije. Navodila za popisovalce, DOPPS Figelj J. (2007b): Pojavljanje sokola selca Falco peregrinus Ljubljana. in kragulja Accipiter gentilis v Ljubljani. Acrocephalus Mihelič T. (2005): Monitoring populacij izbranih vrst 28 (135): 165–167. ptic. Končno poročilo, DOPPS Ljubljana. Freyer H. (1842): Fauna der in Krain bekannten Mihelič T. (2016): Spletna beležka kot nov pripomoček Säugethiere, Vögel, Reptilien und Fische. – favnistike. Acrocephalus 37 (168/169): 1–3 Eger'schen Gubernial Buchdruckerei, Laibach. Mihelič T., Genero F. (2005): Occurrence of Griffon Geister I. (1995): Ornitološki atlas Slovenije. DZS, Vulture Gyps fulvus in Slovenia in the period from Ljubljana. 1980 to 2005. Acrocephalus 26 (125): 73–79. Gjerkeš M., Lipej L. (1992): O pojavljanju in Mihelič T., Brajnik I. (2006): Nova opazovanja selitve prehranjevanju rdečenoge postovke Falco vespertinus ujed na Volovji rebri (J Slovenija). Acrocephalus 27 v Slovenski Istri. – Acrocephalus 13 (51):44–48. (128/129): 86–87. Gregori J., Šere D. (2005): Ptiči Šaleških jezer, MKGP (2018): Grafični podatki RABA za celo Prirodoslovno Muzej Slovenije. Ljubljana. Slovenijo. – http://rkg.gov.si/GERK/ Hanžel J. (2015): The influx of Red-footed Falcons Panuccio M., Agostini N. (2010): Timing, Age Classes Falco vespertinus in Slovenia in spring 2015. – and Water–Crossing Behaviour of Black Kites Acrocephalus 36 (166/167): 179–183 (Milvus migrans) During Spring Migration Across Jančar T. (1991): Črni škarnik Milvus migrans. the Central Mediterranean. The ring 32 (1–2): Acrocephalus 12 (48): 85–86. 55–661. Kerček M. (2005): Ptice akumulacije Medvedce. Panuccio M., Agostini N., Mellone U., Bogliani G. Diplomsko delo, Univerza v Mariboru. (2014) Circannual variation in movement patterns Kmecl P,. Rižner, K. (1993): Pregled vodnih ptic in of the Black Kite (Milvus migrans migrans): a review, ujed Cerkniškega jezera; spremljanje številčnosti Ethology Ecology & Evolution, 26:1, 1–18. 82 Acrocephalus 39 (178/179): 71–83, 2018

Petutschnig von W., Probst R. (2017): Sehr seltene Tanferna A., Löpez–Jiménez L., Blas J., Hiraldo Brutvogelarten in Kärnten – Bestandsentwicklung F., Sergio F. (2013): Habitat selection by Black kite im Betrachtungszeitraum 2006 bis 2016. – Carinthia breeders and floaters: Implications for conservation II, 207 (127): 601-630 management of raptor floaters. – Biological Probst R., Schuhbauer A. (2010): Der Schwarzmilan Conservation 160: 1–9 (Milvus migrans) im Nationalpark Donau-Auen – Trebušak M., Rubinić B., Vrezec A. (1999): Veliki eine Synopsis – Carinthia II – 200_120: 143 – 166. klinkač Aquila clanga na Ljubljanskem barju. – Reiser O. (1925): Die Vögel von Marburg an der Drau. Acrocephalus 20 (97): 191–193. Nauturwissenschaftlichen Verein in Steiermark, Viñuela J., Sunyer C. (1994): Black Kite Milvus Graz, 143 p migrans. Pp. 149. In: Tucker, M. T. & M. F. Heath Schiavuzzi B. (1883): Materiali per un'avtfauna del (eds.): Birds in Europe: Their Conservation Status. territorio di Trieste fino a Mortfalcone e deli'Istria. Cambridge, U. K.: BirdLife International, BirdLife Bollettino della Societa Adriatica Scienze Naturali, Conservation Series No. 3. 8, 3–78. Vrezec A. (2012): A preliminary overview of Schulz F. (1890): Verzeichnis der bisher in Krain raptor monitoring in Slovenia – an overview of beobachteten Vögel. Laibach. methodologies, current monitoring status and future Salvati L., Manganaro A., Pucci L., Ranazzi L. perspectives. – Acrocephalus 33 (154/155): 271–276. (2001): Distribution of woodland raptors along Vrezec A., Bordjan D., Perušek M., Hudoklin A. a Mediterranean–temperate gradient in Latium (2009): Population and ecology of the White–tailed (central Italy). – Ornis Hung. 11: 1–7. Eagle (Haliaeetus albicilla) and its conservation Sará M. (2003): The Colonization of Sicily by the Black status in Slovenia. – Denisia 27: 103–114. Kite (Milvus migrans). Journal of raptor research 37 (2): 167–172. Schmid H., Luder R., Naef–Daenzer B., Graf R., Prispelo / Arrived: 11. 9. 2018 Zbinden N. (1998): Schweizer Brutfogelatlas. Sprejeto / Accepted: 28. 12. 2018 Verbreitung der Brutvögel in der Schweiz und Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte. Sempach. Sergio F., Boto A. (1999): Nest dispersion, diet, and breeding success of blak kites (Milvus migrans) in the Italian Pre–Alps. Journal of Raptor Research 33 (3): 207–217. Sergio F., Pedrini P., Marchesi L. (2003): Reconciling the dichotomy between single species and ecosystem conservation: Black Kites (Milvus migrans) and eutrophication in pre–Alpine lakes. Biological Conservation 110: 101–111 Sergio F., Blas J., Forero M., Fernández N., Donázar J.A., Hiraldo F. (2005): Preservation of wide–ranging top predators by site–protection: Black and red kites in Dońana National Park. Biological Conservation 125: 11–21. Smerdu R. (1981):Ali veliki klinkač gnezdi v Sloveniji. Acrocephalus 2 (10): 56. Sovinc A., Šere D. (1993): Ornitološka kronika za leto 1991. Acrocephalus 14 (58/59): 140–144. Škornik I. (1985): Planinski orel Aquila chrysaetos gnezdi tudi v Slovenskem primorju. Acrocephalus 6 (25): 40–41. Škornik I. (2012): Favnistični in ekološki pregled ptic Sečoveljskih solin. – Soline pridelava soli, Seča. Šumrada T., Hanžel J. (2012): The Kestrel Falco tinnunculus in Slovenia – a review of its distribution, population density, movements, breeding biology, diet and interactions with other species. – Acrocephalus 33 (152/153): 5–24. 83

Acrocephalus 39 (178/179): 85–90, 2018 10.1515/acro-2018-0007

Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic Ovoskopija in terenski atlas zgodnjega razvoja pri gagah Somateria mollissima v Osrednjem Baltiku

Svend-Erik Garbus1,2, Peter Lyngs3, Anders Popp Thyme2, Jens Peter Christensen2, Christian Sonne1*

1 Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; e–mail: [email protected] 2 University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, DK-1870 Frederiksberg C, Denmark 3 Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark

Here we present the results of candling 258 eggs from 50 nests of Common Eiders Somateria mollissima in a colony in the central Baltic. Of these, 223 (86%) had a developing foetus. Among the 35 (14%) failed eggs, 15 were unfertilized and 20 contained a dead embryo. The prevalence of failed eggs is similar to the average proportion of failed eggs reported previously by the Christiansø Scientific Field Station during 1998–2014. The reason for the high percentage of failed eggs is unknown; however, low pre-incubation body mass and energetic stress is likely to be the main factor. In addition, we incubated 8 eggs in the laboratory from day 0 to hatch in order to follow the development and foetal morphology. This resulted in a field atlas from which it is possible to estimate date of incubation start using candling in early incubation (days 1–12). The atlas is a new possibility for field biologists to estimate the first day of incubation of breeding eiders and the prevalence of unfertilized and rotten eggs, which is important for studying their biology and population dynamics.

Key words: Common Eider, Baltic, candling, fertilization, starvation, stress

Ključne besede: gaga, Baltik, ovoskopija, oploditev, stradanje, stres

1. Introduction This long-term monitoring revealed that during 1970–1990, the population increased from approxi- The Christiansø archipelago in the southern part of mately 1,000 to approximately 3,000 breeding pairs, the Baltic Proper holds the second largest Danish while from 1990 until today the population has colony of breeding Common Eiders Somateria declined by approximately 50% (Lyngs 2009, 2014). molissima (Christensen & Bregnballe 2011). The reasons for this is unknown, however, limited It consists of 1,500–1,700 pairs and has been access to food in wintering areas and the breeding monitored since 1950 (Lyngs 1992, 2009, 2014). location, infectious diseases, blooming toxic algae 85 S-E. Garbus et al.: Candling and field atlas of early egg development in Common EidersSomateria mollissima in the central Baltic

and failed eggs have been suggested as some of the 10-second candling is considered to pose no risk to main reasons (Buchman 2010, Camphuysen the further egg development. et al. 2002, Christensen et al. 2008, Larsson Birds were kept in a cotton bag during all et al. 2014, Laursen & Møller 2014). procedures to reduce stress. In cases where all eggs In order to understand the fluctuations in were removed from the nest due to complete failure, the number of breeding eiders and clutch size, artificial replacement eggs were used to keep birds at we established a research programme running in their nests and thereby reduce stress levels. All nests 2015–18. Briefly, the study showed that incubating were checked daily and visually inspected at distance. females underwent extreme physiological stress Eggs were divided into two groups: active eggs over the approximately 26-day incubation period. and failed eggs (Hemmings et al. 2011). Failed eggs The weight loss for a certain proportion of the were further divided into infertile eggs or dead colony in some years is borderline to cachexia and embryos. Information on the methods and their breeding failure (Garbus 2016, Garbus et al. interpretations is described in Ernst et al. (2004). 2018). As part of this, the prevalence of failed eggs In addition to this, newly laid eggs in 2016 (n=4) has been studied, since earlier indications suggest and 2017 (n=4) were brought for incubation in the that this could be a potential problem for the colony laboratory. The eggs were incubated on days 1–28 and and population dynamics (Lyngs 2009, 2014). the hatched ducklings were brought back to the nest Here, we present the results of the controlled and taken over by either the mother or a nanny. The study of candling incubating eider eggs and nests were visually observed, and all ducklings were provide the first field atlas of developmental successfully accepted by their mothers or nannies. stages in Common Eiders. Eggs were monitored An America motor incubator (America A/S, Thisted, and candled, and controlled incubation in the Denmark) was used for incubation. A thermometer laboratory was conducted. The present publication and hygrometer were placed inside the incubator is of value to field studies that measure fertility in order to monitor and adjust temperature and ratios and estimations of date of incubation start in humidity. The settings used were 38.5°C on the first breeding eiders. 21 days with a humidity of 55%. In the last 4–5 days of incubation, a temperature of 38.9°C was applied. 2. Materials and methods From day 8, the eggs were humidified daily with a spray containing water at 38.5 °C. The eggs were turned four During April-May 2015, 258 eggs and egg times daily (8.00, 12.00, 18.00 and 22.00). All eggs membranes from 50 nests of incubating habituated were photographed daily at 13.00 and simultaneously eiders were monitored at Christiansø located cooled during transport (1–2 minutes). Around the northeast of Bornholm in the Baltic Proper time of hatching, humidity was adjusted to 70%. For (55°19’N 15°11’E, Figure 1). All 258 eggs were photodocumentation of egg development, a Cree candled to investigate the frequency of failed eggs XPE High Power LED 3 W 150 lumen was used for and the relation to the health of female eiders. An early development and an EC4S NITECORE® LED oviscope was constructed from a flashlight (Cree Flashlight 2150 Lumen for late development. Lumen XPE High Power LED 3 W 150 Lumen) modified settings varied from 1000–2150. Both flashlights with a rubber cup on the top (Figure 2). The were modified with rubber cubs placed in a holder flashlight had a sufficient brightness to examine fitting the morphology of the eggs. Pictures were the eider eggs. The entire candling procedure was taken with a Nikon D3S using a 60 mm macro lens performed in darkness using a mackintosh covered (f/9, 1250 ISO, 1 sec exposure) in a partly dark room. cardboard box. Using nitrile examination gloves, For basic training, the candling procedure the base of the egg was held between thumb and was tested at the Department of Disease Biology, forefinger, placed directly against the light and University of Copenhagen in March 2015 on day tilted slightly to one side while rotating the egg. 10 of incubation. Candling of 200 chicken eggs The candling was conducted from day 8 to 12 of the showed fourteen unfertilized and seven dead incubation stage as recommended for ducks having embryos adding up to 10% failed eggs. No false long incubation periods (Ernst et al. 2004). The negatives were observed. 86 Acrocephalus 39 (178/179): 85–90, 2018

Christiansø

Figure 1. Map of the archipelago Christiansø study area

Slika 1: Zemljevid preučevanega območja v arhipelagu Christiansø

3. Results and discussion

3.1. Candling and hatching

The candling and egg membrane counting showed that 223 (86%) eggs had a developing foetus. Among the 35 (14%) failed eggs, fifteen were -un fertilized (6%) and twenty contained dead embryos (8%). This percentage of failed eggs (14%) is the same as the average proportion of failed eggs found by the Christiansø Scientific Field Station during 1998-2014 (14%; range 8–23%) (Lyngs 2014). To the best of our best knowledge, no other large-scale investigations on failed eider eggs have been conducted, making it difficult to compare Figure 2. Egg candling using a modified Cree XPE High Power LED® as oviscope inside a cardboard box with the proportion of failed eggs in other colonies. However, the loss of incubated eggs from modern, Slika 2: Ovoskopija z uporabo modificiranega orodja Cree high-hatching chicken strains, stored under XPE High Power LED® kot oviskopa v kartonski škatli optimal conditions, should be no more than 10%. 87 S-E. Garbus et al.: Candling and field atlas of early egg development in Common EidersSomateria mollissima in the central Baltic

Losses in waterfowl may be slightly higher (Ernst Agency, 15. Juni Fonden, Jægernes Naturfond, et al. 2004). The reasons for the relatively large SKOV A/S (Glyngøre 7870 Roslev, Denmark) and proportion of failed eggs in the Christiansø colony BONUS BALTHEALTH that has received funding is unknown, however, low initial body weight from BONUS (Art. 185), funded jointly by the EU, and energetic stress is likely to be the main reason Innovation Fund Denmark (grants 6180-00001B (Garbus 2016, Garbus et al. 2018, Hemmings and 6180-00002B), Forschungszentrum Jülich et al. 2011). Nutritional deficiencies, early infections GmbH, German Federal Ministry of Education and contaminant exposure constitute the common and Research (grant FKZ 03F0767A), Academy of cause of dead-in-shell embryos in chickens, which is Finland (grant 311966) and Swedish Foundation for a supporting weight of evidence for similar cause and Strategic Environmental Research (MISTRA). In effects in the present investigation of the Christiansø addition, we are grateful to the people of Christiansø breeding colony (Alcorn 2008, Hoffman 1990). for their help with reporting and collecting dead eiders in 2007 and 2015. 3.2. Candling atlas Povzetek Figure 3 shows the atlas of the day 1–12 stages of incubating Christiansø eider foetus. It is seen Avtorji članka predstavljajo rezultate ovoskopije that the centrally located embryo takes form as a 258 jajc iz 50 gnezd gage Somateria mollissima v small-condensed area forming into a red / dark koloniji na Osrednjem Baltiku. Od teh jih je 223 area. From the embryo, blood vessels radiate to the (86 %) vsebovalo razvijajoče se zarodke. Med 35 extra-embryonic membrane. The simple circulatory (14 %) propadlimi jajci je bilo 14 neoplojenih, 20 system evolves into a more advanced system and the pa jih je vsebovalo mrtve zarodke. Prevladujoče embryo takes gradually more space of the egg. After število propadlih jajc je podobno povprečnem deležu day 12, the examination of the egg is complicated or propadlih jajc, o katerem so v obdobju 1998–2014 no longer suitable as a measure of foetal age as the poročali z Znanstvene terenske postaje v arhipelagu foetus gets darker and takes up more space. During Christiansø. Razlog za ta visoki odstotek propadlih the last period of the egg development, the foetus is jajc sicer ni znan, vendar avtorji domnevajo, da gre only visible as a dark shadow with a prominent air glavni faktor za takšno stanje po vsej verjetnosti sac. In addition, Figure 4 shows examples of dead and pripisati telesni masi pred valjenjem in energetskemu infertile eggs, respectively, at Christiansø. A blood stresu. Da bi sledili razvoju in zarodkovni morfologiji, ring is seen in the dead egg, and the infertile egg so se avtorji odločili za inkubacijo osmih jajc v labo- appears clear and transparent with no development. ratoriju od dneva 0. Rezultat je bil terenski atlas, iz katerega je mogoče oceniti datum začetka inkubacije 3.3. Future considerations z uporabo ovoskopije med zgodnjo inkubacijo (dnevi 1–12). Atlas ponuja terenskim biologom novo The atlas and candling method provide field možnost ocenjevanja prvega dne valjenja gnezdečih biologists with a tool to estimate first day of gag in prevladujoče število neoplojenih in gnilih jajc, incubation of breeding eiders and prevalence of kar je pomembno za preučevanje njihove biologije in unfertilized and rotten eggs, which is important populacijske dinamike. for studying their biology and population dynamics (Robertson & Cooke 1993) including what 4. References is known about males during the winter season (Garbus et al. In press). Alcorn MJ (2008): How to carry out a field investigation. pp. 14-38. In: Jordan F. T. W, Acknowledgements Pattison M., Alexander D., Faragher T. (eds.): Poultry Diseases. – W.B. Saunders, London. Buchmann K. (2010): Døde edderfuglene af et The study was approved by the Danish Nature parasitangreb? (Did the eiders die from parasitic Agency (SVANA). For Funding of the study, we infections?) – Natur på Bornholm 8: 18–21. (in acknowledge The Danish Environmental Protection Danish) 88 Acrocephalus 39 (178/179): 85–90, 2018

Common Eider eggs

Day 1 Day 2 Day 3

Day 4 Day Day 6

Day 7 Day 8 Day 9

Day 10 Day 11 Day 12

Figure 3: Stages of egg incubation on days 1–12 at Christiansø

Slika 3: Faze valjenja v dnevih 1–12 v arhipelagu Christiansø 89 S-E. Garbus et al.: Candling and field atlas of early egg development in Common EidersSomateria mollissima in the central Baltic

Christensen JP, Bojesen MA, Bisgaard M. (2008): Fowl cholera. pp. 149–154. In: Jordan F. T. W, Pattison M., Alexander D., Faragher T. (eds.): Poultry Diseases. – W.B. Saunders, London. Christensen TK, Bregnballe T. (2011): Status of the Danish breeding population of Eiders Somateria mollissima 2010. – Dan Ornol Foren Tidsskr 105: 195–205. The active egg (day 7) Note the circulatory system Ernst RA, Bradley FA, Abbott UK, Craig RM (2004): Egg candling and breakout analysis. – ANR Publication 8134. Garbus SE (2016): Health, behavior, egg failure and starvation-mortality of incubating common eiders (Somateria mollissima) at Christiansø, Central Baltic Sea. MSc thesis, University of Copenhagen, Denmark. Garbus SE, Lyngs P, Christensen JP, Buchmann K, Eulaers I, Mosbech A, Dietz R, Gilchrist HG, Sonne C. (2018): Common eider (Somateria mollissima) body condition and parasitic load during a mortality The unfertilized egg Note the clear yolk event in the Baltic proper. – Avian Biol Res 11:167–172. Garbus SE, Krogh AKH, Jacobsen ML, Sonne C. (Accepted for publication – In press): Pathology and plasma biochemistry of common eider (Somateria mollissima) males wintering in the Danish part of Western Baltic. – J Avian Med Surg. Hemmings N, West M, Birkhead TR (2012): Causes of hatching failure in endangered birds. – Biol Lett 8: 964–967. Hoffman DJ (1990): Embryotoxicity and Teratogenicity of Environmental Contaminants to Bird Eggs. The dead embryo The blood rings observed indicates In: Ware G.W. (ed.): Reviews of Environmental death of embryo Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 115. – Springer, New York. Figure 4: From top to bottom: active egg (day 7), Larsson K., Hajdu M., Kilpi R., Larsson R., Leito A., unfertilized egg, egg containing dead embryo at Lyngs P. (2014): Effects of an extensive Christiansø. Note the circulatory system in the active egg Prymnesium and that the infertile egg appears clear and transparent polylepis bloom on breeding eiders in the Baltic Sea. – with no development, while the beginning of a blood J Sea Res 88: 21–28. ring is seen in the dead egg (arrow). Laursen K., Møller AP (2014): Long-Term Changes in Nutrients and Mussel Stocks Are Related to Slika 4: Od zgoraj navzdol: aktivno jajce (7. dan), Numbers of Breeding Eiders Somateria mollissima at neoplojeno jajce, jajce z mrtvim zarodkom. Glej obtočni a Large Baltic Colony. – PLoS ONE 9:e95851. sistem v aktivnem jajcu in kako je neplodno jajce videti Lyngs P. (1992): Ynglefuglene på Græsholm 1925–90. – čisto in prozorno brez znakov razvoja, medtem ko je Dan Orn Foren Tidsskr 94: 12–18. v mrtvem jajcu opaziti začetek oblikovanja krvnega Lyngs P. (2009): Christiansø Fieldstation – [http:// prstana (puščica). www.chnf.dk/aktuelt/edf09/edfugl09_2sp.php], 01/01/2016. Lyngs P. (2014): Christiansø Fieldstation. – [http:// www.chnf.dk/aktuelt/edf14/edfugl14.php], Camphuysen CJ, Berrevoets CM, Cremers HJWM, 01/01/2016. Dekinga A., Dekker R., Ens BJ, Van der Have TM, Robertson GJ, Cooke F. (1993): Intraclutch egg- Kats RKH, Kuiken T., Leopold MF, van der Meer size variation and hatching success in the common J., Piersma T. (2002): Mass mortality of common eider. – Can J Zool 71: 544–549. eiders (Somateria mollissima) in the Dutch Wadden Sea, winter 1999/2000: Starvation in a commercially exploited wetland of international importance. – Prispelo / Arrived: 17. 9. 2018 Biol Conserv 106: 303–317. Sprejeto / Accepted: 12. 12. 2018 90 Acrocephalus 39 (178/179): 91–100, 2018 10.1515/acro-2018-0008

Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass Valilno vedenje gag Somateria mollissima v Osrednjem Baltiku: prisotnost na gnezdu in izguba telesne mase

Svend-Erik Garbus1,2, Peter Lyngs3, Mathias Garbus4, Pelle Garbus5, Igor Eulaers1, Anders Mosbech1, Rune Dietz1, H. Grant Gilchrist6, Rene Huusmann2, Jens Peter Christensen2, Christian Sonne1*

1 Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark (SE Garbus: [email protected]; C Sonne: [email protected]; I Eulaers: ie@ bios.au.dk; A Mosbech: [email protected]; R Dietz: [email protected]) 2 University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, DK-1870 Frederiksberg, Denmark (JP Christensen: [email protected]; R Huusmann: [email protected]) 3 Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark [email protected]( ) 4 Daddellunden 14, DK-8960 Randers SØ, Denmark ([email protected]) 5 Aarhus University, Department of Chemistry and iNANO, Center for Materials Crystallography, Langelandsgade 140, DK-8000 Aarhus C, Denmark (P Garbus: [email protected]) 6 National Wildlife Research Centre, Environment Canada, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada ([email protected]) * Corresponding author: Professor Christian Sonne, DScVetMed, PhD, DVM, Dipl. ECZM (Wildlife Health), Aarhus University, Faculty of Science and Technology, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK- 4000 Roskilde, Denmark. Tel. +45-30-78-31-72; fax: +45-87-15-50-15; Email address: [email protected] (C. Sonne).

Here we present the recording of body mass change and weight loss during incubation in a Common Eider Somateria mollissima colony at Christiansø in the Central Baltic (55°19’N 15°11’E). The study was conducted during April and May 2015 and a total number of four birds were followed (two were lost due to predation and three due to power outages). Body mass and nesting behaviour was recorded electronically over a period of 26–27 days using automatic poultry scales and a surveillance video camera. During incubation, the eiders underwent a 28–37% loss in body mass and left the nest on average 13 times (range: 7–17 times) for a period of 7–70 min. In general, birds with high initial body mass left their nest for a shorter total time than birds with lower initial body mass. The recorded daily changes in body mass indicate that the eiders foraged during the incubation period, not just leaving the nest for rehydration or in response to disturbance, which improve our current understanding of eider incubation behaviour. Such information is important to fully understanding of eider breeding biology in order to better conserve and manage the species during its breeding seasons where individual birds undergo extreme stress that may affect reproductive outcome and adult survival.

Keywords: camera, nest, hydrating, feeding, foraging, recess behaviour Ključne besede: kamera, gnezdo, hidracija, prehranjevanje, iskanje hrane, vedenje med odsotnostjo z gnezda

91 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass

1. Introduction stage III protein catabolism increases again. In fact, these latter biochemical changes allowed a Finnish Common Eiders Somateria molissima are colonial study on incubating eiders in 1997-199 to pinpoint breeders with females exhibiting a high degree of specific years in which stage III was reached philopatry (Choate 1966, Clark 1968, Milne (Hollmén et al. 2001) which was shown again in 1974, Wakeley & Mendall 1976). Initially, the the Christiansø eider colony by Garbus (2016) in male accompanies the female, defending its mate for 2015. The mobilization of lipids and nutritional fertilization assurance, but as incubation progresses reserves releases persistent organic pollutants and the male loses interest in the female (Blumpton et heavy metals to the blood, which together with al. 1988, Hario & Holmén 2004, Milne 1974). nutrient-deficiency lead to immune suppression Eider clutches average 4 to 5 eggs in Danish and and affect the breeding success (Hollmén et Finnish eider colonies and the eggs hatch after al. 2001, Hanssen et al. 2003, Mallory et al. approx. 26 days of incubation (Bregnballe 2002, 2004, Baldassarre 2014). Furthermore, body Goudie et al. 2000, Hario & Selin 1987). mass or body condition may also affect brood care During incubation, body reserves from behaviour long after hatching, affecting survival of wintering grounds are crucial for the reproduction ducklings as well (Öst et al. 2003). of eiders (Laursen et al. 2018, 2019). As the sole It is important to develop minimally invasive incubator in the nesting process, the female eider tools that allows us assessing the general health relies primarily on these accumulated reserves. of eiders during the incubation period. Here Prior to incubation, the process of egg development we present data on body mass changes and nest facilitates the mobilization of minerals and attendance behaviour of the common eider using nutrients (Alonso-Alvarez et al. 2002, Wilcox electronic scales and video surveillance. This 1965), which affect general health, physiology and allow us to further study behaviour and stress that biochemistry (Garbus 2016). incubating eiders undergo during the breeding During incubation, the female rarely leaves the season and determine the most important factors nest unless disturbed, for occasional preening or for breeding success. The study was conducted in a bathing or in need of rehydration (McArthur & colony in the Central Baltic Sea. Here the eiders are Gorman 1978, Swennen et al. 1993, Bolduc & migrants, returning to the colony in late February Guillemette 2003). The female relies on nutrient and conduct their main 26-day incubation from reserves and especially fat reserves and pectoral mid-April to mid-May. The very last eggs usually muscles are metabolised (Korschgen 1976, hatch in early June (Franzmann 1980, Lyngs Milne 1976, Parker & Holm 1990). Studies 1992). have shown incubation intermissions to last for 4–17 min primarily during the night (Bolduc 2. Materials and methods & Guillemette 2003, Bottitta et al. 2003, Criscuolo et al. 2000, Swennen et al. 1993). 2.1. Study design The incubation period is energy-demanding and females lose 23-46 % of their pre-laying body The study colony is located on Christiansø which mass. A proportion of the incubating females may is part of the Ertholmene archipelago northeast not have sufficient nutrient reserves to complete of Bornholm in the Central Baltic Sea (55°19’N the incubation period and, consequently, clutches 15°11’E, DK-3760 Gudhjem) (Figure 1). Each of eggs are occasionally abandoned (Franzmann year, ca. 1500 eiders breed at Ertholmene (Lyngs 1980, Gabrielsen et al. 1991, Harðardóttir 2014). In April 2015, a study plot of app. 900 m2 et al. 1997, Mawhinney 1999, Parker & Holm was checked daily (09.00-10.00 am) to locate 1990). During incubation, typically three metabolic potential nests for scale monitoring and camera stages exist, each addressing different types of surveillance. New nests with 1-2 pre-incubated eggs energy. Throughout stage I, protein catabolism were marked with ID-number and GPS position. A decreases and fat metabolism increases. During thin spike was used to check if the layer of soil was stage II, the energy utilized is primarily fat. In sufficiently thick for placing the scale measuring 92 Acrocephalus 39 (178/179): 91–100, 2018

Figure 1: Map of the study area.

Slika 1: Zemljevid obravnavanega območja

22 cm × 7 cm (w×h). Then, eggs and nest material datasets were obtained from four nests that all were temporarily removed and the soil excavated hatched successfully. Scales were connected with to make space for the scales. In addition, plastic a cable to a panel box and the surveillance camera saucers were used to separate the scales from the was connected via network cable to a router hidden ground and the nest material. After deployment, in a plastic container in the nesting area. Scales the modified nests and their content were placed to were finally connected to a modified Raspberry Pie the exact same level compared to the surrounding Microcomputer (RPM), which collected and stored area as before (Figure S1). One camouflaged camera raw signals in a database by using an Analogue to was installed within 1m of one of the nests installed Digital Converter (ADC). The measuring error with scale system (Figure S2). Recording of data due to the resolution of the scales and 18 bit started hereafter. ADC was ±10.6 g. This was considered more than sufficient since other disturbances like rain, wind, 2.2. Automatic scale and camera surveillance temperature, unstable power, dirt and movements of the bird affect the measurements with similar or We placed an automatic poultry scale system larger perturbations. The RPM was programmed based on the scales DOL 94-10 from SKOV A/S to acquire raw mass data and time every 5 sec. This (Glyngøre 7870 Roslev, Denmark http://skov.com) information was stored in a database. in nine eider nests. Two nests were predated by We mounted a Foscam FI9805 HD 4mm Herring Gulls Larus argentatus, and in three nests PoE surveillance camera near one nest site in the data was lost due to power outages. Consequently, period April-June 2015. The Foscam Network 93 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass

Video Recorder FN3104H camera was supplied by This mass difference (ΔW) was extracted for all ShenZhen Intelligent Technology Cooperation. incubation intermissions for every bird (Figure 2). The camera recorded 10 frames per s and data was automatically stored on an external server. 2.4. Statistical analyses and graphical Recording during dark hours was made possible due presentations to the cameras’ build-in infrared light technology. Microsoft Movie editor (Microsoft Inc. 2015) All basic statistics were performed using R (R was used to edit the recordings. In this study, the CORE TEAM 2018). Due to low sample size, scales and surveillance camera were placed without only visual graphical interpretations were used. A disturbance as the placements were carried out moving average was applied to the graphical pre- during the pre-incubation period. sentation of the mass development to smooth out short-term fluctuations. 2.3. Body mass data 3. Results and Discussion In order to increase the limited sample size of this present study, we also included data reported by 3.1. Incubation intermissions and nest-leave Bolduc & Guillemette (2003) to see whether behaviour their results were different from those of this present study. The absolute recorded mass could not be used On average, the incubating eiders left their nests directly to determine the body mass of the bird. 13 times (range: 7–17 times; Table 1) during the Instead, we used the recorded mass right before 26-day incubation period. Each leave lasted for departure subtracting the mass of the nest content. 34 min on average (range: 7–70 min; Table 1).

3,5

3,0

2,5

42484,83257, 42484,78931, 2,0 3,091854678 2,946371806 42484,79891, 1,082014537 1,5 Mass [kg] Actual Moving Average 1,0

0,5

0,0 42484,82 42484,782 42484,8063 42484,8239 42484,77611 42484,81611 42484,76638 42484,76831 42484,77027 42484,77221 42484,77417 42484,77806 42484,78001 42484,78397 42484,78593 42484,78788 42484,78981 42484,79178 42484,79372 42484,79567 42484,79763 42484,79957 42484,80153 42484,80348 42484,81019 42484,81222 42484,81417 42484,81807 42484,82196 42484,82584 42484,82778 42484,82973 42484,83167 42484,83362

Time

Figure 2: Data collected from one of the automatic poultry scales and illustrated graphically providing information of the mass of the nest and the incubating female. The flat part of the curve illustrates an incubation intermission.

Slika 2: Podatki ene od avtomatskih tehtnic, ki so beležile maso valeče samice. Ravni del krivulje predstavlja premor med valjenjem 94 Acrocephalus 39 (178/179): 91–100, 2018

Table 1: Basic incubation data of Christiansø Common Eiders Somateria mollissima

Tabela 1: Osnovi podatki o valjenju gag Somateria mollissima v arhipelagu Christiansø

Time away from nest Incubation / Valjenje / Čas z gnezda Mass loss Time Per trip / on nest Time Total / Posamezen / Čas na / Čas Intermissions / Skupno odhod gnezdu Rate Relative ID (d) Premori (min) (min) (d) (g d-1) Absolute (g) (%) 692 #01 27 7 188 27 (7–43) 4 (2–7) 26 31 (2248–1556) 529 #02 26 17 534 31 (12–63) 2 (1–5) 20 28 (1884–1355) 707 #03 26 10 521 52 (35–70) 2 (1–5) 27 36 (1911–1204) 655 #04 26 16 442 28 (11–51) 2 (1–3) 25 37 (1761–1106) Average / 26 13 421 34 3 (1–5) 25 646 33 Povprečje

Table 2: Observed mass changes after incubation intermission of the Christiansø Common Eiders Somateria mollissima compared to the Saltholm study (Bolduc & Guillemette 2003).

Tabela 2: Opazovane spremembe mase gag Somateria mollissima med premori v valjenju – primerjava te raziskave z raziskavo na otoku Saltholm (Bolduc & Guillemette 2003).

Intermissions / Premori Mass/Masa Gain (g) Loss (g) No gain/loss Gain (g) Loss (g) n=50 18 (36 %) 25 (50%) 7 (14 %) 49 ± 21 (16–88) 44± 22 (11–89) n=76 12 (16%) 51 (67 %) 13 (17%) 117 ±75

This is slightly longer compared to previous studies did not change from the beginning to the end of from the Danish island Saltholm showing that the incubation while the length of intermissions (min) number of incubation intermissions was on average seem to decrease slightly. This, however, based on a 12 times (range: 9–19 times; Table 2) and lasting few individuals and a larger sample is required for for on average 14 min (range: 3-42 min; Table 2, statistical tests. Incubation intermissions mostly see below for details) (Bolduc & Guillemette took place around the same time of the day, i.e. 2003). The reasons for this is unknown but could after sunset between 21:00–24:00 (Figure S3–6). be due to differences in body condition, food access Out of 50 incubation intermissions only 3 (6 %) and presence of predators. were found to occur during daylight and all by The birds left on average every second day and the same bird (#04; Figure S6). The investigations the interval between each incubation intermissions on Saltholm by Bolduc & Guillemette (2003) varied 1-7 days. As suggested from Figure S3-6, the showed a slightly higher daytime occurrence time elapse between incubation intermissions (days) with eight of 61 intermissions (13 %). For every 95 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass intermission, the birds carefully covered up their (Korschgen 1976, Milne 1976, Parker & Holm eggs with down (Figure S7). According to the 1990) it has recently been suggested that they may webcam, this took approx. 60 s. While the female do so nevertheless (Bolduc & Guillemette was absent, the eggs were thus protected by both 2003, Criscuolo et al. 2002). Numerous dives dusk and down. The eiders left their nest for a total (Criscuolo et al. 2002), unusually long at times, time of 421 min (range: 188-534 min; Table 1). and necks distended on the way back to the nest In comparison, the Saltholm study (Bolduc & (Bolduc & Guillemette 2003) could be signs of Guillemette 2003) showed that the birds left food ingestion. At Christiansø, similar observations their nest for 190 min (range: 101–270 min). This were reported. At a mass mortality event in 2007 suggests that the Saltholm population may have had caused by starvation small piles of 5–14 mm a better body condition, better food access or was regorged blue mussels (Mytilus edulis) were found more affected by predators. The incubating eiders in close vicinity of seven incubating eiders (Lyngs lost 33% (range: 28–37%) of their initial body 2007, Garbus et al. 2018), indicating foraging. mass on average. Other investigations have shown a mass loss of 23–46% (Bolduc & Guillemette 3.3. Intermissions and body mass 2003, Franzmann 1980, Gabrielsen et al. 1991, Harðardóttir et al. 1997, Korschgen 1976, Blue mussels are the principal food item for eiders Parker & Holm 1990). The incubating eiders lost (Hario & Öst 2002, Hilgerloh 1999, Madsen on average 646 g (range: 529–707 g). The loss of body 1954, Nehls 2002, Swennen 1976). The quality mass was 25 g d-1 (range: 20–27 g d-1) on average. In of mussels may affect both the time foraging and comparison, the Saltholm study showed an average the amount of ingested food. If so, this may indicate body mass loss of 975 g (range: 723–1126 g), a mass that the blue mussel beds around Christiansø may loss rate of 37.5 g d-1 and a relative mass loss of 42% be of poor condition. Earlier studies have suggested likely due to a higher initial body condition. Other occasional poor health of blue mussels in the studies of nesting eiders have shown body mass loss Baltic sea caused by Prymnesium polylepsis blooms of 15–30 g d-1 (Bolduc & Guillemette 2003, (Larsson et al. 2014), which may be lethal to this Criscuolo et al. 2002, Erikstad & Tveraa species (John et al. 2002, Nielsen et al. 1990, 1995, Franzmann 1980, Gabrielsen et al. 1991, Schmidt & Hansen 2001, Underdahl et al. Harðardóttir et al. 1997, Korschgen 1976, 1989). Laurila & Hario 1998, Parker & Holm 1990). The incubation intermissions could be to rehydrate as well as forage. However, since the daily 3.2. Changes in body mass diving time usually required to maintain energy balance in this species is 140 min, the ingestion The distance to the sea from the study plot was of prey is probably lower than outside incubation 100–130 m. Due to an average incubation inter- (Guillemette 1998). Bolduc & Guillemette mission of 34 min compared to the short distance (2003) found an average mass gain of 117 g in the to the sea it would be possible for the bird to Saltholm colony, when mass gains were observed allocate time for both rehydrating and foraging. Of under the incubation intermissions, which is higher 50 incubation intermissions recorded (Table S1–4), than the present study. Altogether, the present and 18 were associated with mass gain, on average 48 g Bolduc & Guillemette (2003) studies suggest (range: 16–88 g), 25 with mass loss, on average 43 that incubating eiders with a lower mass at the g (range: 11–89 g; Table 2), and seven were outside onset of the incubation period may spend in total the confidence of measuring due to measuring error more time away from the nest than eiders with a of ±10.6 (Materials and methods). The 18 intermis- higher initial mass. If that is true, incubating eiders sions associated with mass gain lasted on average with sufficient reserves will reduce their time away 39 min (range: 11–70 min) while the average from the nest to avoid nest predation or risk of poor incubation intermission was at 34 min. egg development (Garbus et al. In press). Studies Although there has been consensus that nesting on other incubating waterfowl indeed support our eiders do not feed during the incubation period observations on incubating behavior in relation to 96 Acrocephalus 39 (178/179): 91–100, 2018

initial body mass (Afton & Paulus 1992, Alrich 4. Conclusion & Raveling 1983, Yerkes 1998) but more data is required to investigate this further. During incubation, the Christiansø eiders underwent a 28–37% loss in body mass and left the 3.4. Scale and camera nest on average 13 times (range: 7–17 times) for a period of 7–70 min. Birds with high initial body Regarding the eiders nesting behaviour, only data mass seem to leave their nest for a shorter total for the eider #02 was presented for illustration of time than birds with lower initial body mass. Our our methods (Figure 3). Figures for the remaining results contribute to the further understanding of eiders are found in Figure S8-11. Movements of eider incubation behaviour to fully understanding the incubating eiders on the nests were reflected their breeding biology in order to better conserve as semi-long spikes (green arrows) in a diurnal and manage the species during its breeding seasons pattern. The spikes were due to activities such as where individual birds undergo extreme stress that standing up, turning the eggs and preening in the may affect reproductive outcome and adult survival. nest. Hatching of the chicks was reflected as extra closely placed spikes (red arrows) on the graphs at Acknowledgements the end of the incubation period. Selected points on the graph of #01 (Figure S8) were compared The study was approved by the Danish Nature to the recorded video material (S12). The scale Agency (SVANA). For Funding of the study, and camera instruments employed in the present we acknowledge The Danish Environmental study showed to be very effective in accurately Protection Agency, 15. Juni Fonden, Jægernes measuring the timing of incubation intermissions Naturfond, SKOV A/S (Glyngøre 7870 Roslev, as well as associated mass changes. As such, it can Denmark) and BONUS BALTHEALTH that has potentially elucidate how individual stress during received funding from BONUS (Art. 185), funded the incubation period may ultimately result in jointly by the EU, Innovation Fund Denmark dramatic population effects, as has been recorded (grants 6180-00001B and 6180-00002B), For- for the Baltic population (Ekroos et al. 2012, schungszentrum Jülich GmbH, German Federal Skov et al. 2011). Ministry of Education and Research (grant FKZ

4000 g

3000 g

2000 g Moving average

1000 g

0 g 12-05-2015 13-05-2015 14-05-2015 15-05-2015 23:36-23:46 22:35-23:09 23:38-00:08 23:30-00:01

Figure 3. The last part of the 26-day incubation period of female #02 constructed from the raw time-mass data. Note the spikes facing downwards, showing the bird leaving the nest (black arrows). The smaller spikes are due to activity of the bird in the nest (green arrows). Hatching of chicks are reflected as extra closely placed spikes on the graphs at the end of the nesting periods (red arrows).

Slika 3: Zaključni del 26-dnevnega valjenja samice #02. Navzdol obrnjene konice (črne puščice) označujejo čas, ko je samica gnezdo zapustila, manjše konice označujejo aktivnost na gnezdu (zelene puščice), izvalitev mladičev pa rdeče puščice. 97 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass

03F0767A), Academy of Finland (grant 311966) Baldassarre G. A. (2014): Ducks, Geese and Swans and Swedish Foundation for Strategic Environ- of North America. – Johns Hopkins University mental Research (MISTRA). In addition, we are Press, Baltimore, Maryland, USA. Blumpton A. K., Owen R. B., Krohn W. B. (1988): grateful to the people of Christiansø for their help. Habitat suitability index models: American Eider A permission regarding potential disturbance and (breeding). – U.S. Fish. Wildl. Serv. Biol. Rep. 82 the handling of eggs and nests material (license (10.149). J.nr. NST-304-0008) was kindly granted by the Bolduc F., Guillemette M. (2003): Incubation Nature Agency. Power for the technical setup as constancy and mass loss in the Common eider well as an online connection was kindly provided Somateria mollissima. – Ibis. 145: 329–332. by the local school (Christiansø 4, 3760 Gudhjem, Bottitta G. E., Noel E., Gilchrist H. G. (2003): Effects of experimental manipulation of incubation Denmark). Finally, Tatiana Kaplun is acknowl- length on behaviour and body mass of Common edged for editing. eiders in the Canadian arctic. – Waterbirds. 26: 100–107. Povzetek Bregnballe T. (2002): Clutch size in six Danish sommon eider (Somateria mollissima) colonies: Predstavljamo spremembe telesne mase pri gagah Variation in Egg Production. – Dan. Rev. Game Biol. Somateria mollissima med valjenjem na koloniji na 16: 7-14. Choate J. S. (1966): The breeding biology of the otočju Christiansø v osrednjem Baltiku (55°19’N American Eider in Penobscot Bay, Maine. – M.S. 15°11’E). Raziskava je potekala aprila in maja 2015, Thesis, Univ. of Maine, Orono. 173 pp. spremljali smo štiri ptice (dve sta bili uplenjeni, pri Criscuolo F., Gabrielsen G. W., Gender J. P., treh manjkajo podatki zaradi težav z napajanjem). Maho Y. L. (2002): Body mass regulation during Telesno maso in gnezditveno vedenje smo 26–27 incubation in female common eiders Somateria dni spremljali z avtomatsko perutninsko tehtnico mollissima. – J. Avian Biol 33: 83–88. Criscuolo F., Gauthier-clerc M., Gabrielsen in nadzorno kamero. Med valjenjem so gage G. W., Maho Y. L. (2000): Recess behavior of the izgubile 28–37 % telesne mase in gnezdo zapustile incubating Common Eider Somateria mollissima. – v povprečju 13-krat (razpon: 7–17) za 7–70 minut. Polar Biol 23: 571–574. V splošnem so ptice z višjo izhodiščno maso gnezdo Clark S. H. (1968): The breeding ecology and zapuščale za krajši čas kot ptice z nižjo maso. experimental management of the American Eider Meritve mase kažejo, da so se ptice med valjenjem in Penobscot Bay, Maine. – M.S. Thesis, Univ. of tudi prehranjevale in gnezd niso zapuščale le zaradi Maine, Orono. 169 pp. Ekroos J., Fox A. D., Christensen T. K, pitja in motenj. Ta nova spoznanja so pomembna Petersen I. K., Kilpi M., Jonsson J. E., Green za razumevanje gnezditvene biologije gag in M.M, Laursen K., Cervencl A., DE boer P., načrtovanje varstvenih ukrepov med gnezditveno Nilsson L., Meissner W., Garthe S., Öst M. sezono. (2012): Declines amongst breeding eider Somateria mollissima numbers in the Baltic/Wadden Sea References Flyway. – Ornis Fenn 89: 81–90. Erikstad K. E., Tveraa T. (1995): Does the cost of incubation set limits to clutch size in Afton A. D., Paulus S. L. (1992): Incubation and Common Eiders ? – brood care. In: BATT B. D. J., AFTON A. D., Somateria mollissima Oecologia 103: 270–274. ANDERSON M. G., ANKNEY C. D., JOHNSON Franzmann N. E. (1980): Ederfuglens ( D. H., KADLEC J. A., KRAPU G. L., eds. Ecology Somateria ) ynglebiologi og populationsdynamik and management of breeding waterfowl. UMP. 30- mollissima på Christiansø 1973–1977. – PhD dissertation, 61. University of Copenhagen. (In Danish). Alonso-alvarez C., Velando A., Ferrer M., Gabrielsen G. W., Mehlum F., Karlsen H. K., VEIRA J. A. (2002): Changes in plasma biochemistry Andersen O., Parker H. (1991): Energy cost and body mass during incubation in the yellow- during incubation and thermoregulation in the legged gull. – Waterbirds. 25: 253–258. female Common Eider. ( ). – Alrich T. E., Raveling D. G. (1983). Effects of Somateria mollissima Norsk Polarinst. Skr. 195: 51–62. experience and body weight on incubation behavior Garbus S. E. (2016): Health, behaviour, egg failure and of Canada Geese. – Auk 100: 670–679. starvation-mortality of incubating common eiders 98 Acrocephalus 39 (178/179): 91–100, 2018

(Somateria mollissima) at Christiansø, Central Baltic Chrysochromulina polylepsis (Prymnesiophyceae). Sea, 2015. – MSc thesis, University of Copenhagen, Harmful Algae. 1: 45-57 Denmark. 73 pp. Korschgen, C. E. (1976): Breeding stress of female Garbus, S.E., Lyngs, P., Christensen, J.P., eiders. Ph.D. dissertation, University of Maine, Buchmann, K., Eulaers, I., Mosbech, A., Orono. 110 pp. Dietz, R., Gilchrist, H.G., Sonne, C. (2018): Laursen, K., Møller, A.P., Haugaard, L., Öst, M., Common eider (somateria mollissima) body Vainio, J. (2019): Allocation of body reserves during condition and parasitic load during a mortality event winter in eider Somateria mollissima as preparation in the Baltic proper. Avian Biol Res 11:167-172. for spring migration and reproduction. J Sea Res. Garbus, S.E., Lyngs, P., Christensen, J.P., Sonne, 144: 49-56. C. (In press): Candling and field atlas of early Laursen, K., Møller, A.P., Öst, M. (2018). Body egg development in common eiders (Somateria condition of Eiders at Danish wintering grounds and molissima). Acrocephalus 39 (178/179): 85–90. at pre-breeding grounds in Åland. J Ornithol. 160: Goudie, R. I., Robertson, G. J., A. Reed. (2000): 239-248. Common Eider (Somateria mollissima). In The Birds Larsson, K., Hajdu, S., Kilpi, M., Larsson, R., of North America, No. 546 (A. POOLE, F. GILL Leito, A., Lyngs, P. (2014): Effects of an extensive eds.). The Birds of North America, Inc, Philadelphia, Prymnesium polylepsis bloom on breeding eiders in PA. the Baltic Sea. J. Sea. 88: 21-28 Guillemette, M. (1998): The effect of time and Laurila, T., Hario, M. (1988): Environmental and digestion constraints in Common Eiders while genetic factors influencing clutch size, egg volume, feeding and diving over Blue Mussel beds. Funct. date of laying and female weight in the common Ecol. 12: 123–131. eider Somateria mollissima. FGFRI. 45: 19–30. Hanssen, S.A., Folstad, I., Erikstad, K.E. Lyngs, P. (1992): Ynglefuglene på Græsholm 1925–90. (2003). Reduced immunocompetence and cost of Dansk Orn. Foren. Tidsskr. 94: 12–18 (In Danish reproduction in common Eiders. Oecologia. 136: with an English summary). 457-464. Lyngs, P. (2007): Christiansø Fieldstation http://chnf. Hario, M., Selin, K. (1987): The variation in clutch dk/aktuelt/edfugl07/edfugls07_2sp.php (accessed size and egg volume in different age classes of the November 2015, in Danish). Common Eider. Suomen Riista. 34: 59-65. (English Lyngs, P. (2014): Christiansø Fieldstation http:// summary). www.chnf.dk/aktuelt/edf14/edfugl14.php (accessed Hario, M., Hollmén, E.T. (2004): The role of male November 2015, in Danish). mate-guarding in pre-laying Common Eiders Madsen, F.J. (1954): On the food habits of the diving Somateria m. mollissima in the northern Baltic Sea. ducks in Denmark. Dan. Rev. Game Biol. 2: 157-266. Ornis Fennica. 81: 119–127. Mallory, M. L., Braune, B. M., Wayland, M., Hario, M., Öst, M. (2002): Does heavy investment in Gilchrist, H. G., Dickson, D. L. (2004): foraging implicate low food acquisition for female Contaminants in common eiders (Somateria Common Eiders Somateria mollissima? Ornis Fenn. mollissima) of the Canadian Arctic Environ Rev. 12: 79: 111–120. 197-218. Harðardóttir, M., Guðmundsson, J., Petersen, Mcarthur, P. D., Gorman, M. L. (1978): The Æ. (1997): þyngdartap aeðarkolla Somateria salt gland of the incubating Eider duck Somateria mollissima á álegutíma. Bliki. 18: 59–64. (In mollissima: the effects of natural salt deprivation. J. Icelandic). Zoo. 184: 83-90. Hilgerloh, G. (1999): Year to year changes in the share Milne, H. (1974): Breeding numbers and reproductive of cockles (Cerastoderme edule) and the blue mussels rate of eiders in the sands of Forvie National Nature (Mytilus edulis) in the food of eiders (Somateria Reserve, Scotland. IBIS. 116: 135-152. mollissima) on six East Frisian Islands. Senck. Marit. Milne, H. (1976): Body weights and carcass composition 29: 71-73. of the Common Eider. Wildfowl. 27: 115-122. Hollmén, T., Franson, J.C., Hario, M., Sankari, Nehls, G. (2002): Do common eiders Somateria S., Kilpi, M., Lindström, K. (2001): Use of Serum mollissima exhaust their food resources? A study on Biochemistry to Evaluate Nutritional Status and natural mussel Mytilus edulis beds in the Wadden Health of Incubating Common Eiders (Somateria Sea. Dan. Rev. Game Biol. 16: 47-62. mollissima) in Finland. Physiol Biochem Zool. 74: Nielsen, T.G., Kiørboe, T., Bjørnsen, P.K. (1990): 333-342. Effects of a Chrysochromulina polylepis subsurface John, U., Tillmann, U., Medlin, L.K. (2002): A bloom on the planktonic community. Ear. Ecol. Prog. comparative approach to study inhibition of grazing Ser. 62: 21-35. and lipid composition of a toxic, non-toxic clone of 99 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass

Öst, M., Ydenberg, R., Lindström, K., Kilpi, M. (2003): Body condition and the grouping behavior of brood-caring female common eiders (Somateria mollissima). Behav Ecol Sociobiol 54:451457. Parker, H., Holm, H. (1990): Patterns of nutrient and energy expenditure in female Common Eider nesting in the high arctic. Auk. 107: 660–665. R Core Team. (2015): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- project.org/. Schmidt, L.E., Hansen, P.J. (2001): Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216: 67-81. Skov, H., Heinanen, S., Žydelis, R., Bellebaum, J., Bzoma, S., Dagys, M., Durinck, J., Garthe, S., Grishanov, G., Hario, M., Kieckbusch, J.J., Kube, J., Kuresoo, A., Larsson, K., Luigujoe, L., Meissner, W., Nehls, H.W., Nilsson, L., Petersen, I.K., Roos, M.M., Pihl, S., Sonntag, N., Stock, A., Stipniece, A., Wahl, J. (2011): Waterbird populations and pressures in the Baltic Sea. TemaNord 2011: 550. Swennen, C. (1976): Populatie-structure en voedsel van de Eidereend Somateria m. mollissima in de Nederlandse Waddenzee. Ardea 64: 311-371. (In Dutch) Swennen, C., Ursem, J.C.H., Duiven, P. (1993): Determinate laying and egg attendance in common Eiders. Ornis Scand. 24: 48-52. Underdahl, B., Skulberg, O.M., Dahl, E., Aune, T. (1989): Disastrous bloom of Chrysochromulina polylepsis (Prymnesiophycceae) in Norwegian coastal waters 1988 – mortality in marine biota. Ambio. 18: 265-270. Wakeley, J. S., Mendall, H. L. (1976): Migrational homing and survival of adult female eiders nesting in Maine. J. Wildl. Manage. 40: 15-21. Wilcox, F.H., Cloud, W.S. (1965): Alkaline phosphatase in the reproductive system of the hen. J Reprod Fertil. 10: 321-328. Yerkes, T. (1998): The influence of female age, body mass, and ambient conditions on Redhead incubation constancy. Condor. 100: 62-68.

Prispelo / Arrived: 7. 12. 2018 Sprejeto / Accepted: 5. 3. 2019

100 Acrocephalus 39 (178/179): 101–128, 2018 10.1515/acro-2018-0009

New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia Nova morska območja IBA za sredozemskega vranjeka Phalacrocorax aristotelis desmarestii v Sloveniji

Urška Koce, DOPPS – BirdLife Slovenia, Tržaška cesta 2, 1000 Ljubljana, e-mail: [email protected]

The IBA network is being regularly updated, based on new data and their better quality. There have been three previous stages of the marine IBA identification in Slovenia and the Mediterranean Shag has been included as the qualifying species only in the most recent stage in 2011. However, the sites were limited to inshore coastal roost-sites and thus insufficient to cover the foraging areas of the species. To fill this gap in the Slovenian territorial sea, new marine IBAs have been identified for the Mediterranean Shag within the scope of the SIMARINE-NATURA (LIFE10NAT/SI/141) project in the 2011–2015 period. The new sites were identified following standardized methodology for the identification of marine IBAs from BirdLife International. The data on the Mediterranean Shag distribution and population size were collected using four field methods: (1) monthly monitoring at in-shore communal roost-sites, (2) monthly monitoring at sea following the standardized ESAS method, (3) GPS telemetry, and (4) unsystematic census of in-shore floating groups. Based on these data, one new site, the IBA Osrednji Tržaški zaliv, and one extension to the existing IBA Debeli rtič were identified, covering 8,218 ha and 155 ha, respectively. The new sites cover 39.2% of the Slovenian territorial sea.

1. Introduction sponding to number of countries) involved in marine IBA identification and protection increased to over 40 1.1. Marine IBAs in Slovenia by 2010 (BirdLife International 2010a, c). The IBA network is being updated regularly based Conservation of marine biodiversity is widely on new data and their better quality. There have been implemented through IBA programme – Important three previous stages of IBA identification in Slovenia Bird and Biodiversity Areas, established by BirdLife involving seabirds, however, the resulting marine International. The main objectives of the programme IBA and Natura 2000 network has been assessed as are identification, protection and management of insufficient by BirdLife International (BirdLife worldwide network of sites of crucial importance for International 2014). Common characteristic the long-term conservation of wild bird populations of previous marine IBA identification is that it was (BirdLife International 2010c). In contrast to part of the pan-national IBA identification and / or the birds of the terrestrial environment, the seabird revisions, focused on terrestrial sites (Božič 2003, populations were poorly assessed until recently due to Denac et al. 2011, Polak 2000). Within these difficult access to the ornithological data in the marine stages, four marine IBAs covering six species of environment, and this was reflected in a low number seabirds were identified in the 2000–2011 period of identified marine IBAs, especially in off-shore areas; (Ibid.) The fourth (and most recent) stage of marine however, the number of BirdLife partners (corre- IBA identification in Slovenia, presented in this work, 101 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

was implemented in the years 2011–2015 as part of Shags in the Gulf of Trieste coincides also with the the project SIMARINE-NATURA (LIFE10NAT/ swing of shellfish farming on filamentous floating SI/141) (www.simarine-natura.ptice.si). Contrary to farms that enable the shags’ undisturbed roosting previous stages when seabird censuses were limited on otherwise highly populated coast of the Gulf. to coastal and inshore areas, the monitoring of target There are three such communal roost-sites along species, i.e. the Mediterranean Shag Phalacrocorax the Slovenian coast, near Debeli rtič, Strunjan and aristotelis desmarestii, was conducted systematically Sečoveljske soline (Bordjan et al. 2013, Koce & across the entire range of the Slovenian territorial sea. Lipej 2016). All sites have already been identified as marine IBAs and included in the Natura 2000 1.2. Target species network (Denac et al. 2011, Koce & Lipej 2016). The Mediterranean Shags forage predominantly The Mediterranean Shag belongs to the on fish (Bazin & Imbert 2012, Cosolo et al. cormorant family (Phalacrocoracidae). It is 2011, Lipej et al. 2016). They are foot propelled distributed solely in the Mediterranean and the pursuit-divers, usually preying near sea-bed, but Black Sea. Their entire breeding population is occasionally also in pelagic waters, especially in estimated at 8,700–11,130 pairs, breeding in over shallow coastal belt (Bazin & Imbert 2012). 400 colonies (Bazin & Imbert 2012). The largest Their foraging dives are regularly 30 m deep, often national breeding numbers are found in Croatia, up to 60 m and in extreme cases even up to 80 m Italy, Greece and France, ranging from 1,000 to (Bazin & Imbert 2012) and can last over one 2,000 pairs (Bazin & Imbert 2012). The total non- minute (Sponza et al. 2010). They usually forage breeding population of the Mediterranean Shags solitarily or in small groups independently from is estimated at 30,000 individuals (Wetlands one another, but they also socialize in large groups International 2004). In the post-breeding of up to few hundred individuals and communally season, part of the population spreads out of their prey on schools of small pelagic fish in coastal breeding area, to the non-breeding areas up to shoals (Nelson 2005), sometimes in the company several hundred kilometres from their breeding of other seabird species, e.g. the Black-headed Gulls colonies (Škornik et al. 2011). The majority of the Chroicocephalus ridibundus (pers. observation). Adriatic population, almost entirely breeding in This is a common phenomenon in the marine Croatian waters, migrates to the Gulf of Venezia environment known as multi species foraging (Sponza et al. 2013). In summer and autumn, groups (Camphuysen & Garthe 2004). only the Gulf of Trieste hosts around 6,000 The Mediterranean Shag is a dietary opportunist and exceptionally even up to 10,000 individuals preying on the commonest and most easily accessible (Škornik et al. 2011), representing 20–33% of prey in the benthic zone. The majority of its prey in the total non-breeding population (Wetlands the Adriatic sea represent economically unimportant International 2004). The roosting population fish species: around the Croatian breeding sites along the Slovenian coast was estimated at 2,000– (Oruda Island), the diet consisted predominantly of 3,000 individuals in the 2006–2011 period (Denac big-scale sand smelt Atherina boyeri, brown comber et al. 2011). Regular seasonal migration from the Seranus hepatus and peacock wrasse Crenilabrus Croatian breeding areas to the Gulf of Trieste tinca, however, in the Gulf of Trieste their main food was established fairly recently, in the 1980s, and is black goby Gobius niger (Cosolo et al. 2011, Lipej became massive at the end of the 1990s (Škornik et al. 2016). et al. 2011). The onset of post-breeding migration As a species, the European Shag (Phalacrocorax to the north coincides with the period of extensive aristotelis) is not endangered by the IUCN criteria and overfishing in the Croatian waters and could be has a favourable conservation status at the European triggered by the lack of food around the breeding level (non-SPEC) (BirdLife International colonies and facilitated by high foraging efficiency 2004). The status assessment after SPEC classification in the shallow Gulf of Trieste, abundant with easy for the Mediterranean subspecies was not made. accessible fish prey (Sponza et al. 2010). Moreover, Although historical population estimates for the the increase in the numbers of the Mediterranean Mediterranean Shag are rather poor, the experts 102 Acrocephalus 39 (178/179): 101–128, 2018

agree that its population has decreased (Aguilar target species was defined. The IBA proposals with & Fernández 2002). Due to the limited range and the descriptions are entered into the “World Birds small population, the Mediterranean Shag is listed and Biodiversity Database” (WBDB) managed on the Annex I of the Bird Directive, Annex II of the by BirdLife International (https://www.global- Bern Convention and on the list of priority species of conservation.info/). As the final step, the BirdLife the Barcelona Convention. Secretariat reviews the proposals and decides about the confirmation of proposed IBAs. 2. Methods 2.2.1. Identification of target species 2.1. Target geographic area According to BirdLife International Within the scope of the SIMARINE-NATURA (2010b), about 340 extant species are categorized project (2011–2016), the target geographic area as seabirds and theoretically all of them are suitable for the identification of marine IBAs was defined for the analysis in the process of the marine IBA as part of the then-claimed Slovenian territorial identification. However, for practical reasons it is sea within the Gulf of Trieste (hereafter referred recommended that one or some priority species to as ‘project area’). The project area was selected are defined based on their conservation status, based on previous data on importance of the Gulf data availability, and expected distribution at of Trieste for the post-breeding population of the sea, etc. (BirdLife International 2010b). In Mediterranean Shags (Vrezec 2006b). However, Slovenia, 42 seabirds have been recorded in coastal the Slovenian territorial sea was redefined in 2017 and marine environment since 1950 (Koce & as a result of the arbitration between Slovenia and Lipej 2016), six of which met the criteria for Croatia. As the present Slovenian territorial sea either identification of new IBAs or inclusion in overlaps very well with the project area it represents the existing IBAs in previous stages of the IBA the target geographic area in this work (Figure 1). identification (Božič 2003, Denac et al. 2011, Surface area of the target area, i.e. the Slovenian Koce & Lipej 2016, Polak 2000). In opposition territorial sea, is 214 km2. Surface area of the to previous stages when the identification of project area is 211 km2. marine IBAs was limited to coastal and inshore areas and was focused on breeding colonies and 2.2. Marine IBA identification methodology communal roost-sites, the focus in the present stage was an identification of offshore marine The identification of marine IBAs in the Slovenian IBAs with emphasis on species’ foraging areas. territorial sea was conducted following the protocol Considering these recommendations from proposed by BirdLife International (2010b). BirdLife International (2010b), the The protocol recommends nine analytical steps: (1) Mediterranean Shag was selected as the only target identification of target species; (2) seabird and envi- species, based on the following characteristics: (1) ronmental data gathering from all possible sources, it is listed in the Annex I of the Birds Directive, including systematic surveys, existing databases, Annex II of the Bern Convention and among reports and published work; (3) spatial data analysis priority species of the Barcelona Convention, resulting in GIS layers based on different data (2) it has a negative population trend in a sources, species by species and organization of data geographically limited range (Bazin & Imbert for comparison between different months/seasons/ 2012), (3) it has a relatively large population in the years; (4) classification of data layers based on data target area (Vrezec 2006a), (4) it has expected quality to primary and supplementary; (5) identifi- concentrations rather than extremely dispersed cation of candidate sites for each seabird species; (6) distribution at offshore sea (Vrezec 2006b), (5) application of standard IBA criteria and confirma- it qualifies as an umbrella species in the target tion that the IBA candidates sites comply with the marine environment (Koce & Lipej 2016). criteria; (7) delineation of final boundaries. Steps Other seabird species occurring at Slovenian sea 5 and 7 were merged in our study because only one at present failed to meet one or more of these 103 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Figure 1. Target geographic area (Slovenian territorial sea) for the identification of marine IBAs for the Mediterranean Shag (Phalacrocorax aristotelis desmarestii). Black dashed line on the bottom map denotes the non-overlapping part of the project area border as defined in the SIMARINE-NATURA (LIFE10NAT/SI/141) project. criteria and were thus not selected as priority 2.2.2.1. Monitoring at communal roost-sites species for the identification of marine IBAs in this stage. Moreover, the Mediterranean Shag was Monitoring of roosting individuals was conducted a priority species for financing by LIFE, the EU to assess the size and temporal dynamics of the financial instrument supporting the conservation roosting population in the Slovenian sea. The projects for Natura 2000 qualifying species that monitoring was conducted between November enhanced the marine IBA identification process 2011 and October 2013 at three inshore locations in the 2007–2013 programming period, including previously known as their main communal through the SIMARINE-NATURA project. roost-sites along the Slovenian coast. They are situated on floating infrastructure (buoys) of 2.2.2. Data gathering shellfish farms, located in the Bay of St. Bar- tholomeus (Zaliv Sv. Jerneja), Strunjan Bay The data on the Mediterranean Shag distribution (Strunjanski zaliv) and Piran Bay (Piranski zaliv). and population size were collected in the years The sites had been previously identified as marine 2011–2014, using four field methods: (1) monthly IBAs Debeli rtič, Strunjan and Sečoveljske soline, monitoring at in-shore communal roost-sites, (2) respectively (Denac et al. 2011). The censuses monthly monitoring at sea following standardized of shags at the roost-sites were conducted once a ESAS method, (3) GPS telemetry, and (4) unsys- month, synchronously at all three locations. Counts tematic census of in-shore foraging groups. on one census occasion were done every half an 104 Acrocephalus 39 (178/179): 101–128, 2018

hour, starting two hours before sunset and ending rule of thumb by each observer upon prior calibration at the time when light conditions were too poor to at a measured distance 300 m from the coast. The continue counting. The shags were classified by age birds which were in contact with water were counted in two classes: adults and non-adults (juveniles and continuously, whereas the flying birds were counted sub-adults). All shags within the area of a roost-site in snapshots in one minute intervals. The birds were were counted, including individuals swimming detected with a naked eye; binoculars were used only in the sea among buoys, because most of them for the identification of individual’s age class, whereby stayed within the roost-site and occupied buoys two classes were defined based on their plumage: non- within short period of time. The roost-site in the adults and adults. Bay of St. Bartholomeus is divided by national The data were entered in a standardized ESAS border with Italy in two parts but the shags were monitoring form. The following types of data were counted on both sides of the border as the location recorded: (1) census metadata (date, boat name is functionally one roost-site. Based on the results and type, names of observers, type of census, group of the roost-site monitoring, the peak non-breeding of recorded birds), (2) data about census interval season was defined as the period when the total (geographic coordinates of the starting point, number of individuals was higher than mid-range, interval start and end time, sea state on the Beaufort calculated as 0.5 x (nmax + nmin.) (i.e. 763 individuals). scale, visibility, floating objects and matter), and (3) interval specific bird data (age class, transect 2.2.2.2. Monitoring at sea following ESAS band, number of individuals, movement direction, method association with objects or non-avian species, behaviour, prey, multi-species group membership). Monitoring at sea was done every month between July 2012 and August 2013 following the standardi­ 2.2.2.3. GPS telemetry zed ESAS method (‘European Seabirds At Sea’), whereby the birds were counted along line-transect, The shags were being trapped in autumn 2012 and using boat (Camphuysen & Garthe 2004). in summers 2013–2014. Self-made clap-traps with The transect line in this survey was placed on the remote triggering system were used. The traps were project area in a pattern that ensured representativeness adapted for mounting on three different floating for the area (Figure 2). It covered an entire gradient objects: vertical cylindrical buoys (r = 1 m), cubic of distances from the coast to the outer border of rafts (a = 1 m) and horizontal cylindrical buoys the territorial sea as well as longitude gradient. The (r = 0.4 m). The trap was triggered remotely by the total length of the transect line corresponded to the user when one or more shags sat on the buoy or raft. distance travelled by the survey boat in 4–5 hours The traps were set at three sites along the Slovenian (81.6 km), corresponding to the time available for coast: (1) in Viližan Bay on the east side of the town an optimal at-sea census of the Mediterranean Shags of Izola and within two communal roost-sites of the in one day. The censuses were conducted during the Mediterranean Shags near Strunjan (2) and Sečovlje diurnal period when most shags were expected to be (3). At the Izola trapping site, the traps were mounted active outside their roost-sites. on four existing vertical cylindrical buoys, two at a The boat was travelling at constant speed of time. At the Strunjan and Sečovlje trapping sites, two 10 knots. The birds were recorded within 5 minute cubic self-made rafts were tied among the existing intervals. Given constant speed of 10 knots, this buoys of the shellfish farms where the shags usually corresponds to segments of length 1,540 m. In case rest, one at each site. In addition, three traps were set the boat changed its direction or speed, an ongoing on the existing surrounding horizontal cylindrical census interval was aborted and a new interval started buoys at the Strunjan trapping site. at the location of the change. The birds were recorded We tagged the shags with GPS-GSM loggers on both sides of the transect line in two bands: 300 m of Polish producer ECOTONE. Three units of inner band and an unlimited outer band. The instant DUCK-3 model and 26 units of SAKER model counting area was limited to a distance of 300 m in were used. 16 units of the SAKER model were front of the boat. The distance was estimated by the filled with polyurethane and 10 units with resin. 105 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

The dimensions of the DUCK-3 model were retained in the dataset, assuming that they have 45 × 25 × 25 mm, weight = 40 g, and those of the most likely been foraging at or near the locations SAKER model were 45 × 25 × 18 mm, weight = 25 where observed, based on the information from the (series with polyurethane filling) or 40 g (series with literature and results of the GPS telemetry analysis resin filling). The devices were mounted on birds in this study. According to Nelson (2005), the permanently, as backpacks with teflon ribbon straps. breeding shags fly directly to their foraging area and The devices were supplied with energy through return to the colony in the same manner. According solar panels, which provided enough energy in good to the results of the GPS telemetry survey in this light conditions to fix a GPS position every half an study this holds also in case of non-breeding shags hour. The data were transferred to server by SMSs that take foraging trips from communal roost-sites. after every 4 GPS fixes. They were accessible to the We refer to the resulting dataset as ‘ESAS data user by the Internet through a password protected subset 1’. Furthermore, we omitted the individuals web panel. Frequency and accuracy of GPS fixes, and which were associated with large (> 12 m) fishing operating hours of the loggers could be set remotely boats, assuming that they were momentarily foraging via the web panel. We tended to set the highest on the discards and were thus not associated with frequency of fixes during the day but sometimes it their usual foraging habitat, i.e. marine benthos. We needed to be lowered due to low natural light levels refer to the resulting dataset as ‘ESAS data subset 2’. and consequent need for energy savings. The loggers Calculation of shag densities. The densities of were switched off during the mid-night hours. shags were calculated at the level of transect and at the level of transect segments (intervals) based on 2.2.2.4. Land-based census of large floating the number of individuals registered in the inner groups 300 m band. They were calculated separately for each census occasion (denoted by date) and from In the years 2011–2014, the data on large floating each of the two ESAS data subsets. groups of the Mediterranean Shags (≥ 10 individuals) Furthermore, a raster layer of mean densities were collected unsystematically based on participa- in the peak non-breeding season at the transect tion of experienced volunteer observers. The data was produced in ArcGIS 10.3 (ESRI 2014) with were reported by observers through online web 'Polyline to Raster' tool, based on each of the two form (http://simarine-natura.ptice.si/sodeluj/). To ESAS data subsets. Linear vector layers consisting of enhance the census effort, the public was also called transect segments with shag density as an attribute to participate in data collection through different were used as input data. Rasterization was conducted means of communication: DOPPS – BirdLife separately for each census conducted in peak non- Facebook page, SIMARINE-NATURA project breeding season. The final raster layer with mean website, leaflets and newspaper articles as well as densities was made using 'Cell Statistics' tool, using personal communication. census-specific raster layers as input data. Production of ecological models of the 2.2.3. Production of basic spatial data layers Mediterranean Shag distribution: To explain the and ecological models distribution of the foraging Mediterranean Shags in the Slovenian territorial sea in peak non-breeding 2.2.3.1. ESAS dataset season, the number of shags in transect segments was modelled as a function of several ecological Filtering of the ESAS data. The aim of the analysis variables (Table 1). Two sets of models were fit was to identify the areas important for foraging each based on one of the ESAS data subsets (1, 2), shags, hence we omitted the following data from whereby only the censuses from peak non-breeding the original ESAS dataset: flying individuals, as the season were included. The modelling was done in shags never predate from the air, and the individuals R (R Development Core Team 2018) using resting along the shore or floating objects at sea. The packages ‘MASS’ and ‘mgcv’ (Venables & Ripley individuals which were not observed during their 2002, Wood 2004). GAMM models with negative foraging activity but were swimming in the sea were binomial distribution of the response variable (number 106 Acrocephalus 39 (178/179): 101–128, 2018

of shags in transect segment) were fit, following uurZ the shag was released, (2) after the shag died, was et al. 2009. Logarithmically transformed surface area suspected to be dead or severely injured, (3) when of a transect segment was included in the models as an the shag was apparently on migration or at breeding offset variable due to differing length of the transect site, and (4) locations with an obvious error (i.e. segments. The potential effects of pseudo-replication more than 100 m inland). The outcome data subset due to repeated censuses at the same transect were in this step is referred to as ‘clear dataset’. Moreover, taken into account with the inclusion of ‘census date’ the GPS locations in the ‘clear dataset’ were grouped random variable. The ecological data represented by by a date-individual grouping variable (i.e. GPS a set of fixed variables were obtained from GIS layers locations from one individual fixed in the same day at the intersections with central points of the transect were assigned unique and equal group number). segments, or recorded at sea during census (Table 1). Furthermore, the locations were classified into three The variable 'sea depth' was eliminated from further daily periods according to the fixing time: (1) day, analysis because it was in strong correlation with the (2) twilight and (3) night, based on astronomical variable 'distance from the coast' (Pearson’s correlation data about time of sunrise, sunset and beginning coefficient = 0.7). The decision to eliminate the or end of nautical twilight in Ljubljana, Slovenia former instead the latter was based on the facts that (http://www.timeanddate.com/sun/slovenia/ (1) the bathymetry of the Slovenian sea is more or less ljubljana). Furthermore, GPS locations of five shags uniform and most of the sea bottom belongs to the which were tracked for less than three days were same depth class (20‒30 m), (2) the depth of the sea excluded from the analysis at this point. in the area is not a limiting factor for the shags. The Identification of roost-sites along the variables describing the presence of fishing boats were Slovenian coast. Besides the three traditionally included only in the models which were fit based on known main communal roost-sites on shellfish ESAS data subset 1. The best model in each set was farms, the shags were suspected to regularly roost selected based on AIC (Akaike information criterion) at several other locations along the Slovenian coast. (Burnham & Anderson 2002) These regularly used roost-sites were identified based on clusters of roosting locations of the 2.2.3.2. GPS telemetry dataset tracked individuals. A roosting location of an individual shag was defined as the first fixed GPS Filtering of the GPS data. The original dataset was location in a day (usually early in the morning cleared before it was used for the analysis. In this before the shags leave their roost-sites). Roost-sites step the following GPS locations were omitted from were then defined as clusters of at least five roosting the dataset: locations which were fixed (1) before locations not further than 500 m from one another

Table 1. Independent variables used in the modelling of the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution in the Slovenian territorial sea

Independent variable Variable type Level Data source census date date census ESAS dataset presence of small fishing boats (up to 12 m) binary transect segment ESAS dataset presence of large fishing boats (above 12 m) binary transect segment ESAS dataset <0,5 km away presence of large fishing boats (above 12 m) binary transect segment ESAS dataset 0,5–2 km away sea state (Beaufort scale) factorial transect segment ESAS dataset GIS layer (Geodetski sediment type factorial transect segment inštitut Slovenije) distance from the coast continuous transect segment calculated in ArcGIS 107 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

and delineated as minimal convex polygons. Only subsets. Only the peak-nonbreeding season of the roost-sites along the Slovenian coast were taken Mediterranean Shags was considered, as revealed into account and roosting events in the Italian and by the results of the roost-sites monitoring (Table Croatian territorial sea were excluded from further 2). Following the recommendations by BirdLife analysis. A centre of each roost-site was defined as International (2010b), 5% of transect segments the mean mid-point of the cluster, which was used with highest densities of shags were chosen for each in the following steps of the analysis (referred to as census occasion (referred to as the best segments a roost-site centre from hereon). from hereon), separately for each ESAS subset (1, 2). Further filtering of the data.In this step, Selection of grid cells intersected by best only those locations were retained in the dataset transect segments. The target area was then that belonged to individual shags roosting at the overlaid with a grid of cells with side size 1,540 m three main communal roost-sites and roost-sites (corresponding to the length of one standard identified during the previous step. Furthermore, transect segment, rounded to 10 m). The cells which in order to focus on the areas where the shags have were intersected by the segments identified during been most likely foraging and not only resting, more the previous step were selected from the grid. The locations were omitted: (1) diurnal locations within selected cells were used as a basic framework for the roost-sites, (2) GPS locations at other daytime delineation of the marine IBA candidate. resting places, or (3) artificial feeding locations (i.e. locations next to the fish market where at least 2.2.5.2. GPS telemetry dataset two tagged shags have been known to be fed by fish sellers), (4) night and twilight locations outside The marine IBA candidates were identified roost-sites (probably erroneous fixes). We refer to following BirdLife International’s protocol for the resulting data subset as ‘end dataset’. It was used the identification of marine IBAs using seabird during the following steps as an input dataset for tracking data (BirdLife International 2013). the delineation of the marine IBA candidates. The protocol assumes central-place foraging, whereby an individual’s roost-site was defined as 2.2.3.3. Large floating groups dataset the central place. The analytical method aims at the identification of core use areas (kernels) of tracked The data were digitalized in ArcGIS 10.3 (ESRI individuals on their round trips, taken from the 2014) and the groups distinguished according to roost-site to foraging areas and back to the roost-site their foraging activity at the time of observation to (hereafter referred to as ‘round foraging trips’). A foraging and non-foraging. core use area identified for a round foraging trip represents a foraging site of the individual shag 2.2.4. Classification of spatial data layers making that trip. The protocol consists of eight analytical steps. The spatial data layers were classified as primary or In step 1, the GPS data from the ‘end dataset’ supplementary based on their quality, following the were grouped by roost-sites. We thus obtained 10 recommendations by BirdLife International subsets of ‘end dataset’, one for each roost-site, and (2010b). from hereon we describe the method for analysing individual roost-site subsets. In step 2, each subset 2.2.5. Identification of marine IBA candidates was further split to round foraging trips. A set by spatial data layers of locations was considered to represent a trip when the shag moved at least a defined distance 2.2.5.1. ESAS dataset from the roost-site centre, stayed on its journey for at least 1 hour, and returned back to the same Selection of 5% transect segments with the roost-site i.e. closer than a defined distance from highest densities. Identification of the marine the roost-site centre. The distances (referred to IBA candidate was based on the densities of shags as inner and outer buffer) for each roost-site were at transect segments, calculated from both ESAS defined according to the roost-site characteristics 108 Acrocephalus 39 (178/179): 101–128, 2018

(Table 9). Furthermore, trips with less than six identified based on two supplementary data layers locations were automatically omitted from the are defendable only exceptionally, depending on analysis as they were below the numerical threshold the data involved, and the cases identified based on for identification of core use areas. In step 3 the one supplementary data layer cannot be confirmed. scale of interaction with the environment was calculated and further used in step 4 for fitting the 2.2.7. Application of IBA criteria kernels, i.e. identification of core use areas. In step 5, a variance test was applied on the resulting set 2.2.7.1. Relevant IBA criteria of kernels to check for significant site fidelity of any individual. In case site fidelity of one or more BirdLife International lists 20 criteria for the iden- individuals was significant, only one randomly tification of IBAs (http://datazone.birdlife.org/ chosen core use area per individual was chosen site/ibacriteria), nine of which apply to the IBAs in for further analysis, to avoid bias due to pseudo the marine environment. The marine IBA proposals replication. In step 6, bootstrapping was used to for the Mediterranean Shag in the Slovenian sea assess the representativeness of the dataset and to have been evaluated against three relevant criteria: calculate the percentage of the roosting population B1ii. Congregations: The site is known or utilizing the marine IBA candidate. If the dataset thought to hold ≥ 1% of a distinct population of a was not representative (bootstrap outcome < 70%), seabird species. no IBA candidates could be identified. In step 7, the C2. Concentrations of a species threatened at areas more intensively used by several individuals the European Union level: The site is known to (i.e. marine IBA candidates) were identified, and in regularly hold at least 1% of a flyway population step 8 threshold values were applied to these areas, or of the EU population of a species threatened at estimated as % of roosting population that visits the EU level (listed on Annex I and referred to in each area. Steps 2–8 were applied separately to each Article 4.1 of the EC Birds Directive). data group as defined in step 1. C6. Species threatened at the European Union level: The site is one of the five most important in 2.2.5.3. Large floating groups dataset the European region (NUTS region) in question for a species or subspecies considered threatened in The marine IBA candidates were delineated based the European Union (i.e. listed in Annex I of the on a 1,000 m buffer around locations of the groups EC Birds Directive). that were recorded at the time of active foraging. Additional criterion was used to include only the 2.2.7.2. Numerical thresholds groups that were larger than the median group size, i.e. the threshold was set at minimum 130 individuals. Two of the relevant IBA criteria, B1ii and C2, prescribe a numerical threshold that needs to be 2.2.6. Delineation of final marine IBA reached in the proposed IBA, i.e. the site has to proposals hold at least 1% of migratory or biogeographic population (http://datazone.birdlife.org/site/ The delineation of final marine IBA proposals ibacriteria). Based on the population estimates was done based on integration of IBA candidates by Wetlands International (2004) for the identified from different source data layers. The non-breeding population of the Mediterranean strength of each IBA proposal was evaluated Shag, this threshold is at 300 individuals. To against the rules outlined in BirdLife Interna- check whether the numerical threshold has been tional (2010b). According to these rules, the most reached in the marine IBA proposals, the number defendable cases of marine IBAs are those identified of individuals using the sites has been assessed for based on two primary data layers, followed by the each proposal, using the data from different sources cases identified based on one primary and one that were used for their delineation. supplementary data layer, and the cases identified IBA Osrednji Tržaški zaliv. The number of based on one primary data layer. The cases individuals using the site was estimated based on 109 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

(1) the extrapolation from transect densities and of the linear predictor and then transformed to the (2) model predictions. scale of the response variable, i.e. the number of In case of the extrapolation, the ESAS dataset 1 individuals present in a grid cell. The total number was used as input data, i.e. the number of all floating of individuals in the IBA proposal was calculated as shags in the area was estimated. The number of a sum of individuals across the cells which intersect individuals was calculated within the target area the area of the site. and within the marine IBA proposal, for each Extension to IBA Debeli rtič. The number of census occasion separately, by multiplying density of birds visiting the area was assessed based on the census shags at the transect with the surface area of either of large foraging groups and on the estimated number site. In case of the IBA estimates, only the part of of individuals using the IBA candidate 1A, identified the transect overlapping the IBA was considered in the analysis of GPS telemetry data (Table 10). for the calculation of shags’ density. To check whether the number of shags reached the numerical 2.2.7.3. Regularity of use of the area threshold required in IBA criteria C2 and B1ii over two different years in at least one season, we tested Besides the fact that the numerical thresholds have whether the mean population estimates in the IBA been reached it needs to be demonstrated that the proposal in meteorological summer (June to August) site is being regularly used by the target species. of both census years exceeded the threshold of 300 According to the BirdLife International protocol for individuals, using one tailed Student t-test. The the identification of marine IBAs this means that the assumption of the test that the sample population birds are visiting the area in different periods (seasons size estimates need to be normally distributed was or years) or that the area is visited by the birds from checked and confirmed with Shapiro-Wilcoxon test different sites (i.e. breeding colonies or roost-sites) of normality (W = 0.98, p = 0.93). (BirdLife International 2010b). The model predictions were done based on a new dataset, represented by a grid of cells that 3. Results was used for the delineation of the marine IBA candidate. The grid was clipped to exactly match 3.1. Monitoring at communal roost-sites the target area or the area of the IBA proposal, resulting in several partial grid cells at the edges. Altogether, 24 monthly censuses were conducted at To account for the different cell surface areas, three communal roost-sites of the Mediterranean logarithmically transformed surface area of cells Shags between November 2011 and the end of was calculated (i.e. representing the offset variable October 2012 (Table 2). Their number peaked in as used in the models). The values of the variable August 2013 when 1,494 individuals were counted. ‘distance from the coast’ were obtained in ArcGIS The minimum was observed in March 2012 when 10.3 (ESRI 2014) as the distance of the cell central only 32 individuals were counted. point from the coastal line. To simulate the effect of fishing boats variable ‘presence of large fishing boats 3.2. Monitoring at sea following the ESAS method <0.5 km away’ was set to “yes” in one randomly chosen cell, and variable ‘presence of large fishing Altogether, 16 censuses were conducted between boats 0.5–2 km away’ in two randomly chosen July 2012 and August 2013 (Table 3). The length cells. The sea state was set to level zero to account of a standard transect was 81.58 km and the width for the optimal monitoring conditions. Any non- was 600 m. The mean census time was 4:31. Two significant estimates were interpreted as not censuses (22.6.2012 and 21.5.2013) were not different from zero (i.e. the predictor has no effect). conducted entirely due to bad weather conditions The mean predicted values and standard errors (SE) and hence omitted from further analysis. were calculated using ‘predict.gam’ function in R Densities of the Mediterranean Shags at the package ‘mgcv’ (Wood 2004), and 90% confidence transect. The density of shags at the transect varied intervals were calculated by the equation: mean ± greatly between censuses (Table 14). The highest 1,645 x SE. All values were calculated on the scale density at the transect was observed in July 2013 110 Acrocephalus 39 (178/179): 101–128, 2018

when it reached 4.4 ind./km2 (all floating shags) or (set 2) models were fit to describe the distribution 3.4 ind./km2 (floating shags without those associated of the Mediterranean Shags in the Slovenian sea with fishing boats) (Table 14). The lowest densities (Table 4). The selected, most parsimonious model were observed in January, February and March 2013 in set 1 (M1.5) contained five fixed variables. Four when less than 10 floating individuals were observed of these variables had significant coefficients: the at the transect (Table 14). The mean density of shags ‘distance from the coast’, ‘presence of large fishing in peak non-breeding season (data pooled for years boats <0.5 km away’, ‘presence of large fishing boats 2012 and 2013) was generally higher off-shore than 0.5–2 km away’ and the ‘sea state’. All but the latter in-shore whether the shags associated with fishing had positive effects on the number of shags in the boats were considered or not (Figure 2). transect segments (Table 5). The selected, most Ecological models of the Mediterranean parsimonious model in set 2 (M2.5) contained two Shag distribution. Altogether, seven (set 1) and five fixed variables, the ‘distance from the coast’ and

Table 2. The number of roosting Mediterranean Shags Phalacrocorax aristotelis desmarestii at three main communal roost-sites on shellfish farms along the Slovenian coast in 2011–2013; the difference between the total number of individuals (Total ind.) and the sum of adults (Ad.) and non-adults (Non-ad.) equals the number of individuals of unknown age. The shadowed censuses define the peak non-breeding season.

All roost- sites Debeli rtič Strunjan Sečovlje Non- Total Non- Total Non- Total Date Total ind. Ad. ad. ind. Ad. ad. ind. Ad. ad. ind. 22.11.2011 725 344 53 328 21.12.2011 485 141 32 173 10 34 44 268 14.1.2012 172 3 27 32 18 122 16.2.2012 90 6 14 22 0 46 46 7 15 22 15.3.2012 32 3 7 10 12 0 10 10 18.4.2012 89 33 2 12 14 1 41 42 16.5.2012 170 75 3 39 42 2 51 53 20.6.2012 1047 373 191 483 16.7.2012 1485 330 174 169 380 775 13.8.2012 1406 371 309 726 17.9.2012 1241 531 276 434 13.10.2012 1261 532 209 520 15.11.2012 691 357 108 226 19.12.2012 148 68 20 88 31 29 13.1.2013 56 29 8 19 19.2.2013 39 2 14 20 0 2 2 0 17 17 22.3.2013 114 0 17 17 0 18 18 79 17.4.2013 82 28 0 6 6 48 21.5.2013 395 128 37 165 83 147 17.6.2013 905 337 18 355 195 355 17.7.2013 1357 450 255 652 23.8.2013 1494 577 33 610 269 615 17.9.2013 1424 529 267 628 24.10.2013 1215 538 38 576 120 519 111 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

‘sea state’, both having significant coefficients with Two, 15, and 12 Shags were tagged in 2012, 2013 and similar effects as in case of M1.5. 2014, respectively. In 2013, several devices stopped Identification of marine IBA candidates. working soon after they were mounted on birds due The density of shags in top 5% transect segments to technical faultiness. The data from the devices (i.e. two segments per census occasion) spanned that stopped working less than three days after they between 4.3 and 72.2 ind./km2 in case of all were mounted on birds (five devices) were excluded floating shags were considered (ESAS data from further analysis. Data from 24 birds were thus subset 1), and between 4.3 and 28.7 ind./km2 in analysed for the purpose of marine IBA identification. case of floating shags without those associated The tracking data used in the analysis were with fishing boats (ESAS data subset 2) (Table 6). obtained between 3.10.2012 and 30.9.2014. The The spatial distribution of the selected segments number of tracking days in ‘clear dataset’ differed was very similar for both ESAS data subsets, highly among shags (n = 24): from minimum of resulting in equal distribution of the intersecting five to maximum of 445 days (mean: 78) and so did grid cells that represent the spatial framework the number of fixed GPS locations: from minimum for the delineation of the marine IBA candidate of 168 to maximum of 8,380 (mean: 1,653). The (Figure 3). number of tracking days in ‘end dataset’ ranged from minimum of 5 to maximum of 437 days 3.3. GPS telemetry (mean: 70) and so did the number of fixed GPS locations: from minimum of 67 to maximum of A total of 29 shags were tagged with GPS loggers 3,449 (mean: 608). between 3.10.2012 and 27.8.2014: 27 at the Izola The core use areas (kernels) were fit for 21 of 24 trapping site and two at the Strunjan trapping site. individuals. The number of GPS locations in each There was no trapping success at the Sečovlje site. round foraging trip of three individuals (Andro,

Table 3. Summary of ESAS censuses conducted in the Slovenian sea in 2012 and 2013. Censuses marked with asterisk were conducted within the peak non-breeding season. Duration of census: total census duration including short pauses.

No. of Length of % of Census Census Duration No. of transect censused censused start time end time of census transect segments < Census date transect[km] transect (h:mm) (h:mm) (h:mm) segments 1000 m 22.6.2012* 74.73 91.6 7:03 11:30 4:27 54 6 17.7.2012* 81.58 100 7:15 11:41 4:26 62 12 7.8.2012* 81.58 100 7:53 12:29 4:36 60 11 23.8.2012* 81.58 100 8:47 13:43 4:56 60 12 7.9.2012* 81.58 100 9:00 13:54 4:54 62 12 18.10.2012* 81.58 100 11:09 15:56 4:47 59 11 16.11.2012 81.58 100 10:30 14:52 4:22 61 12 19.12.2012 81.58 100 10:18 15:05 4:47 60 12 23.1.2013 81.58 100 9:58 14:06 4:08 58 10 19.2.2013 81.58 100 11:05 15:36 4:31 62 13 22.3.2013 81.58 100 11:00 15:32 4:32 60 12 19.4.2013 81.58 100 11:10 15:31 4:21 60 12 21.5.2013 41.55 50.9 11:30 14:22 2:52 33 9 19.6.2013* 81.58 100 11:14 15:53 4:39 57 9 26.7.2013* 81.58 100 10:55 16:35 5:40 59 11 23.8.2013* 81.58 100 10:47 15:08 4:21 60 12 Total 1.258,4 72:19 927 176 112 Acrocephalus 39 (178/179): 101–128, 2018

Figure 2. Mean densities of the Mediterranean Shags Phalacrocorax aristotelis desmarestii (ind./km2) at the ESAS transect in peak non-breeding season; the data were pooled for the years 2012 and 2013. Left: density of all floating shags;right: density of floating shags without those associated with fishing boats.

Roko and Dino) was below the required threshold (1–160) (Table 8). Mean surface area of core use (i.e. six locations) to fit the kernels. The number of fit areas was 383.79 ± 222.56 ha. Mean distance from core use areas varied greatly between the individuals the coast, calculated as aerial distance of core use (1–112) (Table 7), as well as between roost-sites area central point from the corresponding roost-

Table 4. Models of the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution in the Slovenian territorial sea in peak non-breeding season; the data were pooled for the years 2012 and 2013. Set 1: the response variable was defined as the number of all floating individuals in a transect segment (ESAS data subset 1).Set 2: the response variable was defined as the number of floating individuals not associated with fishing boats in a transect segment (ESAS data subset 2). The selected models in each set are printed in bold. Fixed variables included in a given model are denoted with 'Y'. Distance: distance from the coast; Sfishb: presence of small (<12 m) fishing boats;Lfishb <0.5 km: presence of large (>12 m) fishing boats <0.5 km away; Lfishb 0.5–2 km: presence of large fishing boats 0.5–2 km away; Sediment: sediment type; Sea state: sea state on the Beaufort scale; *GAM was fit. **Model did not converge.

Fixed variables

Random Date Sfishb Set of Degrees of variable Lfishb Lfishb <0.5 km Sea state Distance 0.5–2 km models Model freedom AIC Δ AIC Date Sediment M1.5 11 1439.4 0 census date Y Y Y Y Y M1.6 8 1449.6 10.2 census date Y Y Y Y M1.2 13 1451.6 12.2 census date Y Y Y Y Y Y Set 1 M1.1 17 1467.8 28.4 none* Y Y Y Y Y Y Y M1.7 8 1536.9 97.5 census date Y Y M1.3 5 1539.6 100.2 census date Y Y M1.4** 7 1540.9 101.5 census date Y Y

M2.5 8 1437.54 0 census date Y Y M2.2 10 1449.35 11.81 census date Y Y Y Set 2 M2.3 5 1452.98 15.44 census date Y M2.1 14 1457.27 19.73 none* Y Y Y Y M2.4 7 1468.32 30.78 census date Y Y 113 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Table 5. Regression coefficients of the selected GAMM models describing distribution of the Mediterranean Shags Phalacrocorax aristotelis desmarestii at the Slovenian sea in peak non-breeding season; M1.5: the response variable was defined as the number of all floating individuals in a transect segment (ESAS data subset 1). M2.5: the response variable was defined as the number of floating individuals not associated with fishing boats in a transect segment (ESAS data subset 2). te: denoting the smoothing function used in the additive modelling. Sea state referential level: Beaufort level 0.

Model Predictor Description ß p Intercept Model intercept -12.9 <0.001 te(Distance) Distance from the coast 1.22 <0.001 Sfishb Presence of small (<12 m) fishing boats 0.20 non-sig. Presence of large (>12 m) fishing boats Lfishb <0.5 km 2.74 <0.001 0.5 km away M1.5 Presence of large (>12 m) fishing boats Lfishb 0.5‒2 km 0.87 <0.05 0.5‒2 km away level = 1 -0.53 <0.05 level = 2 -0.89 <0.01 Sea state Sea state on the Beaufort scale level = 3 -1.33 <0.01 level = 5 -0.77 non-sig.

Intercept Model intercept -12.8 <0.001 te(Distance) Distance from the coast 1.33 <0.001 level = 1 -0.59 <0.01 M2.5 level = 2 -1.06 <0.001 Sea state Sea state on Beaufort scale level = 3 -1.50 <0.01 level = 5 -0.84 non-sig. site was 3.61 ± 2.3 km. Nine of 21 individuals were 13 (32.5%) groups consisted of 130 or more using more than one roost-site (Table 7). individuals, the largest two groups holding 300 and Using the GPS telemetry data, eight marine 310 individuals. 69.2 % of groups with 130 or more IBA candidates were identified in total, based on individuals and 40.7 % of groups with less than 130 the individuals making round foraging trips from individuals were observed during active foraging, roost-sites 1, 3 and 5 (Figure 6). No sites were in several cases in the company of Black-headed identified based on foraging trips from other roost Gulls (Chroicocephalus ridibundus). Most groups sites (Table 9). It was estimated that the maximum were foraging in the intertidal zone preying on numbers of shags visiting individual areas ranged schools of small pelagic fish. between 7 and 220 individuals (Table 10). 3.5. Data layer classification 3.4. Census of large floating groups The spatial data layers produced based on the ESAS A total of 40 cases of large floating groups (≥10 dataset were classified as primary and the spatial individuals) of the Mediterranean Shags were data layers produced based on the GPS telemetry reported between October 2011 and November data and census of large floating groups as supple- 2014 (Table 11, Figure 7). All reports coincide mentary (Table 12). An additional environmental with the autumn season, the earliest being from layer, i.e. the bathymetry layer, was used for a 21th September and the latest from 6th December. detailed delineation of final marine IBA borders. 114 Acrocephalus 39 (178/179): 101–128, 2018

Figure 3. Marine IBA candidate as identified based on the locations of the top 5% transect segments with the highest densities of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in peak non-breeding season in 2012 and 2013; light grey segments: year 2012; dark grey segments: year 2013; black segments: both years. Left: density of all floating shags;right: density of floating shags without those associated with fishing boats. The segments are overlaid with intersecting grid cells (a = 1,540 m), representing the spatial framework for the delineation of the marine IBA candidate.

Table 6. Densities of the Mediterranean Shags 3.6. New marine IBA proposals and their Phalacrocorax aristotelis desmarestii in the top 5% compliance with the IBA criteria transect segments in peak non-breeding season by census occasion. The densities were calculated based on the number of all floating shags (ESAS data subset 3.6.1. Marine IBA proposals 1) or the number of floating shags without those associated with fishing boats (ESAS data subset 2). *Transect segments differ between data subsets. The final marine IBA proposals for the Mediter- ranean Shags were delineated based on the IBA Mediterranean Shag density candidates that were identified as part of the [ind./km2] analysis of the three data sources: ESAS dataset ESAS data ESAS data (Figure 3), GPS telemetry dataset (Figure 6), Census date subset 1 subset 2 and land-based observations of large foraging 21.6 21.6 groups (Figure 7). One new marine IBA and 17.7.2012 19.3 19.3 one extension to an existing marine IBA were 56.3* 4.3* delineated (Figure 8). The IBA Osrednji Tržaški 7.8.2012 13.0 13.0 zaliv was delineated based on one primary data 72.2* 7.9* layer (Table 13). The extension to IBA Debeli rtič 23.8.2012 10.8 10.8 was delineated based on two overlapping supple- 5.4 5.4 mentary data layers and the bathymetry layer as an 7.9.2012 4.3 4.3 additional environmental data layer to limit the 10.0 10.0 area to 0–10 m depth zone, as social foraging of 18.10.2012 5.4 5.4 shags on schools of small pelagic fish occurred most 26.0 24.9 intensively in the shallow in-shore waters and the 19.6.2013 intertidal zone (Table 13). The new proposed areas 15.2 15.2 and the previously identified IBAs represent four 28.7 28.7 26.7.2013 distinct IBAs for the Mediterranean Shag in the 21.6 21.6 Slovenian territorial sea (Figure 8). Note that the 19.5 19.5 23.8.2013 marine IBA Škocjanski zatok does not include the 11.9 11.9 Mediterranean Shag as a qualifying species. 115 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Figure 4. GPS locations of 24 Mediterranean Shags Phalacrocorax aristotelis desmarestii within the Gulf of Trieste, tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014; grey dots: clear dataset (n=39,670); black dots: end dataset (n=14,595)

116 Acrocephalus 39 (178/179): 101–128, 2018

Figure 5. Core use areas of 21 of 24 tracked Mediterranean Shags Phalacrocorax aristotelis desmarestii making round foraging trips from roost-sites 1–10. Note that no core use areas were identified for three individuals (Andro, Dino and Roko). Numbers 1, 8 and 9 represent the main communal roost-sites along the Slovenian coast, Debeli rtič, Strunjan and Sečovlje, respectively. 117 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Table 7. Core use area (CUA) statistics by individuals for 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii. Note that no core use areas were identified for three individuals, Andro, Dino and Roko.

Mean surface Mean coast No. of roost- Individual No. of CUA area (ha) SD (ha) distance (km) SD (km) sites Ante 1 147.24 NA 1.90 NA 1 Ari 3 457.79 77.48 1.34 1.36 1 Bepo 29 630.59 203.39 5.50 5.68 1 Dado 6 220.65 27.12 0.71 0.69 2 Ilija 4 871.15 392.35 11.62 8.65 1 Ivek 8 238.30 33.89 1.55 1.50 1 Jakomo 112 240.37 101.77 2.89 3.61 4 Karlo 44 595.18 164.78 6.59 6.74 2 Mihi 69 395.54 144.60 3.78 3.94 4 Momo 4 389.72 71.13 2.47 1.47 1 Nace 38 254.11 83.20 2.59 3.21 1 Nikola 63 587.95 209.13 4.50 4.38 3 Ogi 10 678.16 235.74 5.79 5.81 1 Oto 2 861.29 94.64 3.33 3.33 1 Pino 15 246.68 93.74 2.77 2.00 3 Srečko 26 332.43 77.60 1.75 1.56 4 Šime 5 329.61 169.54 2.67 2.87 1 Štelio 10 459.52 312.37 3.38 3.15 1 Tartini 10 527.98 179.13 2.93 2.62 1 Tonin 3 264.21 17.46 1.23 1.41 2 Ugo 55 183.21 68.87 2.58 1.69 3

Table 8. Core use area (CUA) statistics by roost-sites for 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii. Note that no core use areas were identified for three individuals, Andro, Dino and Roko.

Mean area Mean coast No. of Roost-site No. of CUA (ha) SD (ha) distance (km) SD(km) individuals 1 119 426.76 223.89 4.70 2.38 9 2 1 169.12 NA 2.76 NA 1 3 160 420.45 220.79 3.82 1.81 7 4 8 246.32 36.12 1.31 0.45 2 5 93 243.58 122.23 1.33 1.21 7 6 8 335.92 30.25 1.69 0.58 1 7 10 385.34 79.38 2.13 0.54 1 8 103 412.11 246.93 4.10 1.51 8 9 8 584.18 406.85 9.20 5.04 2 10 7 272.95 128.14 4.29 1.78 1 118 Acrocephalus 39 (178/179): 101–128, 2018

Figure 6. Marine IBA candidates as identified in the analysis of the GPS telemetry data of 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014. Note that no candidates were identified for shags roosting at roost-sites 2, 4, 6–7 and 9–10. Letters A to D denote individual IBA candidates.

Table 9. Parameters and outcomes of the identification of marine IBA candidates based on the GPS telemetry data of 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014.

Sample Inner Outer representa- Resulting marine Roost-site buffer [km] buffer [km] Ars scale Site fidelity tiveness IBA candidates 1 (Debeli rtič) 0.7 0.7 0.732 non-significant 97.42 1A–B 2 0.3 0.3 / sample too small 3 0.35 0.35 0.675 significant 79.8 3A–D 4 0.4 0.4 0.7 / sample too small 5 0.3 0.5 0.545 non-significant 99.31 5A–B 6 0.2 0.2 0.600 / sample too small 7 0.2 0.2 0.629 / sample too small sample not 8 (Strunjan) 0.4 0.4 0.829 significant 56.07 representative 9 (Sečovlje) 0.6 0.6 1.471 / sample too small 10 0.3 0.3 1.067 / sample too small 119 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Table 10. Marine IBA candidates identified based on the GPS telemetry data of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in the Slovenian sea, and estimates of the number of individuals utilizing each area. Roost-sites represent the central place of round foraging trips of the shags.

Roosting max. % of roosting max. mIBA site Roost-site Area ID Surface area [ha] population population population A 573 24.37 129‒149 1 530—610 1 B 888 36.13 191‒220 A 168 14.29 14 B 1407 57.14 57 3 ~100 2 C 147 14.29 14 D 239 14.29 14 A 14 12.9 7 5 ~50 2 B 291 78.49 39 1 Roost-site monitoring yearly maxima in 2012 and 2013; 2 numbers assessed based on land observations (best expert opinion).

Table 11. The number of groups of the Mediterranean July 2013 and the lowest in March 2013 (Table 14). Shags Phalacrocorax aristotelis desmarestii along the The estimated number of shags in the proposed Slovenian coast from October 2011 to December 2014 by months and years; the data were reported by random IBA Osrednji Tržaški zaliv (OTZ) exceeded 300 observers; Total foraging: number of groups observed individuals (1% of biogeographic population) in during active foraging. The number in brackets denotes 5 out of 8 censuses within the peak non-breeding the number of groups with ≥ 300 individuals. season, i.e. in July 2012, twice in August 2012, in June 2013 and July 2013 (Table 14). The mean Month < 130 ind. ≥ 130 ind. number in summer months, pooled for both September 1 4 monitoring years, was 374 individuals (321–427, October 11 7(2) 90% CI). The probability that the mean was lower than 300 individuals was below 5% (Student November 14 2 t = 2.8, df = 5, p = 0.02). December 1 0 Estimates based on the models: The Year < 130 ind. ≥ 130 ind. estimated mean number of all floating shags within the Slovenian territorial sea was 866 2011 0 2(1) (471–1,705, 90% CI), and 495 (265–988, 2012 9 5 90 % CI) within the IBA Osrednji Tržaški 2013 10 3 zaliv (predictions from the model M1.5). The estimated mean number of floating shags without 2014 8 3(1) individuals associated with fishing boats was Total 27 13(2) 745 (472–1,187, 90% CI) within the Slovenian Total foraging 11 9(2) territorial sea and 415 (263–658, 90% CI) within the IBA Osrednji Tržaški zaliv (predictions from the model M2.5). Note that the predictions 3.6.2. Estimated numbers of the of the models account for the number of shags Mediterranean Shags in proposed IBAs averaged over the entire peak non-breeding season and are thus not directly comparable with Estimates based on extrapolation: Estimated the estimates based on extrapolation (expressed number of shags in the target area was the highest in as mean number of shags in summer months). 120 Acrocephalus 39 (178/179): 101–128, 2018

Figure 7. Large groups (≥ 10 individuals) of the Mediterranean Shags Phalacrocorax aristotelis desmarestii randomly registered between October 2011 and November 2014 along the Slovenian coast; black circles: the group was observed during active foraging; grey circles: the group was not actively foraging; the groups selected for delineation of marine IBA candidates are marked with asterisk.

Table 12. Classification of the spatial data layers used for delineation of marine IBA candidates for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in the Slovenian sea.

Data layer Data source Data layer class local densities of shags in the peak non- 1 breeding season, i.e. top 5% transect segments with highest densities (the best segments) ESAS monitoring primary grid cells (1,540 m) intersecting with the best 2 transect segments 3 core use areas of individual tracked shags GPS telemetry supplementary 4 large foraging groups of shags unsystematic land-based census supplementary Geodetic Administration of the 5 bathymetry layer environmental Republic of Slovenia (GURS) 121 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

Figure 8. Marine IBAs in Slovenia; dashed line: new marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii identified within the scope of the SIMARINE-NATURA project (this work);dark grey polygons: marine IBAs identified during previous stages in 2000–2011 D( enac et. al 2011). 1: IBA Osrednji Tržaški zaliv; 2: IBA Debeli rtič; 3: extension to IBA Debeli rtič; 4: IBA Strunjan; 5: IBA Sečoveljske soline; 6: IBA Škocjanski zatok. IBAs 2, 4 and 5 cover the three main roost-sites of the Mediterranean Shags along the Slovenian coast. The IBA Sečoveljske soline crosses the national border since it was identified before the marine border between Slovenia and Croatia was defined in the arbitration. Note that the IBA Škocjanski zatok does not include the Mediterranean Shag as a qualifying species.

4. Discussion of the new sites to the conservation of the global non-breeding population of the Mediterranean The Slovenian territorial sea has been previously Shag is that they encompass two areas regularly recognized as an area of international importance used for foraging by at least 1% of the population. for the Mediterranean Shag in the non-breed- The two new areas, IBA Osrednji Tržaški zaliv ing season (Denac et al. 2011, Koce & Lipej and the extension to the existing IBA Debeli rtič, 2016), however, this work delivers important new differ in their ecological characteristics reflected in knowledge about the spatio-temporal distribution different ways the shags are using them. The IBA of this seabird within the area. Two new marine Osrednji Tržaški zaliv covers an off-shore area, IBAs for the Mediterranean Shag were identified spanning between approximately 3.5 and 10 km based on the results of this study, which essentially from the coast and lying within the 20–25 m depth complement the previously existing marine IBAs zone, dominated by muddy and sandy benthic covering three main communal roost-sites on substrate and corresponding benthic community the shellfish farms located along the Slovenian that is poorly investigated (Peterlin et al. 2013). coast (Denac et al. 2011). The main added value We suggest that its importance for the foraging 122 Acrocephalus 39 (178/179): 101–128, 2018

Table 13. Marine IBAs proposed based on the data on the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution and numbers, gathered within the project SIMARINE-NATURA (LIFE10NAT/SI/141) in 2011‒2014.

Marine IBA Underlying Surface Estimated Complies with proposal data sources area (ha) population size Regularity of use IBA criteria 1% population IBA Osrednji 374 (321‒427, 90% CI) 1 threshold exceeded Tržaški zaliv – ESAS dataset 8.218 ha 495 (265‒988, 90% CI) 2 in two years (2012 B1ii, C2, C6 and 2013) – GPS telemetry dataset 1% population Extension to – large floating up to 310 3 threshold IBA Debeli rtič groups 155 ha 129‒149 4 exceeded in two B1ii, C2, C6 dataset years (2011 and – bathymetry 2014) layer 1 Mean number of shags using the area in summer months over two years, estimated based on the extrapolation; 2 mean number of shags using the area in peak non-breeding season, estimated based on the model M1.5; 3 maximum number of shags observed within the same foraging group; 4 estimated number of shags using the marine IBA candidate 1A, identified based on the GPS telemetry data.

Table 14. Estimated numbers of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in the Slovenian territorial sea and in the IBA Osrednji Tržaški zaliv (OTZ), based on the extrapolation from the ESAS dataset. (1): Number of all floating shags,(2): number of floating shags without individuals associated with fishing boats. Results of the censuses from 22.6.2012 and 17.5.2013 were omitted due to unrepresentativeness of the sample. Censuses marked with asterisk were conducted within the peak non-breeding season. ] ] 2 2 /km /km no. no. Meteorological season Census date No. of Shagsat the transect (1) No. of Shags at the transect (2) Density of Shags at the transect (1) [ Density of Shags at the transect (2) [ Estimated no. of Shags at SLO (1) Estimated no. of Shags in OTZ (1) Estimated no. of Shags at SLO (2) Estimated no. of Shags in OTZ (2) 17.7.2012* 131 131 2.7 2.7 572 349 572 349 Summer 7.8.2012* 112 60 2.3 1.2 489 392 262 184 23.8.2012* 145 95 3.0 1.9 633 425 415 225 7.9.2012* 50 50 1.0 1.0 218 110 218 110 Autumn 18.10.2012* 36 36 0.7 0.7 157 124 157 124 16.11.2012 21 13 0.4 0.3 92 26 57 26 19.12.2012 11 9 0.2 0.2 48 20 39 20 Winter 23.1.2013 7 7 0.1 0.1 31 4 31 4 19.2.2013 2 2 0.0 0.0 9 0 9 0 22.3.2013 1 1 0.0 0.0 4 0 4 0 Spring 19.4.2013 19 19 0.4 0.4 83 44 83 44 19.6.2013* 142 127 2.9 2.6 620 344 555 337 Summer 26.7.2013* 215 167 4.4 3.4 939 458 729 458 23.8.2013* 101 101 2.1 2.1 441 277 441 277 All year 71 58 1.4 1.2 310 184 255 154 Summer 141 114 2.9 2.3 616 374 496 305 Peak non-breeding season 117 96 2.4 2.0 509 310 419 258 123 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

shags is established on high abundance and easy The IBA Osrednji Tržaški zaliv was identified access of suitable prey species, especially the black based on one primary data source, the spatial goby Gobius niger. The species has been identified as distribution of shags, as revealed by the ESAS the dominant prey of the Mediterranean Shags in monitoring. However, the results of GPS telemetry the Gulf of Trieste in two recent studies (Cosolo do not comply with these findings as they suggest et al. 2011, Lipej et al. 2016). The black goby is a that the shags’ most important foraging areas common benthic fish species throughout the Gulf are located along the coast. According to the of Trieste (Lipej et al. 2016), however, its spatio- recommendations by the marine IBA identification temporal dynamics within the Slovenian sea is protocol (BirdLife International 2010b), the not well known. Based on the existing data, it is GPS telemetry data, retrieved from more than 10 not possible to conclude that the peak densities of individuals, classifies as the primary data source, the Mediterranean Shags, consistently found in but we classified it as supplementary despite off-shore areas within the scope of the systematic adequate number of tracked individuals. The ESAS monitoring, reflect higher densities of prey in reason for this lies in the fact that the sample of these areas, although this is a plausible hypothesis. tracked shags was biased due to non-randomized Moreover, the distribution of shags at sea could also catching. The majority of individuals were caught be affected by the level of disturbance but the effect at one near-coast location, characterized as a resting of this factor was not considered in our study. spot used by the shags during their diurnal activities The IBA Osrednji Tržaški zaliv overlaps with (i.e. between foraging episodes). As revealed by the the national B fishing zone Klanjšček( et al.), results of this telemetry study, many shags tend to regularly exploited by bottom and midwater otter be faithful to their foraging areas, meaning that our trawlers, purse seiners and pelagic pair trawlers sample was at least to some degree biased towards (MKGP 2011). All these fishing techniques the locally-foraging population and thus not use vessels defined in this study as large fishing representative for the entire roosting population. boats. Groups of shags have been occasionally To ensure random sampling, the majority of observed to follow the boats and forage on the shags should be caught at their communal roost- discards (own unpublished data and B. Marčeta, sites. However, these individuals were extremely personal communication). This suggests that higher hard to catch as they tended to avoid the floating abundances of shags in the off-shore areas could rafts and buoys with mounted traps, placed in be the consequence of fishing activities in these the environment with abundant alternative areas. In fact, the presence of large fishing boats in a traditional roosting structures, i.e. the shellfish transect segment or in its close vicinity (i.e. < 500 m farm buoys. Another possible source of bias could from the instant observation point) had a strong be the difference in total diving time when shags positive effect on the number of shags, as revealed are foraging in shallow coastal waters or foraging by one of the selected models fit for the ESAS in deep off-shore waters, which would affect the dataset in this study. Nevertheless, a comparison frequency of successfully fixed GPS locations. of both selected models revealed that the number However, the total diving time of individuals was of shags within the transect segment increases with not assessed in this study. increasing distance from the coast independently Nevertherless, the GPS telemetry and land- of the presence of fishing boats. Moreover, the based census of large floating groups importantly occasional discards probably do not represent an supplement the ESAS censuses that tend to overlook essential source of food for the Mediterranean Shag, the shags closely associated with the sea-shore. As as they are relatively scarce in this area (MKGP part of the maritime traffic rules, the ESAS census 2011). We thus suggest that fishing activity is not an boat was not allowed to travel with required speed ultimate factor influencing the distribution of shags closer than 400 m from the shoreline, missing out in the Slovenian sea, but it can cause temporary at least the innermost 100 m coastal belt where aggregations of the individuals that primarily visit most communal foraging occurs. Although the the overlapping area to prey on the bottom dwelling supplementary datasets do not provide adequate prey species, predominantly the black goby. data to evaluate the entire Slovenian coastal belt, 124 Acrocephalus 39 (178/179): 101–128, 2018

they do provide adequate information to identify all-day monitorings of the communal roots-sites, an important foraging area extending from the conducted after the onset of ESAS monitoring existing marine IBA Debeli rtič along several (Bordjan et al. 2013, Pavletič 2013, Rozman kilometres of the coast. The importance of the site 2012), the optimal time for at-sea census in the peak for the socially foraging shags is supported also non-breeding season is between 10 a.m. and 4 p.m. with the findings of their diet analysis that revealed It was estimated that 48–70% shags were staying at disproportionally high frequencies of sand-smelts the roost-sites during the first hour of the censuses in the diet of individuals roosting at the Debeli that started around 8 a.m., 31–43% in the first hour rtič roost-site (Lipej & Mavrič 2013, Lipej et al. of censuses starting around 9 a.m. and only 13–28% 2016). However, the rest of the innermost coastal in the first hour of censuses started between 10–11 belt should be further evaluated in terms of its a.m. (own unpublished data). Based on these data importance for foraging shags through systematic we conclude that the estimated number of shags land-based monitoring from several spots at the censuses between July and September 2012 does coast and through systematic monitoring of not reflect the peak diurnal numbers of shags in the innermost coastal belt by slow-speed travelling boat. IBA Osrednji Tržaški zaliv. The standard IBA criteria used for site The estimated number of shags in the IBA justification require two conditions to be met: (1) Osrednji Tržaški zaliv and even in the entire target regular use, and (2) threshold number of individuals area was well below 300 individuals in two of the utilizing the site. For the purpose of marine IBA eight censuses during peak non-breeding season justification, the regularly used areas were defined (September and October 2012), although the as areas visited by birds from more than one site number of roosting population was at its highest or during different periods (i.e. seasons or years) level. These low estimated numbers of shags at sea (BirdLife International 2010b). coincide with the autumn period when the shags Regular use of the IBA Osrednji Tržaški zaliv frequently formed large groups and foraged on was demonstrated by repeated systematic censuses schools of small pelagic fish in the shallow coastal over the period of 13 months and two non-breeding waters. These groups were often formed of 100 seasons in 2012 and 2013. It was demonstrated that or more individuals, and nine such cases were in both years the number of shags using the area reported in September and October 2012 (max. exceeded 300 individuals in several months and that 230 individuals in one group) only in random the average summer number over both years was observations. Since the large groups foraging in the above 300 individuals. It is of utmost importance innermost coastal belt might have been overlooked to stress that these calculations do not take into from the ESAS census boat, this seasonal account the turnover, i.e. the phenomenon that phenomenon could explain the lower numbers more birds are actually using the site over a period of shags in the autumn peak non-breeding season of time than the number of individuals recorded at months, estimated based on the ESAS dataset. any given moment during the census. The turnover The IBA Debeli rtič has been estimated to hold rates for the foraging Mediterranean Shags in this about 800 roosting individuals in the 2006–2011 study were not assessed and thus the true number period (Denac et al. 2011). In this study, however, of individuals using the IBA within one season a maximum of 532 and 610 individuals were cannot be estimated, but it could be considerably registered during the peak non-breeding seasons higher than the estimated numbers. This is very in 2012 and 2013, respectively. The roost-site itself important to consider in the attempts to compare meets IBA criteria, but the extension can also be these estimated numbers against the size of the justified as an important foraging area. The shags roosting population, acquired by total counts of tend to form large foraging groups around this static individuals within the roost-site monitoring. roost-site, diving after schools of small pelagic fish Moreover, the first few censuses implemented in along the coast outside the original IBA borders. 2012 (from July to September) were not conducted Two groups of 300 and 310 individuals were in the optimal time of the day, as their starting observed in the area in two different years, proving time was too early. Based on the data from a few that the numerical threshold has been met without 125 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

even considering the turnover rates. Regular use of oziroma 155 ha. Novi območji tako pokrivata 39,2 % the extension to the existing IBA was demonstrated slovenskega teritorialnega morja. by both types of data used for its delineation. The large groups of 130 or more individuals were Acknowledgements observed in the area in four different years and the area was visited by shags from two different roost- This research was done as part of the project sites as revealed by the GPS telemetry data. SIMARINE-NATURA (LIFE10NAT/SI/141) Least but not last, the results of this study project co-financed by LIFE, the EU’s financial should be viewed on the spatial scale of the entire instrument for the Environment. Other co-financ- Gulf of Trieste. The non-breeding population of ers were: Ministry of the Environment and Spatial the Mediterranean Shags within this region cannot Planning, City Municipality of Koper, Municipali- be partitioned to national fragments. Although the ty of Izola and Municipality of Piran. identification of marine IBAs for the Mediterranean I am especially grateful to many who took Shag was limited to the Slovenian territorial sea part or otherwise helped in this study either as within the scope of the SIMARINE-NATURA professionals or volunteers. This research could not (LIFE10NAT/SI/141) project, the data collected be accomplished without their participation. These in this study as well as previous knowledge about were (in alphabetical order): Andrej Bibič, Dr Dejan the distribution of Mediterranean Shags in the Bordjan, Igor Brajnik, Bruna Campos, Dr Damijan region call for the identification of complementary Denac, Katarina Denac, Dr Maria Dias, Ana sites within the Italian waters or transboundary Dolenc, Dare Fekonja, Jernej Figelj, Dr Irena Fonda, sites spanning across the political borders. Jakob Fric, Tilen Genov, MSc, Pedro Geraldes, Dr Jonathan Green, Dr Mateja Grego, Eva Horvat, Povzetek Lech Iliszko, Kaja Jensterle, Martina Kačičnik Jančar, MSc, Luka Kastelic, Mirko Kastelic, Dr Omrežje IBA redno posodabljamo na osnovi Primož Kmecl, Brina Knez, Neža Kocjan, Dr novih podatkov in njihove boljše kakovosti. Ben Lascelles, Julijana Lebez-Lozej, MSc, Bojana V Sloveniji smo morska območja IBA v preteklosti Lipej, Dr Lovrenc Lipej, Metka Lotrič, Bojan opredelili v treh fazah, vendar je bil sredozemski Marčeta, Dr Borut Mavrič, Andrej Medved, MSc, vranjek vključen kot kvalifikacijska vrsta le v zadnji Ana Meirinho, Nace Mihelič, Tomaž Mihelič, Dr fazi leta 2011. Toda ker so bila območja omejena Roberto Odorico, Polona Pagon, Miša Pavletič, Dr na njegova obalna prenočišča, niso zadostovala za Polona Pengal, Nevenka Pfajfar, Patrik Pucer, Anja pokrivanje prehranjevalnih območij te vrste. Da Pitamic, Dejan Putrle, Bia Rakar, Rok Rozman, bi zapolnili to vrzel v slovenskem teritorialnem Borut Rubinić, Dr Stefano Sponza, Domen morju, smo v okviru projekta SIMARINE- Stanič, Dr Boštjan Surina, Nataša Šalaja, MSc, NATURA (LIFE10NAT/SI/141) v obdobju Bojan Škerjanc, Iztok Škornik, Tanja Šumrada, 2011–2015 opredelili nova morska območja IBA za Marguerite Tarzia, Dr Davorin Tome, Robert Turk, sredozemskega vranjeka, in sicer po standardizirani MSc, Paolo Utmar, Duša Vadnjal, Barbara Vidmar, metodologiji naravovarstvene organizacije BirdLife Dr Al Vrezec, Eva Vukelič. A big thank you also to International za opredelitev morskih območij anonymous referees and the editor for their valuable IBA. Podatki o razširjenosti in velikosti populacij comments to the manuscript. sredozemskega vranjeka so bili zbrani z naslednjimi Last but not least, I am sincerely grateful also to terenskimi metodami: (1) mesečnim monitoringom many unnamed for their kind support during the na skupnih obalnih prenočiščih, (2) mesečnim course of the project. monitoringom na morju po standardizirani metodi ESAS, (3) z GPS-telemetrijo, in (4) nesistematičnim štetjem obalnih skupin plavajočih osebkov. Na osnovi teh podatkov smo opredelili eno novo območje, IBA Osrednji Tržaški zaliv, in razširitev že obstoječega IBA Debeli rtič, ki pokrivata 8218 126 Acrocephalus 39 (178/179): 101–128, 2018

5. References najnovejših kriterijev za določitev mednarodno pomembnih območij za ptice. Končno poročilo Bazin N., Imbert M. (2012): Mediterranean Shag (dopolnjena verzija). – DOPPS, Ljubljana. Phalacrocorax aristotelis desmarestii. Updated Klanjšček, M., Zdešar Kadunc, Š., Karničnik, I., state of knowledge and conservation of the nesting Radovan, D. (2015): Ažuriranje kart rab na morju. populations of the Mediterranean Small Islands. - Kartografska in geoinformacijska podpora za prikaz Initiative PIM. stanja prostora za območje slovenskega dela Jadranskega Aguilar, J. S., Fernández, G. (2002): Species Action morja. Končno poročilo - IZVLEČEK. - Geodetski Plan for the Mediterranean Shag (Phalacrocorax inštitut Slovenije, Ljubljana. aristotelis desmarestii). Final draft. – BirdLife Koce U., Lipej B. (2016): Varstvo sredozemskega International, Strasbourg. vranjeka in drugih morskih ptic v slovenskem morju. BirdLife International (2004): Birds in Europe: Priročnik za uporabnike in upravljavce morskega population estimates, trends and conservation status. prostora.– DOPPS, Ljubljana. BirdLife Conservation Series No. 12. – BirdLife Lipej L., Mavrič B. (2013): Prehranjevalna ekologija International, Cambridge. sredozemskega vranjeka (Phalacrocorax aristotelis BirdLife International (2010a): Marine IBAs in the desmarestii) v slovenskem delu Jadranskega morja. European Union. Version 1.1. – BirdLife International, Poročilo za projekt: SIMARINE-NATURA Brussels. (LIFE10NAT/SI/141) – Preparatory inventory BirdLife International (2010b): Marine Important and activities for the designation of marine IBAs Bird Areas toolkit: standardised techniques for and SPAs for Phalacrocorax aristotelis desmarestii in identifying priority sites for the conservation of seabirds Slovenia. – Shoreline, Trieste. at sea. – BirdLife International, Cambridge. Lipej L., Mavrič B., Odorico R., Koce U. (2016): BirdLife International (2010c): Marine Important The diet of the Mediterranean ShagPhalacrocorax Bird Areas: priority sites for the conservation of aristotelis desmarestii roosting along the Slovenian biodiversity. – BirdLife International, Cambridge. coast. – Acrocephalus 37: 151–158. BirdLife International (2013): Methods for MKGP (2011): Program upravljanja z morskim identifying marine IBAs using seabird tracking data. ribištvom v vodah pod suverenostjo ali jurisdikcijo Preliminary version – 23rd Dec 2013. Republike Slovenije. BirdLife International (2014): Marine Natura Nelson J. B. (2005): Pelicans, Cormorants and their 2000 Progress Assessment. – BirdLife International, relatives, The Pelecaniformes. Bird Families of the Cambridge. World. – Oxford University Press, New York. Bordjan D., Gamser M., Kozina A., Novak J., Pavletič M. (2013): Monitoring sredozemskih vranjekov Denac M. (2013): Roost-site characteristics of (Phalacrocorax aristotelis desmarestii). Poročilo the Mediterranean Shag Phalacrocorax aristotelis terenskega dela pri predmetu Ornitologija. – Univerza desmarestii along the Slovenian coast. – Acrocephalus v Ljubljani, Biotehniška fakulteta, Ljubljana. 34 (156/157): 5–11. Peterlin M., Gabrijelčič E., Orlando Bonaca M., Božič L. (2003): Mednarodno pomembna območja Lipej L., Malej A., Francé J., Čermelj B., Bajt O., za ptice v Sloveniji 2. Predlogi posebnih zaščitenih Kovač N., Mavrič B., Turk V., Mozetič P., R amšak območij (SPA) v Sloveniji. Monografija DOPPS št. A., Kogovšek T., Šiško M., Flander Putrle V., 2. – DOPPS, Ljubljana. Grego M., Tinta T., Petelin B., Vodopivec M., Burnham K. P., Anderson D. R. (2002): Model Jeromel M., Martinčič U., Malačič V., Marčeta Selection and Multimodel Inference. A Practical B., Pengal P., Strojan, I. (2013): Začetna presoja Information-Theoretic Approach. – Springer, New morskih voda v pristojnosti Republike Slovenije. York. Bistvene lastnosti in značilnosti morskih voda. – Camphuysen K. C. J., Garthe S. (2004): Recording Inštitut za vode Republike Slovenije, Ljubljana. foraging seabirds at sea. Standardised recording Polak S. (2000): Mednarodno pomembna območja and coding of foraging behaviour and multi-species za ptice v Sloveniji. Monografija DOPPS št. 1. – foraging associations. – Atlantic Seabirds 6 (1): 1–32. DOPPS, Ljubljana. Cosolo M., Privileggi N., Cimador B., Sponza S. R Development Core Team (2018): R: A language (2011): Dietary changes of Mediterranean Shags and environment for statistical computing. – R Phalacrocorax aristotelis desmarestii between the Foundation for Statistical Computing, Wien. breeding and post-breeding seasons in the upper Rozman R. (2012): Dnevna dinamika številčnosti Adriatic Sea. – Bird Study 58 (4): 461–472. sredozemskih vranjekov (Phalacrocorax aristotelis Denac K., Mihelič T., Božič L., Kmecl P., Jančar desmarestii) na prenočiščih Debeli rtič in Strunjan. T., Figelj J., Rubinić B. (2011): Strokovni predlog Individualna naloga pri predmetu Terensko delo za revizijo posebnih območij varstva (SPA) z uporabo 127 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia

iz botanike in zoologije. – Univerza v Ljubljani, Oddelek za biologijo BF, Ljubljana. Sponza S., Cimador B., Cosolo M., Ferrero E. (2010): Diving costs and benefits during post- breeding movements of the Mediterranean shag in the North Adriatic Sea. – Marine Biology 157 (6): 1203–1213. Sponza S., Cosolo M., Kralj, J. (2013): Migration patterns of the Mediterranean Shag Phalacrocorax aristotelis desmarestii (Aves: Pelecaniformes) within the northern Adriatic Sea. – Italian Journal of Zoology 2013: 1–12. Škornik I., Utmar P., Kravos K., Candotto S., Crnković, R. (2011): Important post-breeding roosting area of Mediterranean Shag Phalacorax aristotelis desmarestii in Gulf of Trieste (N Adriatic). – Medmaravis, Alghero. Venables W. N., Ripley B. D. (2002): Modern Applied Statistics with S. – Springer, New York. Vrezec A. (2006a): Marine and coastal birds of Slovenia: status, population size and conservation of Mediterranean action plan species. – RAC/SPA, Tunis Vilanova i la Geltrú. Vrezec A. (2006b): Tržaški zaliv – mednarodno morsko območje IBA / SPA? – Acrocephalus 27 (130/131): 117–129. Wetlands International (2004): Waterbird Population Estimates, 4th edition. – Wetlands International, Wageningen. Wood S. N. (2004): Stable and efficient multiple smoothing parameter estimation for generalized additive models. – Journal of the American Statistical Association 99: 673–686. Zuur A. F., Ieno E. N., Walker N. J., Saveliev A. A., Smith G. M. (2009): Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health. – Springer, New York.

Prispelo / Arrived: 12. 12. 2018 Sprejeto / Accepted: 27. 2. 2019

128 Acrocephalus 39 (178/179): 129–163, 2018 10.1515/acro-2018-0010

Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 Bird ringing report for Slovenia in 2017 and short overview of colour ringing in the period of 2012–2017

Al Vrezec, Dare Fekonja

Prirodoslovni muzej Slovenije, Prešernova c. 20, p.p. 290, SI–1001 Ljubljana, Slovenija, e–mail: [email protected], [email protected]

In 2017, the Slovenian bird ringing scheme concluded 90 years of continuous ringing in the country. In 2017, we collected data on 176 bird species. We ringed 79,886 birds of 164 species, recorded 177 recoveries of birds ringed in Slovenia and found abroad, 295 foreign recoveries in Slovenia and 2,209 local recoveries. The most ringed species were the Blackcap Sylvia atricapilla and Great Tit Parus major and, among pulli in the nest, the Great Tit, White Stork Ciconia ciconia and Barn Swallow Hirundo rustica. In 2017, 12 colour ringing schemes were active in Slovenia. In the 2012-2017 period, the number of recoveries of birds ringed in Slovenia and found abroad increased significantly due to colour ringing, especially regarding the waterbirds. With colour ringing, the likelihood of recoveries is considerably greater (75.20 ± 91.36 recoveries per 100 ringed birds) than with metal ringing only (0.11 ± 0.08 recoveries per 100 ringed birds). Among local recoveries, the most frequent were the Mute Swans Cygnus olor and Common Terns Sterna hirundo, and among foreign recoveries the Black-headed Gulls Chroicocephalus ridibundus predominated. In 2017, the first Broad-billed Sandpiper Calidris falcinellus was ringed in Slovenia (Sečovlje salinas), and additional three rare species were ringed as well: the Yellow-browed Warbler Phylloscopus inornatus (Ljubljansko barje), Paddyfield Warbler Acrocephalus agricola (Ljubljansko barje) and Little Bunting Emberiza pusilla (Šentrupert).

Key words: bird ringing, recoveries, Slovenia, 2017, colour ringing Ključne besede: obročkanje, najdbe, Slovenija, 2017, barvno obročkanje

1. Uvod (PMS) tudi posebej obeležili z dogodki (Vrezec & Fekonja 2017a, Petras & Vrh Vrezec 2018) Leto 2017 je bilo za slovensko obročkovalno in s prevodom EURINGove knjižice (Baillie dejavnost jubilejno, saj smo sklenili 90. sezono & Kestenholz 2017). Leta 1926 je bil namreč v neprekinjene obročkovalne dejavnosti v Sloveniji Ljubljani ustanovljen Ornitološki observatorij, (Gregori 2017), ki smo jo v okviru Slovenskega ki je že v drugem letu svojega delovanja, torej leta centra za obročkanje ptičev (SCOP) pri Kustodiatu 1927, začel z organizirano dejavnostjo obročkanja za vretenčarje Prirodoslovnega muzeja Slovenije ptic v raziskovalne namene pod vodstvom takratne 129 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

gonilne sile obročkovalske in ornitološke dejavnosti 2. Metode na Slovenskem, dr. Jankom Ponebškom (Gregori 2017). Pred 90 leti pa ptic niso začeli le obročkati, Leta 2017 je bilo v okviru obročkovalne sheme pač pa beležiti podatke o njihovih opazovanjih SCOP dejavnih 93 obročkovalcev. Ti so imeli na tako, da so k delu poleg profesionalnih ornitologov podlagi dovoljenja za obročkanje ptic št. 35601- pritegnili tudi ljubitelje ptic, ki so danes organi- 10/2010-6, ki ga je PMS-u izdala Agencija RS za zirani v okviru leta 1979 nastalega Društva za okolje (ARSO), s PMS sklenjene letne pogodbe o opazovanje in proučevanje ptic Slovenije (DOPPS- sodelovanju. Obročkovalci so na terenu uporabljali BirdLife Slovenia). Pričujoče poročilo za leto 2017 različne pristope lova in obročkanja ptic glede na je tako še en prispevek k dolgi tradiciji obročkanja obstoječe obročkovalne sheme (Vrezec & Fekonja prosto živečih ptic pri nas v raziskovalne namene 2017b). Večji del obročkovalne dejavnosti so opravili in dopolnjuje predhodna obročkovalska poročila prostovoljni zunanji sodelavci Prirodoslovnega (Ponebšek 1934, Božič 1980a, b, c, 1981, 1982, muzeja Slovenija, manjši del pa je bil opravljen v 1985, Šere 2009, Vrezec et al. 2013, 2014, 2015, okviru raziskovalnih projektov in monitoringa na Vrezec & Fekonja 2016, 2017b). V prispevku različnih slovenskih inštitucijah, ki se ukvarjajo z podajamo pregled števila obročkanih ptic v Sloveniji ornitološkimi raziskavami: Društvo za opazovanje po vrstah v letu 2017, pregled redkih vrst, ugotovl- in proučevanje ptic Slovenije (DOPPS), Krajinski jenih v okviru slovenske obročkovalske sheme, ter park Sečoveljske soline (KPSS), Nacionalni inštitut pregled razrešenih domačih ter tujih najdb za leto za biologijo (NIB) in Prirodoslovni muzej Slovenije 2017 ter dopolnila za leti 2015 in 2016 (dopolnilo (PMS). V letu 2017 je bilo dejavnih tudi 12 shem poročil Vrezec & Fekonja 2016, 2017b). za barvno obročkanje (tabela 1). S sledilnimi

Tabela 1: Pregled barvnih obročkovalnih shem, ki so potekale v Sloveniji v letu 2017 v okviru različnih inštitucij: Društvo za opazovanje in proučevanje ptic Slovenije (DOPPS), Krajinski park Sečoveljske soline (KPSS) in Prirodoslovni muzej Slovenije (PMS)

Table 1: An overview of active colour ringing schemes in Slovenia in 2017 conducted by different organizations: DOPPS–BirdLife Slovenia (DOPPS), Sečovlje Salina Nature Park (KPSS), and Slovenian Museum of Natural History (PMS)

Slovensko ime/ Latinsko ime/ Barvni obroček/ Kraj obročkanja/ Vodja sheme/ Inštitucija/ Slovene name Scientific name Colour ring Ringing site Coordinator Institution rdeč nožni obroček s kodo Labod grbec Maribor, Zbilje Dare Fekonja PMS Cygnus olor / red coded legring Bela štorklja Ciconia ciconia ELSA Slovenija Damijan Denac DOPPS beli nožni obroček s kodo Sabljarka Recurvirostra Sečoveljske soline Iztok Škornik KPSS avosetta / white coded legring kombinacija nožnih barvnih obročkov/ Mali deževnik Charadrius Drava Luka Božič DOPPS dubius combination of uncoded legrings Beločeli bel nožni obroček s kodo / Charadrius Sečoveljske soline Iztok Škornik KPSS deževnik alexandrinus white coded legring beli nožni obroček s kodo Borut Rečni galeb Chroicocephalus Ptujsko jezero PMS ridibundus / white coded legring Štumberger bel nožni obroček s kodo / Mala čigra Sternula Sečoveljske soline Iztok Škornik KPSS albifrons white coded legring bel in moder nožni Sečoveljske Navadna čigra Sterna hirundo obroček s kodo / white and soline, Iztok Škornik KPSS blue coded legring Škocjanski zatok 130 Acrocephalus 39 (178/179): 129–163, 2018

Slovensko ime/ Latinsko ime/ Barvni obroček/ Kraj obročkanja/ Vodja sheme/ Inštitucija/ Slovene name Scientific name Colour ring Ringing site Coordinator Institution črn nožni obroček s kodo / Ljubljana z Postovka Falco Dare Fekonja PMS tinnunculus black coded legring okolico kombinacija nožnih Veliki barvnih obročkov / Lanius Ljubljansko barje Dare Fekonja PMS srakoper excubitor combination of uncoded legrings bel nožni obroček s kodo / Kavka Coloeus Vrhnika Dare Fekonja PMS monedula white coded legring Planinska moder nožni obroček s Pyrrhocorax Gorenjska Dare Fekonja PMS kavka graculus kodo / blue coded legring napravami smo v letu 2017 sledili premikom kozač Leta 2017 smo v gnezdih obročkali največ Strix uralensis z napravo GPS-GSM (NIB). mladičev velikih sinic Parus major (18,2 %), belih štorkelj Ciconia ciconia (14,4 %) in kmečkih lastovk 3. Rezultati in diskusija Hirundo rustica (12,3 %), nad 100 pa smo obročkali še mladiče poljskih vrabcev Passer montanus (tabela 3.1. Pregled obročkovalne dejavnosti 3). Pri obročkanju odraslih oziroma doraslih ptic smo v večji meri obročkali črnoglavke Sylvia Leta 2017 je bilo obročkanih 79.886 ptic 164 vrst atricapilla (18,6 %) in velike sinice (10,0 %), nad (tabela 2), od tega je bilo v gnezdih obročkanih 1000 obročkanih osebkov pa je bilo še čižkov Spinus 1.400 mladičev 43 vrst. spinus, bičjih trstnic Acrocephalus schoenobaenus,

Tabela 2: Pregled števila obročkanih ptic (mladičev v gnezdu in doraslih ptic zunaj gnezda) in števila najdenih obročkanih ptic v Sloveniji v letu 2017. Tuje najdbe so na tujem obročkane ptice, zabeležene v Sloveniji, domače najdbe so v Sloveniji obročkane ptice, ponovno ujete v tujini, in lokalne najdbe so v Sloveniji obročkane in ponovno v Sloveniji zabeležene ptice.

Table 2: Birds ringed in Slovenia (nestlings and full-grown birds outside nest) and recoveries of ringed birds in 2017. Foreign recoveries in SLO are birds ringed abroad and later recorded in Slovenia, SLO recoveries abroad are birds ringed in Slovenia and later recorded abroad. Local recoveries are birds ringed in Slovenia and recaptured or resighted in Slovenia.

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Labod grbec Cygnus olor 92 92 20 76 190 Siva gos Anser anser 1 Kreheljc Anas crecca 2 2 Mlakarica Anas platyrhynchos 25 25 1 Čopasta črnica Aythya fuligula 1 Veliki žagar Mergus merganser 4 4 Prepelica Coturnix coturnix 54 54 2 Fazan Phasianus colchicus 1 1 131 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Črna štorklja Ciconia nigra 1 Bela štorklja Ciconia ciconia 202 202 5 5 5 Čapljica Ixobrychus minutus 11 11 1 Velika bela čaplja Ardea alba 5 Žličarka Platalea leucorodia 1 Kormoran Phalacrocorax carbo 4 Vranjek Phalacrocorax 3 aristotelis Rjavi škarnik Milvus milvus 1 Skobec Accipiter nisus 16 16 Kanja Buteo buteo 2 2 Mokož Rallus aquaticus 23 23 1 Kosec Crex crex 15 15 2 Grahasta tukalica Porzana porzana 15 15 Mala tukalica Porzana parva 10 10 Zelenonoga tukalica Gallinula chloropus 3 3 Žerjav Grus grus 1 Sabljarka Recurvirostra avosetta 1 1 1 Priba Vanellus vanellus 3 3 Mali deževnik Charadrius dubius 44 8 52 76 Beločeli deževnik Charadrius 3 3 1 14 alexandrinus Komatni deževnik Charadrius hiaticula 4 4 Mali prodnik Calidris minuta 5 5 Temminckov prodnik Calidris temminckii 2 2 Spremenljivi prodnik Calidris alpina 5 5 Ploskokljunec Calidris falcinellus 1 1 Puklež Lymnocryptes minimus 1 1 Kozica Gallingo gallinago 9 9 Sloka Scolopax rusticola 1 1 Rdečenogi martinec Tringa totanus 1 1 Zelenonogi martinec Tringa nebularia 9 9 2 Pikasti martinec Tringa ochropus 12 12 Močvirski martinec Tringa glareola 17 17 1 Mali martinec Actitis hypoleucos 80 80 1 Rečni galeb Chroicocephalus 40 7 47 163 8 56 ridibundus Sivi galeb Larus canus 2 132 Acrocephalus 39 (178/179): 129–163, 2018

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Rumenonogi galeb Larus michahellis 4 4 8 8 Črnomorski galeb Larus cachinnans 21 Navadna čigra Sterna hirundo 49 1 50 6 29 2 Mala čigra Sternula albifrons 12 12 Domači golob Columba livia 3 3 domestica Divja grlica Streptopelia turtur 5 5 1 Turška grlica Streptopelia decaocto 4 43 47 Kukavica Cuculus canorus 4 4 Mali skovik Glaucidium 3 3 passerinum Veliki skovik Otus scops 63 106 169 5 Lesna sova Strix aluco 52 12 64 6 Kozača Strix uralensis 31 4 35 5 Čuk Athene noctua 3 3 1 Koconogi čuk Aegolius funereus 7 11 18 Mala uharica Asio otus 5 5 Podhujka Caprimulgus europaeus 29 29 Hudournik Apus apus 14 6 20 1 Vodomec Alcedo atthis 174 174 43 Čebelar Merops apiaster 100 100 2 15 Smrdokavra Upupa epops 9 7 16 Vijeglavka Jynx torquilla 258 258 10 Mali detel Dryobates minor 26 26 Srednji detel Dendrocoptes medius 5 5 Veliki detel Dendrocopos major 131 131 9 Črna žolna Dryocopus martius 4 4 Zelena žolna Picus viridis 12 12 Pivka Picus canus 15 15 1 Postovka Falco tinnunculus 11 7 18 1 1 3 Rdečenoga postovka Falco vespertinus 4 4 Rjavi srakoper Lanius collurio 201 201 1 Veliki srakoper Lanius excubitor 15 15 25 Črnočeli srakoper Lanius minor 2 2 Kobilar Oriolus oriolus 11 11 Šoja Garrulus glandarius 32 32 4 Sraka Pica pica 15 15

133 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Planinska kavka Pyrrhocorax graculus 14 14 35 Kavka Coloeus monedula 2 2 Siva vrana Corvus cornix 4 4 8 1 Krokar Corvus corax 1 Menišček Periparus ater 6 2161 2167 59 Čopasta sinica Lophophanes cristatus 6 164 170 7 Močvirska sinica Poecile palustris 459 459 56 Gorska sinica Poecile montanus 73 73 4 Plavček Cyanistes caeruleus 86 3175 3261 2 3 157 Velika sinica Parus major 255 7875 8130 2 2 456 Plašica Remiz pendulinus 233 233 1 2 4 Brkata sinica Panurus biarmicus 2 2 2 Breguljka Riparia riparia 1644 1644 4 180 Kmečka lastovka Hirundo rustica 172 837 1009 2 Skalna lastovka Ptyonoprogne rupestris 4 4 Mestna lastovka Delichon urbicum 38 38 Svilnica Cettia cetti 15 15 1 Brškinka Cisticola juncidis 4 4 Dolgorepka Aegithalos caudatus 684 684 46 Mušja listnica Phylloscopus inornatus 1 1 Hribska listnica Phylloscopus bonelli 5 5 Severni kovaček Phylloscopus trochilus 331 331 1 Vrbji kovaček Phylloscopus collybita 2233 2233 1 2 7 Grmovščica Phylloscopus sibilatrix 431 431 Rakar Acrocephalus 34 459 493 2 1 14 arundinaceus Tamariskovka Acrocephalus 39 39 1 2 melanopogon Bičja trstnica Acrocephalus 4869 4869 16 4 21 schoenobaenus Srpična trstnica Acrocephalus scirpaceus 4515 4515 5 13 11 Močvirska trstnica Acrocephalus palustris 994 994 1 1 16 Plevelna trstnica Acrocephalus agricola 1 1 Kratkoperuti vrtnik Hippolais polyglotta 3 3 Rumeni vrtnik Hippolais icterina 169 169 Kobiličar Locustella naevia 119 119 Rečni cvrčalec Locustella fluviatilis 19 19 2 Trstni cvrčalec Locustella luscinioides 94 94 3 134 Acrocephalus 39 (178/179): 129–163, 2018

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Črnoglavka Sylvia atricapilla 5 14.585 14.590 4 8 161 Vrtna penica Sylvia borin 3519 3519 1 10 Pisana penica Sylvia nisoria 9 9 Mlinarček Sylvia curruca 165 165 1 1 Rjava penica Sylvia communis 331 331 8 Taščična penica Sylvia cantillans 1 1 Žametna penica Sylvia melanocephala 1 1 Rdečeglavi kraljiček Regulus ignicapilla 155 155 5 Rumenoglavi kraljiček Regulus regulus 1631 1631 21 Stržek Troglodytes troglodytes 125 125 1 Brglez Sitta europaea 22 212 234 32 Dolgoprsti plezalček Certhia familiaris 45 45 3 Kratkoprsti plezalček Certhia brachydactyla 28 28 1 Škorec Sturnus vulgaris 38 502 540 3 Kos Turdus merula 15 868 883 3 48 Komatar Turdus torquatus 10 1 11 Brinovka Turdus pilaris 6 6 Vinski drozg Turdus iliacus 32 32 1 Cikovt Turdus philomelos 2 319 321 1 Carar Turdus viscivorus 1 3 4 Sivi muhar Muscicapa striata 9 67 76 2 Taščica Erithacus rubecula 3750 3750 2 4 54 Modra taščica Luscinia svecica 41 41 Veliki slavec Luscinia luscinia 12 12 Slavec Luscinia megarhynchos 228 228 6 Črnoglavi muhar Ficedula hypoleuca 375 375 5 Belovrati muhar Ficedula albicollis 6 3 9 1 2 Šmarnica Phoenicurus ochruros 14 73 87 Pogorelček Phoenicurus 3 76 79 phoenicurus Repaljščica Saxicola rubetra 48 48 Prosnik Saxicola rubicola 7 88 95 9 Kupčar Oenanthe oenanthe 9 5 14 Povodni kos Cinclus cinclus 5 5 10 1 Domači vrabec Passer domesticus 582 582 14 Italijanski vrabec Passer italiae 1 1 1 Poljski vrabec Passer montanus 122 1232 1354 21

135 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Obročkanje / Ringing Najdbe / Finds Domače Tuje v na SLO/ tujem/ Slovensko ime/ Latinsko ime/ mladiči/ ostalo/ skupaj/ Foreign SLO Lokalne/ Slovene name Scientific name nestlings other total in SLO abroad Local Domači vrabec x Passer domesticus x 1 1 poljski vrabec Passer montanus Siva pevka Prunella modularis 4293 4293 2 11 Rumena pastirica Motacilla flava 17 17 2 Siva pastirica Motacilla cinerea 16 16 Bela pastirica Motacilla alba 9 17 26 Drevesna cipa Anthus trivialis 113 113 1 Mala cipa Anthus pratensis 6 6 Vriskarica Anthus spinoletta 5 4 9 Planinski vrabec Montifringilla nivalis 1 1 Ščinkavec Fringilla coelebs 642 642 1 7 Pinoža Fringilla 217 217 montifringilla Dlesk Coccothraustes 182 182 5 coccothraustes Kalin Pyrrhula pyrrhula 290 290 9 Škrlatec Carpodacus erythrinus 10 10 Zelenec Chloris chloris 3 1684 1687 1 2 20 Repnik Linaria cannabina 152 152 Brezovček Acanthis flammea 26 26 Krivokljun Loxia curvirostra 42 42 1 Lišček Carduelis carduelis 1425 1425 1 35 Grilček Serinus serinus 307 307 1 17 Čižek Spinus spinus 5705 5705 1 1 105 Veliki strnad Emberiza calandra 5 5 Rumeni strnad Emberiza citrinella 177 177 16 Skalni strnad Emberiza cia 21 21 Mali strnad Emberiza pusilla 1 1 Plotni strnad Emberiza cirlus 30 30 2 Trstni strnad Emberiza schoeniclus 618 618 3 1 Skupaj/Total 1400 78.486 79.886 296 177 2209

136 Acrocephalus 39 (178/179): 129–163, 2018

srpičnih trstnic A. scirpaceus, sivih pevk Prunella 3.2 Pregled najdb modularis, taščic Erithacus rubecula, vrtnih penic Sylvia borin, plavčkov Cyanistes caeruleus, Leta 2017 smo zabeležili 2682 najdb, od tega je vrbjih kovačkov Phylloscopus collybita, meniščkov bilo 82 % najdb lokalnih. Najdbe obročkanih ptic Periparus ater, zelencev Chloris chloris, breguljk v povezavi s tujino smo zbrali iz 20 držav (tabela Riparia riparia, rumenoglavih kraljičkov Regulus 4), pri čemer smo jih največ zabeležili iz Hrvaške. regulus, liščkov Carduelis carduelis in poljskih Med tujimi najdbami so prevladovali rečni galebi vrabcev (tabela 3). Chroicocephalus ridibundus (55,2 %), nad 10 najdb

Tabela 3: Pregled najpogostejših vrst obročkanih in ponovno zabeleženih ptic v Sloveniji leta 2017. Prikazane so vrste z več kot 1 % obročkanih osebkov v posamezni kategoriji po padajočem številu osebkov. N – število vrst.

Table 3: An overview of the most numerous species among ringed birds and recoveries in Slovenia in 2017. Species with more than 1% of individuals in a given category are shown in decreasing order of abundance. N – number of species.

Zunaj gnezda/ Tuje v SLO/ Foreign Domače na tujem/ V gnezdu / In nest Outside nest in SLO SLO abroad Lokalne/Local (N=43) (N=158) (N=38) (N=28) (N=85) Chroicocephalus Parus major Sylvia atricapilla Cygnus olor Parus major ridibundus Ciconia ciconia Parus major Larus cachinnans Sterna hirundo Cygnus olor Acrocephalus Hirundo rustica Spinus spinus Cygnus olor Riparia riparia scirpaceus Acrocephalus Acrocephalus Chroicocephalus Passer montanus Sylvia atricapilla schoenobaenus schoenobaenus ridibundus Acrocephalus Cyanistes caeruleus Larus michahellis Sylvia atricapilla Cyanistes caeruleus scirpaceus Otus scops Prunella modularis Sterna hirundo Ciconia ciconia Spinus spinus Acrocephalus Strix aluco Erithacus rubecula Ardea alba Charadrius dubius schoenobaenus Sterna hirundo Sylvia borin Ciconia ciconia Erithacus rubecula Periparus ater Chroicocephalus Charadrius dubius Cyanistes caeruleus Acrocephalus scirpaceus Cyanistes caeruleus ridibundus Chroicocephalus Phylloscopus collybita Phalacrocorax carbo Turdus merula Poecile palustris ridibundus Sturnus vulgaris Periparus ater Riparia riparia Parus major Erithacus rubecula Acrocephalus Chloris chloris Sylvia atricapilla Remiz pendulinus Turdus merula arundinaceus Strix uralensis Riparia riparia Emberiza schoeniclus Phylloscopus collybita Aegithalos caudatus Sitta europaea Regulus regulus Chloris chloris Alcedo atthis Turdus merula Carduelis carduelis Merops apiaster Pyrrhocorax graculus Passer montanus Hirundo rustica Carduelis carduelis Acrocephalus Sitta europaea palustris Turdus merula Lanius excubitor Hirundo rustica 137 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

pa smo zabeležili še pri črnomorskem galebu Larus so v letu 2017 po razdaljah zbujali pozornost cachinnans, labodu grbcu Cygnus olor in bičji severni kovaček Phylloscopus trochilus iz 2540 km trstnici (tabela 3). Opazujemo že več let trajajoči oddaljenega okrožja Murmansk v Rusiji (najditelj trend, pri katerem se znatno povečujejo tuje najdbe Dejan Grohar), črnoglavka, ki so jo ponovno pri vrstah, obročkanih z barvnimi obročki, ki jih na spomladanski selitvi ujeli 2386 km daleč v je mogoče prebrati na daljavo. Tako je vključenih Izraelu (obročkovalec Peter Grošelj) in mlinarček več sodelavcev, tudi neobročkovalcev, predvsem Sylvia curruca iz 1582 km oddaljenega kraja na pa pridobivamo podatke o vrstah, ki so bile pri Švedskem (obročkovalec Franc Bračko). Zanimiva nas malo znane oziroma jih še nikoli pri nas nismo je tudi najdba prvoletnega belovratega muharja obročkali, kakršen je črnomorski galeb, ki je bil pri Ficedula albicollis na jesenski selitvi (najditelj nas prvič ugotovljen šele leta 1994 (Rubinič 1997). Brane Lapanja), ki izvira iz najsevernejše gnezdeče Med domačimi najdbami so prevladovale evropske populacije s švedskega otoka Gotland v najdbe barvno obročkanih labodov grbcev (42,9 %) Baltiškem morju (Lundberg 1997). Med najdbami in navadnih čiger (16,4 %), čez deset najdb pa je stopa v ospredje tudi precej najdb srpičnih trstnic iz bilo še bičjih trstnic (tabela 3). Med najdbami Španije, saj je bila med 17 razrešenimi domačimi/

Tabela 4: Pregled držav glede na domače in tuje najdbe obročkanih ptic v letu 2017

Table 4: An overview of countries by the number of birds ringed or recovered in and outside Slovenia in 2017

Domače najdbe na tujem/ Tuje najdbe v SLO/ Država / Country SLO recoveries abroad Foreign recoveries in SLO Skupaj / Total Hrvaška 15 149 164 Madžarska 28 47 75 Poljska 30 31 61 Italija 44 14 58 Češka 13 17 30 Španija 15 4 19 Avstrija 15 3 18 Nemčija 2 7 9 Francija 5 1 6 Švedska 2 4 6 Slovaška 4 1 5 Litva 1 4 5 Belorusija 4 4 Finska 3 3 Rusija 3 3 Švica 2 2 Belgija 1 1 2 Ukrajina 1 1 Turčija 1 1 Izrael 1 1 Skupaj 177 296 473 138 Acrocephalus 39 (178/179): 129–163, 2018

tujimi najdbami večina (71 %) v povezavi s Španijo. ponovno ujetega v Hrašah (najditelj Žan Pečar), ter V Španiji pa očitno prezimujejo tudi pri nas vsaj 7 let staro bičjo trstnico, obročkano leta 2010 gnezdeči rečni galebi, kakršen je primer letošnjega na Švedskem in ponovno ujeto na Vrhniki (najditelj mladiča s Ptujskega jezera, ki so ga pozimi Brane Lapanja). V Evropi do sedaj najstarejši (november, december) opazovali 1440 km daleč v močvirski martinec je dočakal 11 let in 8 mesecev Zaragozi (obročkovalec Borut Štumberger). V letu na Švedskem, najstarejša bičja trstnica pa je bila 11 2017 smo zabeležili dve starostno zanimivi najdbi, let in 10 mesecev iz Danske (Fransson et al. 2017). in sicer vsaj 10 let starega močvirskega martinca Kot posebnost je tudi najdba kadavra prvoletnega Tringa glareola, obročkanega leta 2007 v Italiji in rjavega škarnika Milvus milvus pri Logi pri Vipavi (najditelj Peter Krečič) s satelitskim oddajnikom, ki je bil del češkega programa daljinskega spremljanja rjavih škarnikov in je bil kot mladič v gnezdu 25 obročkan istega leta na Češkem. Ptica je poginila zaradi trka z vozilom in je sedaj shranjena v Prirodoslovnem muzeju Slovenije (akcesijska št. 20 2017/460). Celoten pregled razrešenih domačih in tujih najdb je podan v Dodatku 1. Pri domačih najdbah se podobno kot pri tujih 15 najdbah kaže visok trend povečevanja števila najdb na račun vzpostavljenih barvnih obročkovalskih shem. Med letoma 2012 in 2017 so v Sloveniji 10 delovale barvne obročkovalske sheme za skupno 19 vrst, med njimi v vseh šestih letih za tri vrste, beločelega deževnika , 5 Charadrius alexandrinus navadno čigro in postovko Falco tinnunculus. Glede

Indeks števila najdb/Index of no. recoveries na število domačih najdb so bile v letu 2017 med barvno obročkanimi pticami najmočnejše vodne 0 vrste, labod grbec, rečni galeb in navadna čigra 2012 2013 2014 2015 2016 2017 s skupno 268 domačimi najdbami v letu 2017. Leta / Years Med vrstami, ki jih obročkamo zgolj s kovinskimi Slika 1: Medletne spremembe števila obročkanih obročki, so bile glede na domače najdbe najmočnejše ptic (prikazan je indeks števila, standardiziran glede vrste srpična trstnica, bičja trstnica in črnoglavka s na leto 2012) v obdobju 2012–2017 glede vrste, vključene v barvne obročkovalske sheme (črni stolpci; skupno 25 domačimi najdbami v letu 2017. Glede vključene vrste: labod grbec Cygnus olor, rečni galeb omenjenih šest vrst se število obročkanih ptic ni Chroicocephalus ridibundus, navadna čigra Sterna bistveno spremenilo med letoma 2012 in 2017 hirundo; N=1.506 obročkanih ptic), in vrste, obročkane zgolj s kovinskimi obročki (beli stolpci; vključene vrste: s sicer bistveno večjim letnim odstopanjem pri srpična trstnica Acrocephalus scirpaceus, bičja trstnica pticah, vključenih v barvno obročkanje (slika 1), A. schoenobaenus, črnoglavka Sylvia atricapilla; bistvena razlika pa je pri število domačih najdb, N=132.444 obročkanih ptic). ki pri barvno obročkanih vrstah strmo narašča (slika 2). Z barvnim obročkanjem se namreč število Figure 1: Changes in the number of ringed birds between years (the standardized index according to najdb skokovito poveča s povprečno učinkovitostjo the year 2012 is shown) in the period 2012-2017, 75,20±91,36 najdb/100 obročkanih ptic, medtem taking into account species included in colour ringing ko je zgolj pri obročkanju s kovinskim obročkom schemes (black columns; included species: Mute Swan Cygnus olor, Black-headed Gull Chroicocephalus učinkovitost precej nižja z 0,11±0,08 najdb/100 ridibundus, Common Tern Sterna hirundo; N=1.506 obročkanih ptic. Uvajanje barvnih obročkovalnih ringed birds) and species ringed only with metal shem je zato izredno smiselno, žal pa ni uporabno rings (white columns; included species: Reed za vse vrste zaradi njihove velikosti in načina Warbler Acrocephalus scirpaceus, Sedge Warbler A. schoenobaenus, Blackcap Sylvia atricapilla; življenja ter možnosti branja barvnih obročkov N=132.444 ringed birds) na daljavo. Zaradi tega bo pri večini manjših ptic 139 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

pevk, ki jih označujemo s kovinskimi obročki, to do 3.3. Redke vrste nadaljnjega še vedno edini način označevanja. Med lokalnimi najdbami so v letu 2017 Leta 2017 so obročkovalci poročali o obročkanju prevladovale najdbe velikih sinic (20,6 %), več kot štirih redkih vrst (tabela 5), ki so bile obročkane 100 najdb pa smo zabeležili še pri labodu grbcu, in izpuščene. Prvič je bil v Sloveniji obročkan breguljki, črnoglavki, plavčku in čižku Spinus ploskokljunec Calidris falcinellus (slika 3), ki spinus (tabela 3). je bil ujet v Sečoveljskih solinah med jesensko selitvijo (obročkal Tomaž Mihelič). Med drugimi obročkanimi redkostmi pa sta bili na Ljubljanskem barju ponovno ujeti mušja listnica Phylloscopus inornatus (obročkal Bogdan Vidic) in plevelna trstnica Acrocephalus agricola (tabela 5; obročkal 1,6 Brane Lapanja). Obe vrsti sta bili na Ljubljanskem barju ujeti že v predhodnem letu 2016 (Vrezec & 1,4 Fekonja 2016). Prav tako smo v letu 2017 ponovno

1,2 obročkali malega strnada Emberiza pusilla (slika 4), ki ga je obročkal Jože Gračner. 1 Zahvala: Obročkovalno dejavnost, ki poteka v okviru Slovenskega centra za obročkanje ptic 0,8 pod okriljem Prirodoslovnega muzeja Slovenije (PMS), in dogodke ob 90. obletnici obročkanja 0,6 no. ringed birds ptic v raziskovalne namene v Sloveniji je v letu 2017 podprlo Ministrstvo RS za kulturo. Dejavnost pa ne 0,4 bi bila mogoča brez prostovoljnih in profesionalnih zunanjih sodelavcev PMS, ki so v letu 2017 Indeks števila obročkanih ptic / Index of 0,2 obročkali ptice: Dušan Belingar, Dejan Bordjan, Ivo Božič, Luka Božič, Franc Bračko, Igor Brajnik, 0 Jože Bricelj, Alfonz Colnar, Marjan Debelič, Dušan 2012 2013 2014 2015 2016 2017 Dimnik, Jernej Figelj, Marjan Gobec, Jože Gračner, Leta / Years Dejan Grohar, Peter Grošelj, Vojko Havliček, Slika 2: Medletne spremembe števila domačih najdb Ludvik Jakopin, Marko Jankovič, Tone Jankovič, (prikazan je indeks števila, standardiziran glede Milovan Keber, Branko Koren, Stane Kos, Brane na leto 2012) v obdobju 2012-2017 glede vrste, vključene v barvne obročkovalske sheme (črni stolpci; Lapanja, Ivan Lipar, Anton Lisec, Tomaž Mihelič, vključene vrste: labod grbec Cygnus olor, rečni galeb Jože Nered, Žan Pečar, Miro Perušek, Dušan Chroicocephalus ridibundus, navadna čigra Sterna Petkovšek, Zdravko Podhraški, Mojca Podletnik, hirundo; N=507 najdb) in vrste, obročkane zgolj s kovinskimi obročki (beli stolpci; vključene vrste: Dušan Pogačar, Milan Pustoslemšek, Aljaž Rijavec, srpična trstnica Acrocephalus scirpaceus, bičja trstnica Andrej Sovinc, Željko Šalamun, Dare Šere, Iztok A. schoenobaenus, črnoglavka Sylvia atricapilla; N=101 Škornik, Polde Štricelj, Borut Štumberger, Rudolf najdba) Tekavčič, Tomi Trilar, Andrej Trontelj, Miro Vamberger, Bogdan Vidic, Jani Vidmar, Iztok Vreš, Figure 2: Between-years changes in the number of birds ringed in Slovenia and later recorded abroad (the Davorin Vrhovnik in Ivan Zlobko. Poleg naštetih standardized index according to the year 2012 is shown) obročkovalcev so na center najdbe in opazovanja in the period 2012-2017, taking into account species obročkanih ptic sporočili neobročkovalski included in colour ringing schemes (black columns; included species: Mute Swan Cygnus olor, Black-headed sodelavci: Aleš Alijeski, Gregor Bernard, Vanesa Gull Chroicocephalus ridibundus, Common Tern Sterna Bezlaj, Blaž Blažič, Bojan Bratoz, Peter Černe, hirundo; N=507 recoveries) and species ringed only Damijan Denac, Gregor Domanjko, Matjaž Faris, with metal rings (white columns; included species: Matej Gamser, Iztok Geister, Marijan Govedič, Reed Warbler Acrocephalus scirpaceus, Sedge Warbler A. schoenobaenus, Blackcap Sylvia atricapilla; N=101 Juri Hanžel, Stanko Jamnikar, Vinka Kastelic, recoveries) Katarina Kesič Dimic, Barbara Kink, Dušan 140 Acrocephalus 39 (178/179): 129–163, 2018

Tabela 5: Pregled obročkanih redkih vrst v Sloveniji v letu 2017

Table 5: Rare bird species ringed in Slovenia in 2017

Obroček/ Starost/ Datum/ Kraj/ Obročkovalec/ Foto/ Vrsta/ Species Ring Spol / Sex Age Date Location Ringer Photo Sečoveljske Calidris VC 410 29.8.2017 soline, Tomaž Mihelič Slika 3 falcinellus Portorož Črna vas, Phylloscopus KV 6355 1Y 27.10.2017 Bogdan Vidic da inornatus Ljubljana Verd, Acrocephalus KT 90966 1Y 31.7.2017 Brane Lapanja ne agricola Vrhnika Bistrica, Emberiza KV 33445 F 1Y 13.10.2017 Jože Gračner Slika 4 pusilla Šentrupert

Slika 3: Ploskokljunec Calidris falcinellus, Sečoveljske Slika 4: Mali strnad Emberiza pusilla, Bistrica, soline, Portorož, Slovenija, 29. 8. 2017, obroček VC 410 Šentrupert, Slovenija, 13. 10. 2017, obroček KV 33445 (foto: Tomaž Mihelič) (foto: Jože Gračner)

Figure 3: Broad-billed Sandpiper Calidris falcinellus, Figure 4: Little Bunting Emberiza pusilla, Medvedce, Sečoveljske soline, Portorož, Slovenia, 29 Aug 2017, Pragersko, Slovenia, 13 Oct 2017, ring KV 33445 ring VC 410 (photo: Tomaž Mihelič) (photo: Jože Gračner)

Klenovšek, Stane Kljun, Danilo Kotnik, Simon Povzetek Kovačič, Peter Krečič, Tomaž Kristofič, Branko Kromar, Mirko Kunšič, Bojana Lipej, Valibald V okviru obročkovalne dejavnosti v Sloveniji smo Marič, Peter Maričič, Aleš Marsič, Matija Medved v jubilejnem 90. letu 2017 zbrali podatke o 176 Mlakar, Aljaž Mulej, Franc Nagode, Jure Novak, vrstah ptic. Obročkali smo 79.886 ptic 164 vrst, Štefan Orban, Mirko Primorac, Tosja Pušenjak, zabeležili 177 domačih, 296 tujih in 2209 lokalnih Jože Rak, Bia Rakar, Franc Robič, S. Rudolf, Maks najdb. Največ je bilo obročkanih črnoglavk Sešlar, Laura Sgambita, Nataša Sivec, Vida Slavič, Sylvia atricapilla in velikih sinic Parus major, Robi Šiško, Danila Šraml, Zoran Vidrih, Tjaša med mladiči v gnezdu pa so prevladovale velike Zagoršek, Anton Zalar in Miha Žvan. sinice, bele štorklje Ciconia ciconia in kmečke 141 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

lastovke Hirundo rustica. V letu 2017 je bilo v Petras T., Vrh Vrezec P. (2018): Ob 90. obletnici Sloveniji dejavnih 12 barvnih obročkovalnih shem. obročkanja ptic v Sloveniji. – Svet ptic 24 (1): 42–44. V obdobju 2012-2017 se je število domačih najdb Ponebšek J. (1934): Dosedanji uspehi zavoda. – I. Izvestje Ornitološkega observatorija v Ljubljani, bistveno povečalo na račun barvnega obročkanja, 1926–1933. Kuratorij Ornit. Observatorija v zlasti pri vodnih vrstah. Verjetnost najdbe pri Ljubljani: 26–36. barvnem obročkanju je namreč bistveno večja Rubinič B. (1997): Najdba soimenske podvrste (75,20±91,36 najdb/100 obročkanih ptic) kot zgolj rumenonogega galeba Larus cachinnans cachinnans v pri obročkanju s kovinskim obročkom (0,11±0,08 Sloveniji. – Acrocephalus 18 (85): 167–171. najdb/100 obročkanih ptic). Med domačimi Šere D. (2009): Kratko poročilo o obročkanih ptičih v najdbami so prevladovale najdbe labodov grbcev Sloveniji, 1983–2008. – Scopolia Suppl. 4: 111–174. Vrezec A., Fekonja D., Šere D. (2013): Obročkanje ptic Cygnus olor in navadnih čiger Sterna hirundo, v Sloveniji s pregledom domačih in tujih najdb v letu med tujimi pa rečnih galebov Chroicocephalus 2012. – Acrocephalus 34 (156/157): 49–69. ridibundus. Med redkimi vrstami smo v letu 2017 Vrezec A., Fekonja D., Šere D. (2014): Obročkovalna prvič obročkali ploskokljunca Calidris falcinellus dejavnost in pregled najdb obročkanih ptic v Sloveniji (Sečoveljske soline), sicer pa so bile obročkane še v letu 2013. – Acrocephalus 35 (160/161): 25–58. tri redke vrste, in sicer mušja listnica Phylloscopus Vrezec A., Fekonja D., Denac K. (2015): Obročkanje (Ljubljansko barje), plevelna trstnica ptic v Sloveniji leta 2014 in rezultati prvega inornatus telemetrijskega spremljanja selitvene poti afriške Acrocephalus agricola (Ljubljansko barje) in mali selivke. – Acrocephalus 36 (166/167): 145–172. strnad Emberiza pusilla (Šentrupert). Vrezec A., Fekonja D. (2016): Obročkanje ptic v Sloveniji leta 2015 in pojav velikih krivokljunov 4. Literatura Loxia pytyopsittacus. – Acrocephalus 37(170/171): 177–208. Baillie S., Kestenholz M. (2017): Obročkanje ptic Vrezec A., Fekonja D. (2017a): 90 let organiziranega v raziskovalne namene in za varstvo narave. – obročkanja ptic v raziskovalne namene v Sloveniji: Prirodoslovni muzej Slovenije, Ljubljana. koledar dogodkov. – Prirodoslovni muzej Slovenije, Božič I. A. (1980a): Poročilo o ulovu in obročkanju Ljubljana. ptičev v SRS v letu 1976 in v letih 1927–1976. – Vrezec A., Fekonja D. (2017b): Poročilo o obročkanju Acrocephalus 1 (2): 29–32. ptic v Sloveniji v letu 2016 in pojavljanje mušje Božič I. A. (1980b): Poročilo o ulovu in obročkanju listnice Phylloscopus inornatus v 25 letih v Sloveniji. – ptičev v SRS v letu 1978 in v letih 1927–1976. – Acrocephalus 38 (174/175): 171–202. Acrocephalus 1 (5): 74–78. Božič I. A. (1980c): Poročilo o ulovu in obročkanju Prispelo / Arrived: 7. 12. 2018 ptičev v SRS v letu 1979 in v letih 1927–1979. – Sprejeto / Accepted: Acrocephalus 1 (6): 93–96. 12. 1. 2019 Božič I. A. (1981): Poročilo o ulovu in obročkanju ptičev v Sloveniji v letu 1980 in v letih 1927–80. – Acrocephalus 2 (10): 49–52. Božič I. A. (1982): Poročilo o ulovu in obročkanju ptičev v Sloveniji v letu 1981. – Acrocephalus 3 (11/12): 9–12. Božič I. A. (1985): Poročilo o obročkanju ptičev v Sloveniji v letu 1982. – Acrocephalus 6 (24): 23–25. Fransson T., Jansson L., Kolehmainen T., Kroon C., Wenninger T. (2017): EURING list of longevity records for European birds. –[https:// euring.org/files/documents/EURING_longevity_ list_20170405.pdf], 01/12/2018. Gregori J. (2017): Obročkovalna dejavnost v Sloveniji poteka že 90. leto. – Svet ptic 23 (1): 6–9. Lundberg A. (1997): Collared Flycatcher. 618-619 In: Hagemeijer, E.J.M. & Blair M.J. (eds.): The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. – T & AD Poyser, London. 142 Acrocephalus 39 (178/179): 129–163, 2018

DODATEK 1 / APPENDIX 1

Pregled tujih in domačih najdb obročkanih in ponovno registriranih ptic izven meja Slovenije za leto 2017

Supplementation of an overview of recoveries of birds ringed or found outside Slovenia in 2017

Legenda / Legend:

AD odrasla ptica / adult JUV mlada ptica / juvenile PULL ptica obročkana v gnezdu ali begavec ali nedorasel mladič izven gnezda / nestling (pullus) 1Y prvoletna ptica / first year 2Y drugoletna ptica / second year v kontrolna najdba / control recovery o obroček prebran z daljnogledom ali teleskopom / read by binoculars or telescope + ustreljen ali ubit / shot or killed x ptica najdena mrtva / found dead

Dopolnilo za leto 2015

Rečni galeb Chroicocephalus ridibundus FINLAND PULL 9.6.2015 Hyvinkaa, Uusumaa, FINSKA 60°39'N/24°59'E M. Kallela ST 309201 o 23.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (197dni/1679km)

Rumenonogi galeb Larus michahellis ZAGREB +3Y 15.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 00339 o 9.4.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Basrek (480dni/75km) ZAGREB 4Y 22.3.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 00802 o 6.8.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E RC Slovenija (137dni/75km)

Dopolnilo za leto 2016

Labod grbec Cygnus olor LJUBLJANA ♂ AD 4.1.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LG 375 o 2.3.2016 Murstau Gralla, Steiermark, AVSTRIJA 46°49'N/15°34'E D. Nayer (1153dni/115km) LJUBLJANA ♂ AD 28.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 877 o 29.10.2015 Gbely, Skalica, SLOVAŠKA 48°43'N/17°02'E J. Zanat (274dni/262km) o 29.4.2016 Zahlinice, Pisečny pond, Hodoni, ČEŠKA 48°51'N/17°04'E K. Šimeček (457dni/276km) o 19.9.2016 Hlohovec, Jihomoravsky kraj, ČEŠKA 48°46'N/16°45'E V. Sajfrt (600dni/259km)

Lišček Carduelis carduelis LJUBLJANA ♀ AD 5.1.2013 Ravnica, Nova Gorica, SLOVENIJA 45°59'N/13°42'E D. Belingar AZ 80220 v 28.10.2016 Grunauberg, Almtal, Oberosterreich, AVSTRIJA 47°52'N/03°58'E A. Riezinger (1392dni/210km)

Krivokljun Loxia curvirostra LJUBLJANA ♀ AD 6.4.2012 Resa, Kočevje, SLOVENIJA 45°39'N/15°02'E V. Štolfa E 35548 v 5.10.2016 Saiherbachalm Bad Ischl, AVSTRIJA 47°44'N/13°36'E A. Riezinger (1643dni/256km) 143 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

Bela štorklja Ciconia ciconia RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0047 o 17.8.2016 Podova, Rače, Maribor, SLOVENIJA 46°25'N/15°41'E M. Gamser (52dni/46km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0051 o 17.8.2016 Spodnja Gorica, Rače, Maribor, SLOVENIJA 46°25'N/15°42'E M. Gamser (52dni/47km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0052 o 17.8.2016 Podova, Rače, Maribor, SLOVENIJA 46°25'N/15°41'E M. Gamser (52dni/46km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0055 o 17.8.2016 Spodnja Gorica, Rače, Maribor, SLOVENIJA 46°25'N/15°42'E M. Gamser (52dni/47km)

LETO 2017

Labod grbec Cygnus olor BUDAPEST ♀ 2Y 4.9.2009 Balatonfured, Veszprem, MADŽARSKA 46°58'N/17°53'E P. Szinai HN 919 o 27.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (1210dni/175km) o 28.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Sešlar (2703dni/175km) o 31.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (2706dni/175km) BUDAPEST PULL 12.8.2016 Balatonszarszo, Somogy, MADŽARSKA 46°50'N/17°49'E P. Szinai HK 686 o 16.2.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°10'E L. Božič (188dni/136km) BUDAPEST PULL 24.9.2016 Balatonfured, Veszprem, MADŽARSKA 46°57'N/17°53'E P. Szinai HK 867 o 6.6.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E A. Alijeski (265dni/296km) o 2.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E P. Dolta (312dni/296km) o 7.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E M. Žvan (317dni/296km) o 17.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E M. Žvan (327dni/296km) o 29.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E G. Csontos (339dni/296km) BUDAPEST ♀ 2Y 22.7.2010 Revfulop, Veszprem, MADŽARSKA 46°49'N/17°37'E P. Szinai HW 157 o 17.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (2552dni/140km) BUDAPEST ♀ +3Y 7.7.2015 Osli, Gyor Moson Sopron, MADŽARSKA 47°40'N/17°06'E S. Tatai HT 267 o 7.8.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°10'E L. Božič (762dni/159km) ZAGREB +1Y 17.12.2009 Soderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E L. Jurinović UA 2103 v 16.8.2013 Balatonlelle, MADŽARSKA 46°47'N/17°40'E P. Szinai (1338dni/84km) BUDAPEST 16.8.2013 Balatonlelle, MADŽARSKA 46°47'N/17°40'E P. Szinai HT 532 o 5.6.2014 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E D. Bordjan (1631dni/40km) o 15.11.2015 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E G. Domanjko (2159dni/40km) o 26.5.2017 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E Š. Orban (2717dni/40km) GDANSK ♀ +2Y 29.1.2013 Rz. Wisla, Krakow, POLJSKA 50°03'N/19°55'E A. Budyta AH 3016 o 26.1.2017 Šoštanjsko jezero, Šoštanj, SLOVENIJA 46°22'N/15°03'E A. Mulej (1458dni/545km) PRAHA ♂ 2Y 21.7.2012 Hodonin, Jihomoravsky kraj, ČEŠKA 48°52'N/17°08'E K. Makon LB 7628 o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Z. Karcza (1630dni/280km) ZAGREB AD 8.3.2010 Rijeka, HRVAŠKA 45°20'N/14°27'E A. Radalj UA 2367 o 2.4.2010 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E I. Škornik (25dni/69km) o 7.4.2010 Portorož, SLOVENIJA 45°31'N/13°35'E Slovenija (30dni/71km) o 12.12.2010 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E L. Bembich (279dni/59km) o 18.10.2011 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E W. Stani (589dni/69km) o 24.5.2012 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E I. Škornik (808dni/69km) o 24.2.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E B. Rakar (1084dni/69km) o 15.3.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E B. Rakar (1103dni/69km) o 12.8.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Pršin (1253dni/69km) o 17.2.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E D. Fekonja (1807dni/69km) o 25.2.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Zagoršek (1815dni/69km) o 1.4.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Zagoršek (2581dni/69km) ZAGREB ♂ +2Y 9.2.2010 Varaždin, HRVAŠKA 46°18'N/16°20'E L. Jurinović UA 2471 o 13.2.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°38'E RC Slovenija (369dni/60km) o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Z. Karcza (2523dni/58km) BOLOGNA ♂ 1Y 11.9.2007 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E K. Kravos M 5667 o 11.3.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (2008dni/26km) o 30.7.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2149dni/26km)

144 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

o 6.8.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2156dni/26km) o 6.10.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2217dni/26km) o 7.3..2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2369dni/26km) o 13.3.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2375dni/26km) o 1.10.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2577dni/26km) o 15.4.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (2773dni/26km) o 5.3.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E M. Gamser (3098dni/26km) o 24.5.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3178dni/26km) o 25.7.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3240dni/26km) o 5.8.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3251dni/26km) o 4.10.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E B. Rakar (3311dni/26km) o 4.11.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3342dni/26km) o 6.4.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3495dni/26km) o 13.4.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E B. Bratoz (3502dni/26km) o 8.5.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (3527dni/26km) o 9.6.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3559dni/26km) o 21.6.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3571dni/26km) LJUBLJANA ♂ AD 26.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 105 o 16.1.2016 Bundek, Zagreb, HRVAŠKA 45°50'N/16°00'E S. Hodić (21dni/64km) o 6.12.2017 Jarun, Zagreb, HRVAŠKA 45°47'N/15°56'E L. Taylor (711dni/69km) LJUBLJANA ♀ AD 26.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 107 o 29.12.2017 Adamov, Gbely, SLOVAŠKA 48°44'N/17°02'E P. Stepanek (734dni/273km) LJUBLJANA ♂ AD 29.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E P. Grošelj LA 111 o 23.12.2016 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°14'E A. Pito (360dni/199km) o 19.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E T. Hadarics (387dni/198km) o 20.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E P. Spakovszky (388dni/198km) o 25.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°58'N/17°13'E A. Pellinge (393dni/200km) o 9.2.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E P. Spakovszky (408dni/198km) LJUBLJANA ♂ AD 29.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 115 o 21.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E F. Bračko (23dni/24km) o 22.2.2017 Obere Alte Donau, Wien, AVSTRIJA 48°14'N/16°26'E E. Fritze (421dni/208km) LJUBLJANA ♀ 2Y 8.2.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 121 o 28.3.2016 Pilica Stawy, Slaskie, POLJSKA 50°28'N/19°39'E A. Oruba (49dni/616km) o 1.1.2017 Pilica Stawy, Slaskie, POLJSKA 50°28'N/19°39'E A. Oruba (328dni/616km) o 3.12.2017 Puhulanka, Stawy, Žarnowiec, POLJSKA 50°28'N/19°48'E A. Oruba (664dni/623km) LJUBLJANA 2Y 23.3.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LA 137 o 9.5.2017 Szigetszentmiklos, Pest, MADŽARSKA 47°23'N/19°03'E M. Batari (412dni/273km) LJUBLJANA ♀ 2Y 16.5.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 140 o 28.6.2017 Balatonlelle, Somogy, MADŽARSKA 46°47'N/17°40'E Z. Kerenyi (408dni/259km) o 9.7.2017 Balatonoszod, Somogy, MADŽARSKA 46°49'N/17°47'E L. Katalin (419dni/268km) LJUBLJANA ♀ 2Y 9.10.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 148 o 30.1.2017 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Bordjan (113dni/0km) o 29.3.2017 Zalew Rawski, Rawa Mazowiecka, POLJSKA 51°45'N/20°13'E P. Boguszewski (171dni/752km) o 1.5.2017 Regnow, Lodzkie, POLJSKA 51°44'N/20°23'E P. Boguszewski (204dni/758km) o 24.5.2017 Regnow, Lodzkie, POLJSKA 51°44'N/20°22'E P. Boguszewski (227dni/757km) LJUBLJANA ♀ 2Y 9.10.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 149 o 30.1.2017 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Bordjan (113dni/0km) x 6.7.2017 Szigetszentmiklos, Pest, MADŽARSKA 47°23'N/19°03'E M. Batari (270dni/378km) LJUBLJANA ♂ AD 9.3.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 135 o 28.1.2017 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Darazsi (2152dni/94km) LJUBLJANA ♂ AD 9.3.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 153 o 13.1.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E G. Szabolcs (310dni/93km) o 30.8.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (540dni/93km) o 16.9.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (557dni/93km) o 8.7.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E K. Toth (852dni/93km) o 23.9.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (929dni/93km) o 23.10.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (959dni/93km) o 25.12.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E C. Szilard (1022dni/93km) o 12.2.2017 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E J. Varga (2167dni/93km)

145 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LJUBLJANA ♀ 2Y 9.3.2011 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Grohar LG 184 v 11.8.2015 Stawy Walewice, Lodzkie, POLJSKA 52°05'N/19°42'E R.Wlodarczyk (1616dni/763km) o 13.9.2015 Pokrzywnica, Mlynow, Lodzkie, POLJSKA 52°03'N/19°27'E T. Musial (1649dni/751km) o 24.9.2015 Pokrzywnica, Mlynow, Lodzkie, POLJSKA 52°03'N/19°27'E R. Wlodarczyk (1660dni/751km) o 21.11.2015 Czchow, Malopolskie, POLJSKA 49°48'N/20°39'E S. Mazgaj (1718dni/616km) o 14.1.2017 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E M. Gamser (2138dni/67km) o 18.2.2017 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E T. Romih (2173dni/67km) o 7.6.2017 Moszna, Mazowieckie, POLJSKA 52°10'N/20°45'E P. Strojek (2282dni/811km) LJUBLJANA ♂ AD 6.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 331 o 6.1.2017 Varaždin, HRVAŠKA 46°18'N/16°20'E Z. Karcza (1492dni/58km) LJUBLJANA ♂ AD 6.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 332 o 20.5.2017 Studenka, Moravskoslezsky kraj, ČEŠKA 49°43'N/18°06'E J. Hedrich (1626dni/395km) LJUBLJANA ♂ AD 20.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 352 o 30.12.2014 Klosterneuburg, Niederosterreich, AVSTRIJA 48°17'N/16°20'E C. Roland (740dni/199km) o 7.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (1660dni/296km) o 22.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (1675dni/296km) LJUBLJANA ♀ AD 29.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 370 o 13.1.2015 Hradec Kralove, ČEŠKA 50°13'N/15°50'E J. Vrana (745dni/408km) o 7.2.2017 Pardubice, Pardubicky kraj, ČEŠKA 50°02'N/15°45'E I. Mikšik (1501dni/387km) LJUBLJANA 1Y 6.12.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Ž. Pečar LG 379 o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (760dni/33km) LJUBLJANA 1Y 15.11.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E Ž. Pečar LG 389 o 30.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (257dni/83km) LJUBLJANA ♂ AD 26.11.2012 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 421 o 14.12.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E J. Hanžel (383dni/22km) o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1500dni/136km) LJUBLJANA 1Y 28.12.2012 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 437 o 12.2.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn (776dni/0km) o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1468dni/115km) LJUBLJANA 2Y 2.1.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 442 o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1463dni/33km) LJUBLJANA 2Y 2.1.2013 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E P. Štirn LG 445 o 27.1.2017 Wellersdorfer Bucht, Drau, AVSTRIJA 46°32'N/14°11'E H. Pirker (1486dni/88km) o 4.2.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (1494dni/95km) LJUBLJANA 2Y 22.1.2013 Koseze, Ljubljana, SLOVENIJA 46°04'N/14°28'E P. Štirn LG 463 o 27.8.2016 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°12'E K. Czajowski (1313dni/614km) o 30.9.2016 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°11'E K. Czajowski (1347dni/613km) o 17.3.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1515dni/613km) o 5.5.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°12'E K. Czajowski (1564dni/614km) o 24.5.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1583dni/613km) o 1.6.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1591dni/613km) o 1.7.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1621dni/613km) o 24.7.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1644dni/613km) o 12.11.2017 Zalew Bagry, Krakow, POLJSKA 50°02'N/19°59'E A. Lobodzinska (1755dni/602km) LJUBLJANA 2Y 25.1.2013 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 467 o 15.1.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (1451dni/65km) LJUBLJANA ♂ AD 1.2.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 486 o 18.12.2016 Dabrowa Gornicza, Staw Pogoria 3, POLJSKA 50°21'N/19°12'E A. Oruba (1416dni/586km) o 18.12.2017 Dabrowa Gornicza, Staw Pogoria 3, POLJSKA 50°21'N/19°12'E A. Oruba (1781dni/586km) LJUBLJANA ♀ 2Y 28.2.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E J. Bricelj LG 508 o 27.12.2016 Drau, Rakollach, AVSTRIJA 46°38'N/14°34'E J. Feldner (303dni/55km) o 27.1.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (334dni/50km) LJUBLJANA ♀ AD 25.1.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 554 o 3.12.2017 Stekiny, Warminsko, Mazurskie, POLJSKA 53°48'N/20°11'E G. Pilat (1773dni/867km) LJUBLJANA 2Y 7.5.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 648 o 10.11.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (552dni/562km) o 12.11.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (554dni/562km) o 17.12.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (589dni/562km) o 18.12.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (590dni/562km)

146 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

o 3.2.2015 Januskowice, Krapkowice, POLJSKA 50°23'N/18°08'E J. Nogacki (637dni/545km) o 2.11.2015 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (909dni/562km) o 15.11.2015 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (922dni/562km) o 17.8.2017 Chrzowice, Opolskie, POLJSKA 50°36'N/17°56'E L. Berlik (1563dni/558km) LJUBLJANA ♀ AD 3.10.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 675 o 2.4.2015 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E J. Čejka (546dni/336km) o 2.4.2016 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E P. Zbynek (912dni/336km) o 25.2.2017 Ždar nad Sazavou, Vysočina, ČEŠKA 49°33'N/15°56'E V. Mikule (1241dni/334km) LJUBLJANA 2Y 6.12.2013 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 704 o 29.3.2017 Sosnowiec, Zb. Stawiki, Slaskie, POLJSKA 50°16'N/19°06'E E. Paprzycka (1209dni/596km) LJUBLJANA ♀ AD 3.9.2014 Blejsko jezero, Bled, SLOVENIJA 46°21'N/14°06'E P. Štirn LG 772 o 22.9.2015 Draustausee Feistritz, Selkach, AVSTRIJA 46°32'N/14°05'E J. Bartosch (384dni/20km) o 30.4.2017 Boleraz, Trnava, SLOVAŠKA 48°28'N/17°29'E I. Moncmanova (970dni/347km) LJUBLJANA ♂ AD 26.10.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 790 o 12.11.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (17dni/0km) o 5.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (71dni/0km) o 8.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E R. Wlodarczyk (530dni/640km) o 24.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E M. Kubicki (546dni/640km) o 26.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E T. Janiszewski (548dni/640km) o 9.7.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E S. Wasiak (622dni/640km) o 21.9.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°06'E R. Wlodarczyk (696dni/639km) o 11.6.2017 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E M. Kubicki (959dni/640km) o 25.9.2017 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°06'E R. Wlodarczyk (1065dni/639km) LJUBLJANA ♀ AD 12.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 844 o 28.2.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E D. Fekonja (47dni/0km) o 22.2.2017 Milleniumstover, Donau, Wien, AVSTRIJA 4814'N/1626'E E. Fritze (772dni/196km) LJUBLJANA ♀ AD 15.1.2015 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 848 o 22.2.2017 Obere Alte Donau, Wien, AVSTRIJA 48°14'N/16°26'E E. Fritze (769dni/299km) LJUBLJANA ♂ AD 16.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 867 o 28.2.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E D. Fekonja (43dni/0km) o 22.3.2015 Zb. Pokrzywnica, Opatowek, POLJSKA 51°43'N/18°10'E Z. Hudzia (65dni/602km) o 25.3.2015 Zb. Pokrzywnica, Cofka, POLJSKA 51°43'N/18°10'E Z. Jedrysiak (68dni/602km) o 26.3.2015 Zb. Pokrzywnica, Cofka, POLJSKA 51°43'N/18°10'E Z. Jedrysiak (69dni/602km) o 28.3.2015 Zb. Pokrzywnica, Opatowek, POLJSKA 51°43'N/18°10'E Z. Hudzia (71dni/602km) o 18.9.2015 Zb. Murowaniec, Kozminek, POLJSKA 51°48'N/18°17'E H. Zbigniew (245dni/614km) o 4.10.2015 Zb. Murowaniec, Kozminek, POLJSKA 51°48'N/18°17'E Z. Hudzia (261dni/614km) o 20.1.2016 Kerkaszentkiraly, Zala, MADŽARSKA 46°30'N/16°36'E A. Lelkes (369dni/72km) o 8.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (723dni/604km) o 15.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (730dni/604km) o 21.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (736dni/604km) o 4.2.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E A. Maly (750dni/604km) LJUBLJANA ♂ AD 28.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 873 o 2.2.2016 Koronco, Gyor, Moson, Sopron, MADŽARSKA 47°36'N/17°29'E A. Pito (370dni/180km) o 3.2.2016 Koronco, Gyor, Moson, Sopron, MADŽARSKA 47°36'N/17°29'E A. Pito (371dni/180km) o 19.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E A. Pito (722dni/194km) o 20.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E T. Vizslan (723dni/194km) o 21.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E M. Falaki (724dni/194km) o 23.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E T. Vizslan (726dni/194km) o 27.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°40'N/17°37'E T. Vizslan (730dni/193km) o 11.2.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E K. Lippai (730dni/194km) LJUBLJANA ♀ AD 26.12.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 918 o 2.4.2015 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E J. Čejka (97dni/336km) o 2.4.2016 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E P. Zbynek (463dni/336km) o 25.2.2017 Ždar nad Sazavou, Vysočina, ČEŠKA 49°33'N/15°56'E V. Mikule (792dni/334km) LJUBLJANA ♂ AD 29.11.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 946 o 11.6.2016 Tovačov, Olomoucky kraj, ČEŠKA 49°26'N/17°17'E I. Urinovsky (195dni/342km) o 26.10.2016 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (332dni/33km) o 16.1.2017 Mellach, AVSTRIJA 46°55'N/15°31'E D. Nayer (414dni/42km) o 4.2.2017 Mellach, AVSTRIJA 46°55'N/15°31'E D. Nayer (433dni/42km)

147 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LJUBLJANA 1Y 21.12.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 953 o 4.7.2017 Zaborze stawy, Malopolskie, POLJSKA 49°52'N/18°48E J. Dadela (561dni/526km) LJUBLJANA ♀ AD 21.12.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 955 o 10.11.2017 Rzeka Odra, Krapkowic, POLJSKA 50°28'N/17°59'E M. Kubata (690dni/547km) LJUBLJANA 1Y 28.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 958 o 27.10.2017 Brenndorf, Volkermarkter Stausee, AVSTRIJA 46°38'N/14°35'E W. Petutschnig (669dni/83km) LJUBLJANA ♂ AD 28.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 961 o 22.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (572dni/296km) LJUBLJANA 2Y 13.1.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 966 o 17.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (582dni/83km) LJUBLJANA 2Y 28.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 975 o 9.7.2016 Balatonlelle, Somogy, MADŽARSKA 46°47'N/17°40'E E. Vincze (163dni/155km) o 11.8.2016 Revfulop, Veszprem, MADŽARSKA 46°49'N/17°37'E R. S. Hattyu (196dni/152km) o 17.11.2016 Balatonmariafurdo, Somogy, MADŽARSKA 46°42'N/17°22'E P. Szinai (294dni/131km) o 7.1.2017 Šoderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E Z. Karcza (345dni/102km) o 5.2.2017 Šoderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E P. Szinai (345dni/102km) o 27.5.2017 Balatonfured, Veszprem, MADŽARSKA 46°57'N/17°53'E S. Papp (485dni/175km) o 8.6.2017 Zamardi, Somogy, MADŽARSKA 46°53'N/17°56'E A. Bodor (497dni/177km) o 11.11.2017 Balatonboglar, Somogy, MADŽARSKA 46°46'N/17°38'E G. Szabolcs (653dni/152km) o 31.12.2017 Siofok, Somogy, MADŽARSKA 46°54'N/18°02'E S. Borza (703dni/184km) LJUBLJANA ♂ AD 28.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 986 o 17.11.2017 Jastrzab, zbiornik Poraj, POLJSKA 50°39'N/19°12'E J. Cabak (659dni/524km) LJUBLJANA 2Y 28.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 998 o 12.11.2017 Hulin, Zlinsky kraj, ČEŠKA 49°16'N/17°27'E Š. Jiri (654dni/330km)

Bela štorklja Ciconia ciconia RADOLFZELL PULL 23.6.2013 Gleisdorf, Weiz, Steiermark, AVSTRIJA 47°06'N/15°42'E H. Haar AP821 o 14.7.2017 Berkovci, Ljutomer, SLOVENIJA 46°33'N/16°04'E G. Domanjko (1482dni/67km) BOLOGNA PULL 30.6.2008 Fagagna, Udine, ITALIJA 46°06'N/13°05'E B. Dentesani PA078 o 9.3.2011 Šikole, Pragersko, SLOVENIJA 46°24'N/15°42'E P. Štirn (982dni/204km) o 30.1.2013 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Vogrin (1675dni/203km) o 27.12.2013 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E D. Bordjan (2006dni/203km) o 16.12.2016 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (3091dni/203km) o 4.2.2017 Pragersko, SLOVENIJA 46°23'N/15°40'E D. Bordjan (3141dni/201km) o 8.3.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E F. Bračko (3173dni/203km) SEMPACH PULL 11.6.2003 Altreu, ŠVICA 47°11'N/07°27'E C. Kanzig SA306 o 27.3.2017 Zbure, Šmarješke Toplice, SLOVENIJA 45°54'N/15°16'E J. Vidmar (5038dni/614km) HIDDENSEE PULL 25.6.2016 Spaatz, Havelland, Brandenburg, NEMČIJA 52°42’N/12°17’E RC Nemčija AP90 o 25.5.2017 Pragersko, Maribor, SLOVENIJA 46°24'N/15°43'E D. Bordjan (334dni/742km) LJUBLJANA PULL 7.7.2012 Cirkovce, Maribor, SLOVENIJA 46°23'N/15°43'E F. Bračko H 1906 x 13.5.2017 Mecser, Gyor Moson Sopron, MADŽARSKA 47°47'N/17°28'E P. Kovacs (1771dni/204km) LJUBLJANA PULL 23.6.2016 Mostje, Lendava, SLOVENIJA 46°36'N/16°25'E F. Bračko W217 o 30.5.2017 Odayeri landfill, Istambul, TURČIJA 41°13'N/28°50'E Sebnem (341dni/1158km) LJUBLJANA PULL 26.6.2015 Pernica, Maribor, SLOVENIJA 46°34’N/15°43’E F. Bračko W126 o 19.6.2017 Szecsisziget, Zala, MADŽARSKA 46°34'N/16°36'E G. Szabolcs (724dni/67km) LJUBLJANA PULL 24.6.2017 Tešanovci, Murska Sobota, SLOVENIJA 46°41'N/16°15'E F. Bračko W687 x 7.8.2017 Berzence, Somogy, MADŽARSKA 46°12'N/17°09'E E. Mezei (44dni/87km) LJUBLJANA PULL 23.6.2015 Črešnjice pri Cerkljah, Brežice, SLOVENIJA 45°53'N/15°30'E R. Tekavčič W510 v 8.8.2017 Stara Lubovna, SLOVAŠKA 49°18'N/20°38'E V. Klč (777dni/540km)

Črna štorklja Ciconia nigra PRAHA PULL 13.6.2015 Hlasivo, Tabor, ČEŠKA 49°29'N/14°45'E J. Jahelka BX 20748 o 23.7.2017 Žepovci, Gornja Radgona, SLOVENIJA 46°42'N/15°52'E V. Marič (771dni/320km)

Žličarka Platalea leucorodia PRAHA 1.6.2017 Česke Budejovice, ČEŠKA 49°00'N/14°26'E J. Šimek BX 17533 o 8.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger (37dni/309km) 148 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

Velika bela čaplja Ardea alba BUDAPEST PULL 5.6.2013 Cegled, Pest, MADŽARSKA 47°13'N/19°52'E V. Szenasi 536597 x 3.2.2017 Soteljska cesta, Rogaška Slatina, SLOVENIJA 46°13'N/15°38'E RC Slovenija (1339dni/341km) BUDAPEST PULL 20.5.2017 Lipot, Gyor Moson Sopron, MADŽARSKA 47°51'N/17°27'E S. Tatai 539918 o 5.12.2017 jezero Komarnik, Lenart, SLOVENIJA 46°34'N/15°48'E R. Šiško (199dni/189km) BUDAPEST PULL 23.5.2017 Barbacs, Gyor Moson Sopron, MADŽARSKA 47°38'N/17°19'E E. Gyorig 539966 o 16.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°40'E D. Bordjan (54dni/188km) BUDAPEST PULL 18.5.2017 Balatonszarszo, Somogy, MADŽARSKA 46°49'N/17°49'E P. Szinai 541252 o 16.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°40'E D. Bordjan (59dni/172km) MINSK PULL 22.5.2017 Krasnoslobodskoe, Kopy, Minsk, BELORUSIJA 52°50'N/26°58'E I. Bogdanovich C 00315 o 4.11.2017 Rački ribniki, Rače, Maribor, SLOVENIJA 46°26'N/15°40'E D. Bordjan (166dni/1078km)

Kormoran Phalacrocorax carbo BUDAPEST PULL 21.4.2016 Zalaszabar, Zala, MADŽARSKA 46°39'N/17°08'E P. Szinai SP 01121 o 25.2.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E D. Bordjan (310dni/118km) o 9.6.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (414dni/113km) o 6.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (441dni/100km) x 10.8.2017 Cirkovci, Pragersko, SLOVENIJA 46°24'N/15°44'E T. Kristofič (476dni/111km)

Rečni galeb Chroicocephalus ridibundus ZAGREB +2Y 5.2.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 00137 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1859dni/73km) ZAGREB AD 30.12.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0475 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1522dni/73km) ZAGREB 2Y 30.12.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0487 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1522dni/73km) ZAGREB 2Y 3.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Basrek LA 0814 o 26.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1090dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1459dni/73km) ZAGREB +2Y 3.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0911 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1467dni/73km) o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1473dni/73km) ZAGREB 1Y 5.12.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 7445 o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2244dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2248dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2256dni/73km) ZAGREB 1Y 12.12.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 7689 o 17.2.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (2259dni/82km) ZAGREB 2Y 6.2.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8373 o 24.1.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj (2179dni/178km) ZAGREB +2Y 26.2.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8464 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2192dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2195dni/73km) ZAGREB 2Y 6.3.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8504 o 10.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1465dni/73km) o 27.10.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1696dni/73km) o 4.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E T. Basle (2100dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2187dni/73km) ZAGREB +2Y 6.3.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8511 o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (2177dni/94km) ZAGREB AD 19.11.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8540 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1872dni/73km) ZAGREB 1Y 19.11.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8557 o 1.9.2016 Strunjan, Koper, SLOVENIJA 45°31'N/13°36'E M. Gamser (1748dni/190km) o 2.1.2017 Strunjan, Koper, SLOVENIJA 45°32'N/13°36'E M. Sešlar (1871dni/189km) ZAGREB 2Y 29.1.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 8877 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1866dni/73km) 149 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

ZAGREB +2Y 5.2.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8996 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1848dni/73km) ZAGREB 3Y 17.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 9027 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1453dni/73km) ZAGREB 2Y 26.1.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09374 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1127dni/73km) ZAGREB 2Y 26.1.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09578 o 20.1.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (359dni/73km) o 10.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (408dni/73km) o 27.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (700dni/73km) o 27.1.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (731dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (741dni/73km) o 17.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (752dni/73km) o 19.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (754dni/73km) o 29.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1068dni/73km) o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1073dni/73km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1087dni/94km) o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1088dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1090dni/94km) ZAGREB 2Y 16.2.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09603 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1117dni/73km) ZAGREB +2Y 9.3.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09680 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1096dni/73km) ZAGREB +2Y 9.3.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09724 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1031dni/73km) ZAGREB 2Y 31.1.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 20042 o 29.11.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E P. Grošelj (1055dni/73km) o 8.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2228dni/73km) o 12.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2507dni/73km) o 13.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2508dni/73km) o 29.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2524dni/73km) o 30.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2525dni/73km) o 7.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (2533dni/73km) o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2583dni/73km) ZAGREB 1Y 1.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E M. Martinović LS 00218 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1130dni/94km) ZAGREB 1Y 1.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E M. Martinović LS 00224 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1129dni/73km) ZAGREB AD 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LS 00399 o 24.1.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj (1143dni/178km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj LS 00426 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1179dni/73km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj LS 00483 o 31.12.2014 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (388dni/73km) o 21.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (468dni/73km) o 27.1.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (780dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (790dni/73km) o 1.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (814dni/73km) o 9.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (822dni/73km) o 26.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1084dni/73km) o 13.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1101dni/73km) o 17.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1105dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1149dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1157dni/73km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1166dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1179dni/73km) o 17.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1195dni/73km) o 15.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1438dni/73km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj

150 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LS 00489 o 5.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (789dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (790dni/73km) o 19.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (803dni/73km) o 24.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (808dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1157dni/73km) ZAGREB 1Y 15.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00673 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1116dni/94km) ZAGREB 2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00855 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (352dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (409dni/73km) ZAGREB +2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00897 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (353dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (385dni/94km) ZAGREB +2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00900 o 8.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (326dni/94km) o 12.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (330dni/94km) o 15.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (333dni/94km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (366dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (384dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (385dni/94km) ZAGREB 2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00967 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (353dni/94km) ZAGREB 1Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01009 o 3.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (634dni/73km) o 3.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (664dni/73km) o 4.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (665dni/73km) o 17.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (678dni/73km) o 27.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj (688dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (722dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (730dni/73km) o 12.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E D. Bordjan (735dni/73km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (739dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (752dni/73km) o 15.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1011dni/73km) ZAGREB +2Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01039 o 3.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (664dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (760dni/73km) ZAGREB +2Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01117 o 23.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1019dni/73km) ZAGREB +2Y 8.3.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01509 o 9.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (854dni/73km) ZAGREB AD 29.11.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01719 o 13.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (45dni/93km) o 15.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (47dni/93km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (69dni/73km) o 11.2.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (74dni/94km) o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (403dni/94km) o 31.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (429dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (433dni/94km) ZAGREB 1Y 29.11.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01745 o 4.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (36dni/93km) o 19.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (51dni/93km) o 21.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E F. Bračko (53dni/93km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (433dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (434dni/94km) o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (448dni/94km) ZAGREB 1Y 20.12.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01796 o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (382dni/94km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (394dni/94km)

151 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (395dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (397dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (412dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (413dni/94km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01812 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (428dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01821 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (399dni/73km) ZAGREB 3Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01828 o 3.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (649dni/73km) ZAGREB 1Y 20.12.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01835 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (380dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01893 o 27.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (369dni/94km) o 29.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E F. Bračko (371dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (377dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 8.12.2017 Maribor, SLOVENIJA 46°33'N/15°38'E P. Grošelj (684dni/94km) ZAGREB 2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01918 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (346dni/94km) o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (347dni/94km) o 9.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (351dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 14.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (387dni/94km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02044 o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (14dni/94km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02067 o 18.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (41dni/73km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02299 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (32dni/73km) ZAGREB 2Y 22.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02364 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (35dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (46dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (64dni/73km) o 9.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (77dni/73km) ZAGREB 2Y 22.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02385 o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (13dni/94km) o 18.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (27dni/94km) o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (28dni/94km) ZAGREB +2Y 26.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02952 o 17.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (19dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03055 o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (377dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (402dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03067 o 6.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (103dni/73km) o 15.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (112dni/73km) o 16.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (113dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (410dni/73km) ZAGREB +2Y 21.2.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03311 o 26.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (521dni/73km) ZAGREB 1Y 4.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03650 o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (80dni/94km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03697 o 8.12.2017 Maribor, SLOVENIJA 46°33'N/15°38'E P. Grošelj (355dni/94km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03699 o 26.1.2017 Stjaža, Strunjan, Koper, SLOVENIJA 45°32'N/13°36'E V. Kastelic (39dni/189km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška

152 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LS 03711 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (73dni/73km) o 18.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (90dni/73km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03726 o 25.10.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (311dni/73km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03776 o 11.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (83dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (99dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03835 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (52dni/73km) o 3.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (299dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03848 o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (10dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (12dni/94km) o 31.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (23dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (27dni/94km) o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (45dni/94km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03931 o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (66dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (78dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03957 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (78dni/73km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03959 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (78dni/73km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03963 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (49dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (60dni/73km) o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Hanžel (77dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03973 o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (45dni/94km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03975 o 7.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (303dni/73km) MADRID +3Y 5.3.2010 ZOO Barcelona, ŠPANIJA 41°23'N/02°11'E RC Španija NC14 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2553dni/1227km) BUDAPEST PULL 10.6.2012 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E G. Kovacs 387269 o 18.4.2014 reka Drava, Ormož, SLOVENIJA 46°24'N/16°08'E L. Božič (677dni/128km) o 8.6.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (1459dni/147km) o 15.6.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1831dni/147km) o 26.6.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1842dni/147km) BUDAPEST PULL 13.6.2015 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E G. Kovacs SH 01226 o 19.2.2017 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (617dni/160km) BUDAPEST +1Y 27.9.2015 Szeged, Csongrad, MADŽARSKA 46°18'N/20°08'E A. Domjan SH 01972 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (518dni/327km) BUDAPEST PULL 31.5.2014 Retszilas, Fejer, MADŽARSKA 46°50'N/18°34'E P. Szinai SH 02434 o 5.1.2015 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (219dni/225km) o 6.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (220dni/223km) o 25.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (239dni/223km) o 27.2.2015 reka Drava, Ptuj, SLOVENIJA 46°25'N/15°52'E P. Grošelj (272dni/211km) o 18.3.2016 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (657dni/224km) o 23.10.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik (1241dni/411km) o 31.10.2017 Lucija, Portorož, SLOVENIJA 45°30'N/13°36'E V. Bezlaj (1249dni/410km) BUDAPEST +2Y 2.1.2016 Budapest Xlll., Pest, MADŽARSKA 47°30'N/19°02'E L. Katalin SH 02954 o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (420dni/270km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (424dni/270km) BUDAPEST PULL 28.5.2015 Nagyrada, Zala, MADŽARSKA 46°37'N/17°08'E M. Csaba SH 04107 x 25.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (728dni/99km) BUDAPEST PULL 19.6.2016 Mocsa, Komarom, Esztergom, MADŽARSKA 47°41'N/18°10'E G. Batky SH 05267 o 15.5.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°36'E I. Škornik (330dni/427km) o 1.10.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik (469dni/426km) BUDAPEST PULL 15.6.2017 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E P. Szinai

153 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

SH 05475 x 13.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (28dni/147km) BUDAPEST PULL 14.6.2015 Mocsa, Komarom, Esztergom, MADŽARSKA 47°41'N/18°10'E G. Batky HA 14274 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (626dni/225km) BUDAPEST +2Y 9.3.2014 Sopron, Gyor Moson Sopron, MADŽARSKA 47°39'N/16°36'E T. Hadarics HA 15013 o 12.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1009dni/150km) o 5.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (1064dni/150km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (1075dni/150km) o 19.2.2017 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1078dni/142km) o 8.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°52'E P. Grošelj (1370dni/148km) o 30.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (1392dni/147km) BUDAPEST +2Y 7.4.2013 Sopron, Gyor Moson Sopron, MADŽARSKA 47°39'N/16°36'E T. Hadarics HA 15315 o 7.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1461dni/149km) PRAHA PULL 25.5.2012 Mušov, Breclav, ČEŠKA 48°54'N/16°36'E F. Zicha ES 31029 o 3.2.2014 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (619dni/270km) o 12.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (962dni/270km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (1711dni/281km) PRAHA ♀ 2Y 6.1.2015 Vinohrady, Stredočasky kraj a Praha, ČEŠKA 50°04’N/14°25’E I. Mikšik ET 08153 o 8.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (702dni/402km) o 12.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (706dni/402km) o 16.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (710dni/402km) o 21.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (715dni/402km) o 23.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (717dni/402km) o 27.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (721dni/402km) o 5.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (730dni/402km) PRAHA 1Y 11.9.2012 Litomyšl, Pardubicky kraj, ČEŠKA 49°52’N/16°17’E U. Lubor EX 95423 o 4.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1576dni/371km) GDANSK +3Y 3.1.2016 Zglowiaczka, Wloclawek, Kujawsko, PLJSKA 52°39’N/19°03’E J. Pietrasik FN 36424 o 21.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (353dni/720km) o 23.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (355dni/720km) o 27.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (359dni/720km) o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (369dni/720km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (393dni/729km) GDANSK 1Y 17.11.2016 Staw Rubinowy, Szczecin, POLJSKA 53°22’N/14°39’E L. Borek FS 24247 o 26.12.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (404dni/761km) o 31.12.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (409dni/761km) GDANSK PULL 28.5.2017 Poraj, Slaskie, POLJSKA 50°38’N/19°14’E J. Betleja THE7 o 4.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24’N/15°53’E B. Štumberger (37dni/531km) GDANSK +2Y 15.12.2013 Warszawa, Mokotow, Mazowieckie, POLJSKA 52°10’N/21°03’E M. Sidelnik T3A2 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1126dni/743km) GDANSK +1Y 28.10.2016 ul. Dworcowa, Stargard, POLJSKA 53°20’N/15°01’E L. Borek T4T5 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (150dni/773km) GDANSK +1Y 9.11.2016 ul. Dworcowa, Stargard, POLJSKA 53°20’N/15°01’E L. Borek T6T2 o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (99dni/773km) o 22.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (105dni/755km) GERMANY 18.10.2015 Binnenalster, Hamburg, NEMČIJA 53°33’N/10°00’E RC Nemčija 5419548 o 31.10.2017 Lucija, Portorož, SLOVENIJA 45°30’N/13°36’E V. Bezlaj (744dni/931km) KIEV PULL 6.6.2017 Zdolbuniv, Rivne, UKRAJINA 50°31’N/26°17’E RC Ukrajina J 006836 o 1.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (25dni/892km) LITHUANIA PULL 20.6.2012 Striunos tvenk., Kauno r., LITVA 55°07’N/23°45’E D. Musteikis HA 16909 o 4.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1690dni/1107km) o 5.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1691dni/1107km) LITHUANIA PULL 16.6.2012 Kretuono ež. Didžioji sala, Švenčioniu, LITVA 55°14'N/26°04'E G. Varnas HA 19801 o 20.1.2015 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (948dni/1208km) o 18.1.2016 reka Drava, Maribor, SLOVENIJA 46°33'N/15°38'E F. Bračko (1311dni/1208km) o 4.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1694dni/1207km) o 5.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1695dni/1207km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger 8528 o 3.1.2017 Port de Vilanova, Geltru, Barcelona, ŠPANIJA 41°12'N/01°43'E M. Olive (559dni/1272km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger

154 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

8532 o 14.1.2017 Fare les Oliviers, FRANCIJA 43°34'N/05°12'E E. Durand (570dni/896km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger 8539 o 26.11.2016 C. na Ambrosiana, Milano, ITALIJA 45°25'N/09°12'E A. Nicoli (521dni/528km) o 23.3.2017 Zalaegerszeg, Zala, MADŽARSKA 46°47'N/16°49'E G. Szabolcs (638dni/83km) LJUBLJANA PULL 12.6.2017 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger VT 3 o 16.11.2017 Ejea de los Caballeros, Zaragoza, ŠPANIJA 42°05'N/01°08'W L. Garcia (157dni/1434km) o 14.12.2017 Zaragoza, ŠPANIJA 41°38'N/00°55'W L. Garcia (185dni/1440km) LJUBLJANA PULL 23.6.2017 mali otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E B. Štumberger VT 17 o 7.10.2017 C.Na Ambrosiana, Milano, ITALIJA 45°25'N/09°12'E L. Bonomelli (106dni/528km) LJUBLJANA PULL 13.7.2017 prodnati otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E B. Štumberger VT 24 o 18.10.2017 Foce Del Tronto, Martinsicuro, ITALIJA 42°54'N/13°55'E D. Marrone (97dni/421km) o 25.11.2017 Porto Di Pescara, Abruzzo, ITALIJA 42°28'N/14°14'E A. Antonucci (135dni/458km)

Sivi galeb Larus canus BUDAPEST 2Y 16.3.2013 Gyal, Pest, MADŽARSKA 47°21'N/19°14'E D. Hegedus VR 02470 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1400dni/277km) o 18.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (1404dni/285km)

Rumenonogi galeb Larus michahellis ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01232 o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E J. Hanžel (98dni/75km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01272 o 17.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (150dni/75km) ZAGREB 2Y 12.3.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01932 o 9.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (28dni/75km) o 13.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (62dni/75km) ZAGREB 22.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 02699 o 26.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (185dni/75km) o 8.9.2017 Dragonja vas, Pragersko, SLOVENIJA 46°22'N/15°42'E D. Bordjan (229dni/73km) ZAGREB PULL 28.5.2006 o. Zečevo, o. Krk, HRVAŠKA 45°00'N/14°50'E K. Mikulić PA 19948 o 15.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (3824dni/177km) o 1.8.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (4083dni/177km)

Črnomorski galeb Larus cachinnans BRATISLAVA PULL 17.6.2014 Slanica, Namestovo, SLOVAŠKA 49°25'N/19°30'E S. Oldrich E 4591 o 7.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (1025dni/429km) GDANSK PULL 15.5.2014 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 03P2 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°23'N/15°54'E L. Božič (964dni/461km) GDANSK PULL 26.5.2016 Rz. Wisla, Zastow Karczmiski, POLJSKA 51°15'N/21°51'E L. Bednarz 242P o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (266dni/694km) o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (275dni/694km) GDANSK PULL 12.5.2011 Zb.Kužnica, Dabrowa Gornicza, POLJSKA 50°22'N/19°11'E P. Kmiecik 71P6 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2074dni/504km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°59'E J. Batleja 821P o 30.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (584dni/457km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 921P o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (288dni/459km) o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (288dni/459km) o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°50'E J. Hanžel (305dni/458km) o 29.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (308dni/459km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 971P o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°50'E J. Hanžel (305dni/458km) GDANSK PULL 21.5.2009 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PANB o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°23'N/15°54'E L. Božič (2784dni/484km) GDANSK PULL 21.5.2009 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PAOO o 14.1.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°09'E L. Božič (2795dni/474km) GDANSK PULL 27.5.2010 Zb. Kozielno, Paczkow, POLJSKA 50°29'N/16°58'E J. Betleja 155 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

PDTX o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2436dni/461km) GDANSK PULL 27.5.2010 Zb. Kozielno, Paczkow, POLJSKA 50°29'N/16°58'E J. Betleja PDZH o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2436dni/461km) o 2.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (2443dni/459km) GDANSK +3Y 19.4.2011 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PEAK o 14.1.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°09'E L. Božič (2097dni/474km) GDANSK PULL 25.5.2012 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja PKTN o 8.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1689dni/459km) GDANSK PULL 25.5.2012 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja PLDL o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1728dni/459km) MINSK 17.6.2016 Roof Selitskogo, Minsk, BELORUSIJA 53°49'N/27°41'E RC Belorusija DA 00712 o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (253dni/1173km) MINSK 17.6.2016 Roof Selitskogo, Minsk, BELORUSIJA 53°49'N/27°41'E RC Belorusija DA 00788 o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (271dni/1173km) MINSK PULL 3.7.2014 Gatovo, Minsk, BELORUSIJA 53°47'N/27°40'E RC Belorusija D 00764 o 28.2.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (240dni/1170km) o 5.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (582dni/1170km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (980dni/1170km)

Navadna čigra Sterna hirundo ZAGREB PULL 26.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40346 o 1.8.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (36dni/33km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40835 o 14.7.2017 Stari Grad, Brežice, SLOVENIJA 45°55'N/15°32'E D. Klenovšek (17dni/27km) ZAGREB PULL 12.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40852 o 31.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (34dni/33km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40854 o 14.7.2017 Stari Grad, Brežice, SLOVENIJA 45°55'N/15°32'E D. Klenovšek (17dni/27km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40858 o 30.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (33dni/33km) ZAGREB PULL 12.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40858 o 30.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (18dni/33km) LJUBLJANA PULL 31.5.2011 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32303 o 7.7.2011 Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (37dni/36km) o 27.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43’N/13°33’E S. Candotto (2280dni/26km) LJUBLJANA PULL 31.5.2011 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32310 o 3.7.2011 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (33dni/36km) o 7.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43’N/13°33’E S. Candotto (2168dni/26km) LJUBLJANA PULL 10.6.2011 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°35'E I. Brajnik E 32351 o 28.7.2011 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (48dni/26km) o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (2249dni/46km) o 14.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (2257dni/46km) LJUBLJANA PULL 23.5.2012 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32396 o 23.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1887dni/26km) LJUBLJANA PULL 28.5.2012 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36105 o 13.10.2014 Camargue, Bouches du Rhone, FRANCIJA 43°22'N/04°48'E M. Thibault (868dni/749km) o 30.8.2015 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1189dni/26km) o 15.8.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1540dni/26km) o 21.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1819dni/26km) LJUBLJANA PULL 29.5.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36182 o 31.8.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1190dni/26km) o 7.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1439dni/26km) LJUBLJANA PULL 29.5.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36188 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1502dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj E 36212 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (767dni/26km) LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39761 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (776dni/26km)

156 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39762 o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (804dni/53km) LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39766 o 26.6.2015 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (32dni/26km) o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (776dni/26km) LJUBLJANA PULL 4.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39783 o 26.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (783dni/53km) o 28.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (785dni/53km) o 19.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (807dni/53km) LJUBLJANA PULL 4.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39785 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (766dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39823 o 25.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (753dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39836 o 5.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (763dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39837 o 26.7.2015 Le Salin des Pesquiers, Hyeres, FRANCIJA 43°04'N/06°08'E A. Audevard (53dni/665km) o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (767dni/26km) LJUBLJANA PULL 12.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39844 o 25.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (744dni/26km) LJUBLJANA PULL 18.6.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič E 40240 o 21.8.2014 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (64dni/26km) o 24.8.2014 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (67dni/26km) o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (1145dni/53km) o 7.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (1146dni/53km) o 27.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1166dni/26km) LJUBLJANA PULL 16.6.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 111 o 21.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (35dni/29km) LJUBLJANA PULL 4.7.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 118 o 27.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (23dni/46km) LJUBLJANA PULL 4.6.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 122 o 14.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (71dni/46km) o 19.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (76dni/46km) LJUBLJANA PULL 18.6.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik X 3761 o 28.6.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (741dni/26km) o 27.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1105dni/26km) LJUBLJANA PULL 6.7.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik VX 113 o 23.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (17dni/26km)

Močvirski martinec Tringa glareola OZZANO 2Y 26.7.2007 C. Rossi, Rimini, ITALIJA 44°06'N/12°29'E R. De Carli ZN 39379 v 23.7.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E Ž. Pečar (3650dni/277km)

Beločeli deževnik Charadrius alexandrinus LJUBLJANA ♀ AD 16.5.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik CA 38 o 7.7.2017 Porto Di Lido, Venezia, ITALIJA 45°26'N/12°24'E M. Picone (52dni/94km)

Žerjav Grus grus HIDDENSEE 25.1.2016 Garlitz, Brandenburg, NEMČIJA 52°33'N/12°33'E B. Block BA 033004 o 15.4.2017 Medvedce, Pragersko, SLOVENIJA 46°21'N/15°39'E D. Bordjan (446dni/724km)

Siva gos Anser anser BUDAPEST PULL 8.6.2016 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°41'N/16°51'E G. Kovacs SP 00116 o 5.2.2017 Renče, Ajdovščina, SLOVENIJA 45°53'N/13°39'E S. Kovačič (242dni/315km)

157 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

Čopasta črnica Aythyla fuligula PRAHA ♀ AD 9.7.2016 Frahelž, Jihočesky kraj, ČEŠKA 49°07'N/14°44'E P. Musil CX 3242 o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (213dni/314km)

Rjavi škarnik Milvus milvus PRAHA PULL 8.6.2017 Mikulov, ČEŠKA 48°47'N/16°40'E M. Hynek CT 793 x 30.10.2017 Log pri Vipavi, Vipava, SLOVENIJA 45°52'N/13°56'E P. Krečič (144dni/384km)

Divja grlica Streptopelia turtur LJUBLJANA AD 14.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E R. Tekavčič T 29705 + 2.9.2017 La Magione, Chiusdino, Siena, ITALIJA 43°12’N/11°08’E A. Bortone (384dni/320km)

Čebelar Merops apiaster LJUBLJANA 1Y 12.9.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E Ž. Pečar X 3807 v 19.7.2016 Salzlandkreis, Sachsen, Anhalt, NEMČIJA 51°42'N/11°49'E M. Harz (311dni/705km) v 18.7.2017 Salzlandkreis, Sachsen, Anhalt, NEMČIJA 51°42'N/11°49'E M. Harz (675dni/705km) LJUBLJANA 1Y 14.9.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E J. Bricelj X 3834 v 14.7.2017 Anhalt-Bitterfeld, Sachsen-Anhalt, NEMČIJA 51°41'N/11°51'E M. Harz (669dni/703km)

Postovka Falco tinunculus BUDAPEST PULL 20.5.2017 Pomaz, Pest, MADŽARSKA 47°39'N/19°02'E C. Spilak HA 29185 x 2.10.2017 Pirmane 4, Cerknica, SLOVENIJA 45°50'N/14°28'E A. Zalar (135dni/402km) LJUBLJANA ♂ 2Y 6.5.2015 Kleče, Ljubljana, SLOVENIJA 46°05'N/14°29'E D. Fekonja K 1021 o 15.6.2015 Žale, Ljubljana, SLOVENIJA 46°04'N/14°31'E D. Fekonja (40dni/3km) o 14.4.2017 Csanyoszro, Baranja, MADŽARSKA 45°53'N/17°54'E A. Meiszterics (709dni/265km)

Plavček Cyanistes caeruleus SEMPACH ♂ 1Y 27.10.2016 Lauwil, Baselland, ŠVICA 47°22'N/07°39'E S. Hohl B 543477 v 8.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (346dni/530km) GDANSK ♂ 1Y 28.9.2017 Kaliszany Kolonia, POLJSKA 51°04'N/21°47'E A. Aftyka K6T 6971 v 21.10.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš (23dni/689km) LJUBLJANA ♂ AD 2.12.2015 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš AC 89434 x 1.3.2017 Zduny, Kujawsko Pomorskie, POLJSKA 53°08'N/19°32'E W. Grochowalski (455dni/802km) LJUBLJANA AD 13.10.2014 Prelesje, Mirna, SLOVENIJA 45°57’N/15°06’E J. Gračner AC 56717 v 15.10.2017 Ventes ragas, Šilutes, LITVA 55°20'N/21°11'E V. Eigirdas (1098dni/1127km) LJUBLJANA 1Y 26.10.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik AH 7129 v 12.11.2017 Plesivec, Rožnava, SLOVAŠKA 48°33’N/20°24’E M. Olekšak (748dni/605km)

Velika sinica Parus major PRAHA ♂ AD 25.9.2016 Horni Nemči, Zlinsky kraj, ČEŠKA 48°56'N/17°38'E P. Kunčik N 774019 v 24.10.2017 Langusova 20, Ljubljana, SLOVENIJA 46°02'N/14°30'E S. Kos (394dni/399km)

GDANSK ♂ AD 29.9.2016 Siemianowka, Narewka, POLJSKA 52°54'N/23°51'E P. Kokocinski K7K 7100 v 30.10.2017 Preradovićeva 6, Ljubljana, SLOVENIJA 46°04'N/14°31'E T. Trilar (396dni/1014km) LJUBLJANA ♂ AD 5.2.2016 Spodnje Radvanje, Maribor, SLOVENIJA 46°32'N/15°37'E F. Bračko AC 80212 v 8.1.2017 Glogow Malopolski, Podkarpackie, POLJSKA 50°09'N/21°57'E J. Wozniak (338dni/616km) LJUBLJANA ♀ 1Y 1.10.2017 Ig, Ljubljana, SLOVENIJA 45°58'N/14°33'E B. Vidic AH 71329 v 22.11.2017 Bertiolo, Codroipo, ITALIJA 45°56'N/13°01'E M. Giordano (52dni/119km)

Plašica Remiz pendulinus PRAHA 1Y 27.7.2017 Pohorelice, Jihomoravsky kraj, ČEŠKA 48°57'N/16°32'E I. Frohlich J 99999 v 9.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (74dni/372km) LJUBLJANA 1Y 22.9.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš 158 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

AH 67435 v 18.11.2017 Codevigo, Padova, ITALIJA 45°17'N/12°08'E L. Sattin (57dni/337km) LJUBLJANA 1Y 4.11.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič AH 81841 v 18.11.2017 Codevigo, Padova, ITALIJA 45°17'N/12°08'E L. Sattin (14dni/194km)

Brkata sinica Panurus biarmicus BUDAPEST ♀ 1Y 4.7.2017 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°40'N/16°49'E S. Mogyorosi K 819632 v 2.11.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič (121dni/333km) BUDAPEST ♂ 1Y 4.7.2017 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°40'N/16°49'E S. Mogyorosi K 819633 v 2.11.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič (121dni/333km)

Kmečka lastovka Hirundo rustica LJUBLJANA JUV 10.7.2017 Požeg, Pragersko, SLOVENIJA 46°25'N/15°39'E I. Vreš KV 26534 v 6.8.2017 Keszthely, Zala, MADŽARSKA 46°42'N/17°14'E J. Varga (27dni/125km) LJUBLJANA 1Y 13.9.2016 Sečovelske soline, Portorož, SLOVENIJA 45°28'N/13°37'E P. Grošelj KT 34025 x 26.6.2017 Carbonaia, Viscone, Udine, ITALIJA 45°56'N/13°22'E F. Barbarino (286dni/55km)

Breguljka Riparia riparia ZAGREB 1Y 31.8.2014 Vransko jezero, Pakoštane, HRVAŠKA 43°53'N/15°33'E T. Blažev BJ 50110 v 14.6.2016 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E R. Tekavčič (653dni/257km) v 22.6.2016 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E Ž. Pečar (661dni/257km) v 20.6.2017 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E Ž. Pečar (1024dni/257km) ZAGREB 1Y 19.6.2016 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E T. Blažev BJ 77316 v 3.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (379dni/28km) ZAGREB AD 19.6.2016 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E T. Blažev BJ 77256 v 3.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (379dni/28km) ZAGREB AD 25.6.2013 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E D. Leiner BH 13876 v 9.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (1475dni/28km)

Belovrati muhar Ficedula albicollis STOCKHOLM PULL 17.6.2017 Pankar, Grotlingbo, Gotlands Lan, ŠVEDSKA 57°08'N/18°22'E RC Švedska DA 77268 v 26.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (101dni/1272km)

Severni kovaček Phylloscopus trochilus MOSKVA 1Y 24.8.2017 Kandalakshskiy, Luvenga, Murmansk, RUSIJA 67°06'N/32°46'E RC Rusija VF 75768 v 22.9.2017 Zeleni rob, Velika planina, SLOVENIJA 46°18'N/14°38'E D. Grohar (29dni/2540km)

Vrbji kovaček Phylloscopus collybita MOSKVA 14.10.2017 Zelenogradskiy, Rybachiy, Kaliningrad, RUSIJA 55°05'N/20°44'E RC Rusija VP 11466 v 28.10.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°00'N/14°30'E D. Šere (14dni/1100km) LJUBLJANA 1Y 16.10.2016 Parte, Ig, Ljubljana, SLOVENIJA 45°58'N/14°33'E S. Kos KV 9882 v 25.12.2016 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (70dni/949km) v 8.1.2017 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (84dni/949km) v 15.1.2017 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (91dni/949km)

Svilnica Cettia cetti LJUBLJANA 1Y 18.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E T. Mihelič AH 1844 x 7.1.2017 San Dona' Di Piave, Venezia, ITALIJA 45°39'N/12°36'E F. Panzarin (142dni/82km)

Rakar Acrocephalus arundinaceus HIDDENSEE 1Y 31.7.2016 Sawall, Oder, Spree, Brandenburg, NEMČIJA 52°04'N/14°12'E RC Nemčija OB 91562 v 8.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (404dni/678km) ZAGREB AD 5.8.2017 Vransko jezero, Pakoštane, HRVAŠKA 43°56'N/15°30'E B. Ende CA 121591 v 6.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (1dan/245km) 159 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

LJUBLJANA 1Y 27.7.2016 Ormož, SLOVENIJA 46°25'N/16°10'E I. Vreš CL 24554 v 30.4.2017 Biskupice, Zlinsky kraj, ČEŠKA 49°05'N/17°43'E J. Sviečka (277dni/318km)

Srpična trstnica Acrocephalus scirpaceus ARANZADI AD 1.5.2017 Castello d'Empuries, Barracot, Girona, ŠPANIJA 42°12'N/03°06'E S. Will 2Y 50130 v 11.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (102dni/986km) MADRID AD 14.5.2017 Tancat De L'illa, Sueca, Valencia, ŠPANIJA 39°16'N/00°17'W RC Španija 5L 27157 v 2.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (80dni/1403km) MADRID 1Y 16.9.2016 Tancat De la Pipa, Valencia, ŠPANIJA 39°21'N/00°21'W RC Španija 4L 09974 v 15.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E Ž. Pečar (333dni/1402km) PARIS 1Y 9.9.2015 Rousty, Arles, Bouches du Rhone, FRANCIJA 43°40'N/04°38'E RC Francija 7312155 v 16.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E D. Pogačar (707dni/803km) PRAHA 1Y 29.6.2017 Mutenice, Jihomoravsky kraj, ČEŠKA 48°54'N/17°03'E K. Jaroslav TU 17254 v 22.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (54dni/361km) LJUBLJANA 1Y 14.8.2011 Sečoveljke soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KS 29996 v 11.4.2017 Barracot, Girona, ŠPANIJA 42°12'N/03°06'E F. Broto (2067dni/917km) LJUBLJANA 1Y 6.8.2015 Sečoveljke soline, Portorož, SLOVENIJA 45°28'N/13°37'E I. Škornik KT 88117 v 29.4.2017 Gabbinello Di Sopra, Firenze, ITALIJA 43°59'N/11°17'E G. Battaglia (632dni/247km) LJUBLJANA 1Y 23.9.2015 Št. Jurij, Grosuplje, SLOVENIJA 45°55'N/14°37'E T. Mihelič KV 5116 v 29.4.2017 Barranco Carraixet, Valencia, ŠPANIJA 39°30'N/00°20'W R. Vera (584dni/1411km) LJUBLJANA 1Y 8.8.2015 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič KT 15612 x 5.5.2017 Sant Quirze de Bosora, Barcelona, ŠPANIJA 46°06’N/02°13’E O. Car (636dni/940km) LJUBLJANA AD 6.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10392 v 21.8.2017 El Coronil, Sevilla, ŠPANIJA 37°01’N/05°42’W F. Lopez (15dni/1931km) LJUBLJANA AD 8.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš KV 26933 v 25.8.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E C. Abella (17dni/1387km) v 26.8.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E C. Abella (18dni/1387km) LJUBLJANA 1Y 21.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E V. Havliček KS 95393 v 1.9.2017 Biskupice, Zlinsky kraj, ČEŠKA 49°05'N/17°43'E J. Sviečka (376dni/507km) LJUBLJANA 1Y 12.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E Ž. Pečar KV 4750 v 3.9.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E P. Pares (22dni/1255km) LJUBLJANA 1Y 8.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10470 v 7.9.2017 Barriada Hipolito, Pizarra, Malaga, ŠPANIJA 36°45'N/04°42'W RC Španija (30dni/1880km) LJUBLJANA 1Y 18.8.2016 Sečovlje, Portorož, SLOVENIJA 45°28'N/13°37'E T. Mihelič KV 5334 v 9.9.2017 Castello d'Empuries, Girona, ŠPANIJA 42°12'N/03°06'E R. Calderon (387dni/917km) LJUBLJANA 1Y 18.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10939 v 1.10.2017 Illa de Buda, Sant Jaume d'Enveja, ŠPANIJA 40°42'N/00°49'E D. Bigas (13dni/1235km) LJUBLJANA 1Y 3.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja KT 93800 v 19.10.2017 Mas Thibert, Marais du Vigueirat, FRANCIJA 43°29'N/04°47'E M. Gregoire (16dni/800km)

Močvirska trstnica Acrocephalus palustris BRUSSELS 1Y 1.8.2017 Waremme, Liege, BELGIJA 50°42'N/05°16'E RC Belgija 14893798 v 14.8.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič (13dni/853km) LJUBLJANA 1Y 13.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KT 17515 v 28.7.2017 Solre Sur Sambre, Hainaut, BELGIJA 50°19'N/04°10'E RC Belgija (349dni/886km)

Bičja trstnica Acrocephalus schoenobaenus STOCKHOLM 1Y 28.7.2010 Varmlands Lan, Skare, Hynboholm, ŠVEDSKA 59°28'N/13°23'E RC Švedska CG 81782 v 26.7.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (2555dni/1502km) STOCKHOLM 1Y 8.8.2017 Ukno, Lofta, Kalmar Lan, ŠVEDSKA 57°55'N/16°33'E RC Švedska DA 42631 v 19.8.2017 Brest, Ig, Ljubljana, SLOVENIJA 45°59'N/14°29'E J. Bricelj (11dni/1334km) STOCKHOLM 1Y 15.9.2017 Kalmar lan, Lofta, Ukno, ŠVEDSKA 57°55'N/16°33'E RC Švedska DB 19983 v 24.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E Ž. Pečar (9dni/1398km) FINLAND 1Y 18.8.2017 Espoo, Uusimaa, FINSKA 60°12'N/24°49'E H. Ekblom 804787 H v 30.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (12dni/1701km) FINLAND 1Y 14.8.2017 Tuulos, Kanta Hame, Hame, FINSKA 61°10'N/24°47'E H. Kolunen 885727 H v 9.9.2017 Cerkniško jezero, Cerknica, SLOVENIJA 45°47'N/14°22'E R. Tekavčič (26dni/1838km) 160 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

HIDDENSEE 1Y 13.8.2017 Sawal, Oder Spree, Brandenburg, NEMČIJA 52°04'N/14°12'E RC Nemčija ZH 11285 v 29.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš (16dni/648km) HIDDENSSE AD 8.7.2017 Rietzer See, Potsdam Mittelmark, NEMČIJA 52°22'N/12°39'E RC Nemčija ZH 11995 v 27.7.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E F. Bračko (19dni/712km) MOSKVA 1Y 4.9.2015 Zelenogradskiy distr., Rybachiy, RUSIJA 55°09'N/20°51'E RC Rusija XR 75237 v 29.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš (694dni/1042km) PRAHA 1Y 31.7.2017 Bartošovice, Moravskoslezsky kraj, ČEŠKA 49°40'N/18°01'E L. Harmačkova TP 65342 v 10.8.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič (10dni/571km) PRAHA 1Y 6.8.2017 Stredočesky kraj, Praha, ČEŠKA 50°04'N/14°34'E M. Brožova TT 67350 v 14.8.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (8dni/508km) PRAHA 1Y 2.8.2017 Ražice, Jihočesky kraj, ČEŠKA 49°15'N/14°06'E J. Šebestian TU 56776 v 9.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (7dni/365km) PRAHA 1Y 12.8.2017 Loučna nad Desnou, Olomoucky kraj, ČEŠKA 50°07'N/17°09'E J. Rezniček TU 62639 v 14.8.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič (2dni/500km) BUDAPEST 1Y 14.7.2017 Keszthely, Zala, MADŽARSKA 46°42'N/17°14'E L. Katalin K 753573 v 10.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E F. Bračko (27dni/88km) BUDAPEST 1Y 9.8.2017 Tass, Bacs, Kiskun, MADŽARSKA 47°02’N/18°59’E D. Sarlos K 800742 v 13.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E D. Pogačar (4dni/377km) GDANSK 1Y 26.7.2017 Jezero Druzno, Žolwiniec, Markusy, POLJSKA 54°03'N/19°26'E C. Nitecki K7X 2353 v 17.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E Ž. Pečar (22dni/970km) BOLOGNA 1Y 12.9.2015 Mortizzuolo, Mirandola, Modena, ITALIJA 44°52’N/11°07’E R. Gemmato 31A 4377 v 23.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (711dni/297km) LJUBLJANA 1Y 23.7.2016 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš KV 13514 v 4.6.2017 Kremže, Jihočesky kraj, ČEŠKA 48°54'N/14°20'E P. Vesely (316dni/298km) LJUBLJANA AD 28.4.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapajna KT 90267 x 4.7.2017 Hofors, Bergviksvagen, ŠVEDSKA 60°34'N/16°25'E RC Švedska (67dni/1629km) LJUBLJANA AD 14.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KT 17639 v 30.7.2017 Bartošovice, Moravskoslezsky kraj, ČEŠKA 49°40'N/18°02'E L. Harmažkova (350dni/572km) LJUBLJANA 1Y 13.8.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš KV 29040 v 15.8.2017 Naszaly, Komarom Esztergom, MADŽARSKA 47°41'N/18°16'E A. Lengyel (2dni/246km)

Tamariskovka Acrocephalus melanopogon OZZANO 1Y 26.10.2013 Mortizzzuolo, Mirandola, Modena, ITALIJA 44°52'N/11°07'E R. Gemmato 11A 4035 v 12.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (1447dni/277km)

Črnoglavka Sylvia atricapilla ZAGREB ♂ 1Y 18.9.2015 lokva Rovozna, Učka, HRVAŠKA 45°12'N/14°13'E B. Ječmenica BA 434227 v 11.9.2017 Slovenja vas, Ptuj, SLOVENIJA 46°27'N/15°49'E I. Vreš (350dni/186km) KLIVV.AT 1Y 22.7.2017 Murinsel Tamsweg, Salzburg, AVSTRIJA 47°07'N/13°48'E H. Gressel TO 25024 v 14.9.2017 Jeprca, Medvode, SLOVENIJA 46°09'N/14°24'E M. Pustoslemšek (54dni/117km) OZZANO 2Y 17.4.2016 Casale, Vicenza, ITALIJA 45°32'N/11°33'E L. Piva LS 11378 v 6.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (537dni/219km) OZZANO 1Y 25.8.2017 Lago Di Caldaro, Bolzano, ITALIJA 46°22’N/11°15’E D. Vassallo LW 36817 v 27.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E D. Pogačar (33dni/209km) LJUBLJANA ♂ 1Y 21.9.2014 Hauptmance, Škofljica, Ljubljana, SLOVENIJA 46°00’N/14°33’E J. Bricelj AC 22135 x 12.2.2017 Florinas, Sassari, Sardegna, ITALIJA 40°42’N/08°33’E A. Lentini (875dni/763km) LJUBLJANA ♀ 1Y 28.8.2016 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00’N/14°25’E R. Tekavčič AC 43651 x 7.3.2017 Montee de la Paveigne, Toulon, FRANCIJA 43°08’N/05°53’E C. Bersan (191dni/747km) LJUBLJANA ♂ 1Y 4.8.2016 Bevke, Vrhnika, SLOVENIJA 45°57’N/14°37’E P. Grošelj AH 4758 v 18.3.2017 Katef Wadi, Beer Sheva Valley, IZRAEL 31°15’N/34°50’E E. Shochat (226dni/2386km) LJUBLJANA ♂ 1Y 27.9.2015 Medvedce, Pragersko, SLOVENIJA 46°22’N/15°39’E I. Vreš AC 86581 x 17.6.2017 Mosonmagyarovar, Csaba u. 5, MADŽARSKA 47°52’N/17°16’E P. Fazekas (629dni/207km) LJUBLJANA JUV 3.8.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°01’N/14°29’E D. Šere AC 94976 v 17.9.2017 T. Roial, Cordenons, Pordenone, ITALIJA 45°58’N/12°44’E P. Taiariol (45dni/135km) LJUBLJANA ♂ 1Y 26.8.2017 Ig, Ljubljana, SLOVENIJA 45°58’N/14°33’E B. Vidic AH 3940 v 15.10.2017 Marais des Estagnetes, Hyeres, FRANCIJA 43°02’N/06°08’E A. Aurelien (50dni/742km) LJUBLJANA ♀ 1Y 6.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E J. Bricelj

161 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017

Nadaljevanje dodatka 1 / Continuation of Appendix 1

AH 49210 v 17.10.2017 El Vendrell, Tarragona, ŠPANIJA 41°11’N/01°33’E M. Bonilla (41dni/1084km) LJUBLJANA ♂ 1Y 27.9.2017 Sečoveljska soline, Portorož, SLOVENIJA 45°28’N/13°37’E D. Pogačar AC 64900 v 10.12.2017 Pineta D'Ischitella, Caserta, ITALIJA 40°57’N/14°00’E D. Mastronardi (74dni/503km)

Vrtna penica Sylvia borin OZZANO 1Y 19.8.2017 Valle Da Pesca Cavanata, Grado, ITALIJA 45°43’N/13°27’E T. Zorzenon LV 73154 v 28.8.2017 Sečoveljska soline, Portorož, SLOVENIJA 45°28’N/13°37’E T. Mihelič (9dni/31km)

Mlinarček Sylvia curruca LJUBLJANA 1Y 18.9.2016 Sestrže, Pragersko, SLOVENIJA 46°22'N/15°42'E F. Bračko AH 21649 v 17.5.2017 Uppsala Lan, Graso, Orskar, ŠVEDSKA 60°31'N/18°24'E RC Švedska (241dni/1582km)

Kos Turdus merula LJUBLJANA ♀ 1Y 13.10.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 44822 + 6.11.2017 Curcio, Colico, Lecco, ITALIJA 46°07'N/09°23'E M. Morganti (389dni/344km) LJUBLJANA ♀ AD 20.6.2017 Šikole, Pragersko, Maribor, SLOVENIJA 46°24'N/15°52'E I. Vreš E 48648 + 7.12.2017 Cagliari, ITALIJA 39°13'N/09°07'E RC Italy (170dni/969km) LJUBLJANA ♀ JUV 3.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja E 49317 + 14.10.2017 Colto Alle Bolle, Siena, ITALIJA 43°27'N/11°24'E F. Merli (41dni/361km)

Vinski drozg Turdus iliacus LJUBLJANA AD 28.10.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°00'N/14°30'E D. Šere E 50123 + 9.11.2017 Marchino, Pisa, ITALIJA 43°47'N/10°41'E P. Lippi (12dni/389km)

Taščica Erithacus rubecula PRAHA 1Y 5.9.2017 Lužnice, Jihočesky kraj, ČEŠKA 49°04'N/14°45'E J. Vlček TU 36779 v 29.9.2017 Jeprca, Medvode, SLOVENIJA 46°09'N/14°24'E M. Pustoslemšek (24dni/325km) ZAGREB 1Y 4.9.2016 lokva Rovozna, Učka, HRVAŠKA 45°12'N/14°13'E I. Šoštarić BJ 55276 x 15.5.2017 Mali kraj Višnje, Ajdovščina, SLOVENIJA 45°53'N/14°03'E S. Rudolf (253dni/77km) LJUBLJANA 2Y 9.3.2014 Požeg, Pragersko, SLOVENIJA 46°25'N/15°39'E I. Vreš AZ 99888 x 17.2.2017 Via Curta 8, Pieris, Friuli, ITALIJA 45°48'N/13°26'E S. Cosolo (1076dni/184km) LJUBLJANA 1Y 14.10.2016 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber AH 10478 v 10.4.2017 Tancat De Milia, Sollana Valencia, ŠPANIJA 39°18'N/00°21'W RC Španija (178dni/1359km) LJUBLJANA 1Y 12.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapajna AH 42970 x 23.10.2017 C. Colombarine, Casalgrande, ITALIJA 44°36'N/10°45'E M. Gustin (11dni/316km) LJUBLJANA 1Y 31.10.2017 Babna gorica, Ljubljana, SLOVENIJA 45°58'N/14°32'E Ž. Pečar AH 79895 x 19.11.2017 Marchon, Arbent, FRANCIJA 46°16'N/05°40'E D. Mme/Mr (19dni/684km)

Siva pevka Prunella modularis PRAHA PULL 9.6.2017 Nova Paka, Kralovehradecky kraj, ČEŠKA 50°30'N/15°32'E M. Brandejsky TP 66691 v 5.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (118dni/512km) GDANSK 1Y 8.9.2017 Miszkowice, Lubawka, POLJSKA 50°42'N/15°55'E F. Hayatli K4X 7864 v 9.10.2017 Tezno, Maribor, SLOVENIJA 46°35'N/15°40'E M. Vamberger (31dni/458km)

Grilček Serinus serinus LJUBLJANA ♂ 2Y 2.4.2015 Puhtejeva ulica, Vič, Ljubljana, SLOVENIJA 46°02'N/14°28'E J. Nered KP 53441 v 9.4.2017 Pruhonice, Stredočesky kraj a Praha, ČEŠKA 49°59'N/14°33'E F. Zicha (738dni/439km)

Zelenec Chloris chloris ZAGREB ♀ 1Y 31.7.2016 Kukuljanovo, Rijeka, HRVAŠKA 45°20'N/14°30'E P. Corva CA 160573 v 19.3.2017 Goriča vas, Ribnica, SLOVENIJA 45°43'N/16°44'E S. Kljun (231dni/179km) LJUBLJANA ♀ AD 16.3.2016 Gore 13 A, Idrija, SLOVENIJA 45°59'N/14°03'E P. Grošelj 162 Acrocephalus 39 (178/179): 129–163, 2018

Nadaljevanje dodatka 1 / Continuation of Appendix 1

AH 4527 v 14.3.2017 Zywocice, Krapkowice, POLJSKA 50°27'N/17°57'E J. Siekiera (363dni/574km) LJUBLJANA ♂ AD 7.11.2017 Šebrelje, Cerkno, SLOVENIJA 46°06'N/13°55'E B. Lapajna AH 43821 o 11.11.2017 Sestola, Maranello, Modena, ITALIJA 44°30'N/10°50'E G. Rossi (4dni/300km)

Ščinkavec Fringilla coelebs LJUBLJANA ♀ 1Y 30.9.2015 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber AZ 86735 v 8.12.2017 Palude Del Brusa, Carea, Verona, ITALIJA 45°10'N/11°13'E R. Pollo (800dni/208km)

Lišček Carduelis carduelis OZZANO 10.5.2017 San Canzian D'Isonzo, Gorizia, ITALIJA 45°48'N/13°27'E M. Benfatto 2A 47923 v 6.8.2017 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber (88dni/21km)

Čižek Spinus spinus KLIVV.AT ♂ 1Y 17.10.2016 Rudmannser Teich, Niederosterreich, AVSTRIJA 48°35'N/15°13'E B. Watzl V 001431 v 20.2.2017 Verje, Medvode, SLOVENIJA 46°09'N/14°25'E M. Pustoslemšek (126dni/277km) LJUBLJANA ♂ 2Y 9.3.2017 Verje, Medvode, SLOVENIJA 46°09'N/14°25'E M. Pustoslemšek KV 32268 v 19.3.2017 Posilek, Rogow Opolski, POLJSKA 50°31'N/17°54'E W. Michalik (10dni/549km)

Krivokljun Loxia curvirostra LJUBLJANA ♀ 1Y 12.11.2015 Resa, Kočevje, SLOVENIJA 45°39'N/15°02'E J. Gračner E 44469 v 15.11.2017 Gmundnerberg, Altmunster, AVSTRIJA 47°54'N/13°43'E M. Kreuzer (734dni/269km)

Trstni strnad Emberiza schoeniclus BUDAPEST ♀ 1Y 28.9.2016 Davod, Bacs Kiskun, MADŽARSKA 45°59'N/18°51'E A. Morocz K 697865 v 20.2.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (145dni/399km) FINLAND ♀ 1Y 13.9.2016 Oulu, Pohjois Pohjanmaa, FINSKA 64°57'N/25°29'E S. Timonen 667573 V v 15.3.2017 Pragersko, SLOVENIJA 46°23'N/15°40'E I. Vreš (183dni/2147km) HIDDENSEE ♂ 1Y 21.8.2017 Mennewitz, Anhalt, Bitterfeld, NEMČIJA 51°51'N/11°58'E RC Nemčija VG 81364 v 8.10.2017 Zbure, Škocjan, SLOVENIJA 45°54'N/15°15'E J. Gračner (48dni/703km)

163

Acrocephalus 39 (178/179): 165–170, 2018 10.1515/acro-2018-0011

Little Owl Athene noctua survey (Van Nieuwenhuyse et al. 2008). Perching spots for hunting and a spot for roosting during the day in the area of Ulcinj are also important. The availability of grassland and (S Montenegro) in 2015 arable land is beneficial but not obligatory for its occurrence (Żmihorski et al. 2009). Popis čuka Athene noctua na območju Generally, the population of Little Owl is non- Ulcinja (J. Črna ) leta 2015 threatened (BirdLife International 2017), but some local European populations suffered great declines in the last 60 years (Cramp 1985; Van Nieuwenhuyse et al. 2008) and in some

1 2 areas populations decreased substantially, with Ivan Kljun , Dejan Bordjan populations in Denmark, for example, on the brink of disappearance (Sunde et al. 2009). The species 1 DOPPS – Društvo za opazovanje in proučevanje is a resident in Europe (BirdLife International ptic Slovenije, Tržaška cesta 2, SI-1000 Ljubljana, 2017) and considered a regular breeder in Slovenija, e-mail: [email protected] 2 Oddelek za gozdarstvo in obnovljive gozdne vire, Montenegro (Stumberger et al. 2008, Saveljić & Biotehniška fakulteta, Univerza v Ljubljani, Večna Jovićević 2015). While ample data are at hand on pot 83, SI-1000 Ljubljana, e-mail: dejan.bordjan@ the breeding, migrating and wintering waterbirds gmail.com and raptors in the wider Bojana River delta area, including salt pans at Ulcinj Solana (Stumberger Abstract et al. 2008, Sackl et al. 2016), several other species of birds have not been included in systematic surveys Between 29 Mar and 10 Apr, 2015, a Little of the area. There are 1-2 breeding pairs of Little Owl Athene noctua survey was carried out using Owls nesting in buildings at Solana (Stumberger the playback method in the southern part of et al. 2008), while the estimate for the wider Bojana Montenegro. The study area was situated between delta is >18 breeding pairs (Schneider-Jacoby et al. the town of Ulcinj and the Bojana River delta. 2006). The data leading to this first estimate was A total of 55 calling males were registered at 26 collected in the Bojana delta during systematic survey points with a maximum of 4 calling males per surveys of other species and area surveys of rare survey point. Considering the low response rate of species, especially during the surveys within the the Little Owl, its local population was estimated at Rapid Assessment of Birds in the Bojana-Buna be 55–110 calling males. This study presents the first Area in 2004 (Schneider-Jacoby et al. 2006). The systematic survey of the Little Owl in Montenegro. majority of data were collected during daytime surveys of different species and sites within the 1. Introduction Bojana delta, but some were also collected during night surveys of other species, specifically Scops Little Owl Athene noctua is a transpalearctic species Owl Otus scops, European Nightjar Caprimulgus covering Central Europe, the Mediterranean, the europaeus and Baillon’s Crake Zapornia pussila. Middle East and through Central Asia reaching No systematic survey of Little Owls was carried out China. A part of the species’ range is located in in this area. Our aim was to survey the population Ethiopia and in the southern part of the Arabian of Little Owl between the town of Ulcinj and the Peninsula (BirdLife International 2017). mouth of the Bojana River (S Montenegro). In Central Europe, the species mainly occurs at low altitudes (up to 600 m a.s.l.). It is a species of 2. Study area and methods open-country and avoids dense forests and other types of dense vegetation (Cramp 1985). It nests 2.1. Study area in tree cavities, rock crevices and buildings. One of the limiting factors for the expansion of Little The study was conducted in the southern part of Owls is the limited number of suitable nesting sites Montenegro, between the town of Ulcinj and the 165 I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015

Figure 1: Map of the study area between Ulcinj and the Bojana River delta. The survey points are presented as black spots, while the surveyed area is marked as a hatched polygon.

Slika 1: Karta raziskovanega območja med Ulcinjem in delto reke Bojane. Popisne točke so označene s črnimi pikami, popisano območje je označeno kot šrafiran poligon.

Bojana River delta (UTM CM53, CM54, CM63 2.2. Methods and CM64; 41°54.5'N 19°17'E). The survey points were located in the area of Štoj and suburbs of We used the playback method as described by Ulcinj. Štoj is approximately 10-km long stretch Johnson et al. (2007). Initially, we determined of hinterland beyond the Velika plaža (Long 26 survey points which were more than 500 m Beach), a 12 km long stretch of sandy beach. It also apart, with two exceptions that were 400 and includes a 7 km long tourist village Donji Štoj and 491 m apart. The Little Owl in the Mediterranean a smaller Gornji Štoj. The beach of Velika plaža is region has its peak in vocal activity at the end of heavily visited in the summer months. The size of March and the beginning of April (Johnson et the surveyed area was 15.4 km2 and calculated as al. 2007). Therefore, we decided to conduct the the surface covered by the 500 m detection radius fieldwork in the nights of 29th March, 2nd and around the survey points (Johnson et al. 2007). 10th April 2015. We chose calm and clear nights The surveyed area is a mosaic of settlements, wet with no or little wind, as weather conditions and moist meadows, salina, swamps, small-scale could affect the vocal activity of the owls agriculture, scattered orchard and vineyard (Zubergoitia & Campos 1998). The surveys plantations and mostly fragmented stands of started at sunset and finished around 23:00. For Willow Salix sp., Poplar Populus sp. and Alder every Little Owl we recorded the approximate Alnus sp. forests (Schwartz 2010). direction in order to minimize count replications. 166 Acrocephalus 39 (178/179): 165–170, 2018

Figure 2: Map of the study area with symbols indicating the number of calling males of Little Owl Athene noctua per survey point

Slika 2: Karta raziskanega območja z označenim številom pojočih samcev čuka Athene noctua na popisnih točkah

The method byJohnson et al. (2007) suggests calling males per survey point, with the highest at least 3 visits to every survey point to be made number of 4, which occurred three times. to determine non-occupancy owing to the low Centini (2001) concluded that the response response rate of the species. Nonetheless, due to rate by the Little Owl to playback was 49.6 %. time limitations and high response by the owls Considering this and the fact that the response rate we visited every survey point only once. In the is higher in the areas more densely populated by areas of high density, however, the owls responded Little Owls (Zubergoitia & Campos 1998), we more readily (Zubergoitia & Campos 1998), assume that we registered considerably more than so we concluded that repeating surveys would half of the local population. We estimate the local not increase our results substantially. Maps were population to be 55-110 calling males. created using ArcGIS software by Esri. A comparison of breeding densities from around Europe shows that the Ulcinj area has high 3. Results and discussion local density of breeding Little Owls. Furthermore, it is mostly higher than those in Central and We recorded 55 calling males at the 26 survey Western Europe (Exo 1992, Vogrin 1997, Ille et points. The density of calling males in the surveyed al. 2001, Berce & Kmecl 2008) and comparable to area was 3.57 per km2. Only one survey point was other studies from the Mediterranean (Hof 2007, without a response. On average, we registered 2 Tomé et al. 2008). 167 I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015

Table 1: Published average Little Owl densities with data on the country, area, unit and reference for the research

Tabela 1: Objavljene povprečne gostote čuka s podatki o državi, območju, enoti in referencah za raziskovanje vrste

Singing males/ Country Area km2 Pairs/ km2 Reference Italy Tolfa Mountains, Lazio 0.55 Centili 1995 1Italy Pavi 1.1 Cesaris 1988 2Slovak republic Michalovce district 1 Danko et al. 1994 1,2Poland Mazowsze lowland 1.4 Dobrowski et al. 1991 2Austria Burgenland 1.5 Dvorak et al. 1993 1Italy Po plain 9,3–11 Estoppey 1992 1Germany 1,2–1,7 Exo 1983 2Poland South Podlasie 0.4 Fronczak et al. 1991 1The Netherlands Betuwe 2.1 Fuchs 1986 3France 10 areas 0.21 Génot 1996 3Austria 5 areas 0.08 Ille et al. 2001 1Germany Up to 5,6 Illner et al. 1989 1,2Poland Kampinos National Park 0.6 Kowalski et al. 1991 Plain of Bergamo, Italy 0.69 Mastrorilli 1997 Lombardia Italy Plain of Pavia, Lombardia 0.4 Pirovano & Galeotti 1999 Czech Republic Southern Bohemia 0.024 Pykal et al. 1994 1Germany East-Germany 0.1 Schönn 1986 3Czech Republic 27 areas 0.12 Schröpfer 2000 Denmark Jutland 0,04–0,06 Sunde et al. 2009 Hungary Hortobagy 0.501 Šalek et al. 2013 Italy Castel Porziano, Lazio 3.14–4.62 Tomassi et al. 1999 Portugal Cabeça da Serra 7 Tomé et al. 2008 Portugal S. Marcos da Atabueir 2.5 Tomé et al. 2008 Portugal Quinta da Rocha 6.44 Hof 2007 Slovenia Dravsko polje Up to 0,48 Vogrin 1997 Montenegro Ulcinj 3.57 This research 1 summary and references by Génot (1996) 2 summary and references by Vogrin (1997) 3 summary and references by Hof (2007)

Little Owls prefer habitats with more build- during most of the year, since they are occupied up areas and less forested areas (Żmihorski et only during the summer holidays, meaning lower al. 2009). The high density of Little Owls in the human disturbance. Additionally, the abundance surveyed area seems supportive of this finding. of meadows and pastures with very low vegetation Also, many buildings at Donji Štoj are empty height in the survey area offer suitable feeding 168 Acrocephalus 39 (178/179): 165–170, 2018

places for Little Owls which require areas of low Cesaris C. (1988): Popolazioni di Allocco Strix aluco vegetation height or bare ground to spot the prey e di Civetta Athene noctua in un'area del Parco (Grzywaczewski 2009, Framis 2011). Surveys in Lombardo della Valle del Ticino. – Avocetta 12: 115- 2 118. the floodplain of the Bojana River delta (250 km ), Cramp S. (1985): The Birds of the Western Palearctic. which includes the towns of Ulcinj and Štoj, revealed Vol 4. – Oxford University Press, Oxford. high numbers of other conservationally important Danko Š. (1994): Správa o činnosti skupiny pre výskum insectivorous species such as Scops Owl (Otus scops) a ochranu dravcov a sov v ČSFR za rok 1992. – Buteo >89 bp (breeding pairs), Nightjar (Caprimulgus 6: 121–151. europaeus) 111-500 bp, Roller (Coracias garrulus) Dombrowski A., Fronczak J., Kowalski M., 9-15 bp, Hoopoe (Upupa epops) >51 bp and Bee- Lippoman T. (1991): [Population density and habitat preferences of owls (Strigiformes) on agricultural eater (Merops apiaster) >261 bp (Schneider- areas of the Mazowsze Lowland (central Poland)]. – Jacoby et al. 2006). The relatively high density of Acta ornithologica 26: 39–54. (In Polish with Little Owls in the study area corroborates the high English abstract). biodiversity and conservation value of the Bojana Dvorak M., Ranner A., Berg H. M., (1993): Atlas der River delta. Brutvögel Österreichs. – Umweltbundesamt, Wien. Estoppey F. (1992): Une densité elevée de Chouettes Povzetek cheveches, Athene noctua, dans la plaine du Po en Italie. – Nos Oiseaux 41:315–319. Exo K. M. (1983): Habitat, Siedlungsdichte Med 29. 3. in 10. 4. 2015 smo opravili popis čuka und Brutbiologie einer niederrheinischen Athene noctua z metodo predvajanja posnetka Steinkauzpopulation (Athene noctua). – Ökologie v južni Črni gori. Preučevano območje je bilo der Vögel 5: 1–40. (In German). med mestom Ulcinj in delto reke Bojane. Skupno Exo K. M. (1992): Population ecology of Little Owls smo zabeležili 55 kličočih samcev na 26 točkah, Athene noctua in Central Europe: a review. pp. 64– 75. In: Galbraith C. A., Taylor I. R., Percival S. maksimum za eno točko so bili štirje samci. (eds.): The conservation and ecology of European Upoštevajoč slabo odzivnost vrste na posnetek owls: Joint Nature Conservation Committee, lokalno populacijo ocenjujemo na 55–110 kličočih Peterborough. samcev. Raziskava je prvi sistematični popis čuka v Framis H., Holroyd G. L., Mañosa S. (2011): Home Črni gori. range and habitat use of little owl (Athene noctua) in an agricultural landscape in coastal Catalonia, Spain. – Animal Biodiversity and Conservation, Key words: Little Owl, Athene noctua, playback 34.2: 369–378. survey method, S Montenegro Fronczak J. , Dombrowski A. (1991): Owls Strigiformes Ključne besede: čuk, Athene noctua, metoda in an agricultural and forest landscape of South Podlasie predvajanja posnetka, J Črna gora Lowland (eastern Poland). – Acta Ornithologica 26 (1): 55–61. 4. References Fuchs P. (1986): Structure and functioning of a little owl Athene noctua population. – Annual Reports of the Research Institute of Nature Management Berce T., Kmecl P. (2008): Popis čuka Athene noctua na (1985): 113–126. Krasu v letu 2007 – zaključno poročilo. – [http:// Génot J. C. (1996): Monitoring studies of the Little Owl ptice.si/2014/wp-content/uploads/2014/04/2008_ in France. – The Raptor 24: 24–28. berce_kmecl_popis_cuka_na_krasu_v_letu_2007. Grzywaczewski G. (2009): Home Range Size and pdf], 08/12/2017 Habitat use of the Little Owl Athene noctuain East BirdLife International (2017) Species factsheet: Poland. – Ardea 97(4): 541–545. . – [http://www.birdlife.org], Athene noctua Hof (2007): Monitoring the Little Owl Athena noctua 04/12/2017. on Quinta da Rocha. pp. 3–9. In: Simonson W. (ed.), Centili D. (1995): Dati preliminari sulla Civetta Athene A Rocha Portugal Observatory Report, 2005-06. – noctua in un'area dei Monti della Tolfa (Roma). – Associação A Rocha, Portimão. Avocetta 19: 113. Ille R., Grinschgl F. (2001): Little Owl (Athene noctua) Centili D. (2001): Broadcast and Little Owls Athene in Austria. Habitat characteristics and population noctua: preliminary results and considerations. – density. – Ciconia 25: 129–140. Oriolus 67 (2-3): 84-88.

169 I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015

Illner H. (1988): Long-term decrease of the owls Sunde P., Thorup K., Jacobsen L. B., Holsegård- Tyto alba, Asio otus, Athene noctua and Strix aluco Rasmussen M. H., Ottessen N., Svenné S., Rahbek in an agricultural area in central Westfalia (West C. (2009): Spatial behaviour of little owls (Athene Germany) 1974–1986. – Vogelwelt 109: 145–151. noctua) in a declining low-density population in Johnson D. H., Van Nieuwenhuyse D., Génot J. C. Denmark. – Journal of Ornithology 150: 537-548. (2007): Survey Protocol for the Little Owl (Athene Šálek M., Chrenkova M., Kipson M. (2013): High noctua), October 2007 version. – [http://www. population density of Little Owl (Athene noctua) globalowlproject.com/protocols/Survey_Protocol_ in Hortobagy National Park, Hungary, Central for_the_Little_Owl.pdf], 06/12/2017. Europe. – Polish Journal of Ecology. 61: 1-165. Kowalski M., Lippoman T., Oglechi P. (1991): – Tomassi R., Piattella E., Manganaro A., Pucci L., Census of owls Strigiformes in the eastern part of Ranazzi L., Fanfani A. (1999): Primi dati su dieta Kampinos National Park (Central Poland). – Acta e densità della Civetta Athene noctua nella Tenuta Ornithologica (Warsaw), 26: 23-29. Presidenziale di Castelporziano (Roma). – Avocetta Mastrorilli M. (1997): Popolazioni di Civetta (Athene 23:159. noctua) e selezioni dell'habitat in un'area di pianura Tomé R., Cantry P., Bloise C., Korpimäkki, E. (2008): della provincia di Bergamo. – Riv. Mus. Civ. St. Nat. Breeding density and success, and diet compisotion "E. Caffi" Bergamo 19:15-19. of Little Owls Athene noctua in steppe-like habitats Pirovano A., Galeotti P. (1999): Territorialismo intra in Portugal. – Ornis Fennica 85: 22-32. – e interspecifico della CivettaAthene noctua in Van Nieuwenhuyse D., Génot J. C., Johnson D. H. provincia di Pavia. – Avocetta 23:139. (2008): The Little Owl – conservation, ecology and Pykal J., Krafka Z., Klimeš Z. (1994): [Population behavior of Athene noctua. – Cambridge University density of the little owl (Athene noctua) in selected Press, New York. regions of the southern Bohemia (Czech Republic)]. – Zubergoitia I., Campos L. F. (1998): Censusing owls Sylvia 30: 59–63. (in Czech) in large areas: a comparison between methods. – Sackl P., Bordjan D., Basle T., Božič L., Smole J., Ardeola 47-53. Denac D., Štumberger B. (2016): Spring migration Żmihorski M., Romanowski J., Osojca G. (2009): of ducks in the Bojana-Buna Delta – a comparison Habitat preferences of a declining population of the of migration volumes and conventional count little owl, Athene noctua in Central Poland. – Folia information for a key wetland site within the Zoologica 58(2): 207–215. Adriatic Flyway. In: Sackl P., Ferger. W. (eds.): Vogrin M. (1997): Little Owl (Athene noctua): a highly Adriatic Flyway – Bird Conservafion on the Balkans. endangered species in NE Slovenia. – Buteo 9: 99– Euronatur, Radolfzell. 102. Saveljić D., Jovićević M. (2015): Popis ptica Crne Gore sa bibliografijom. – Centar za zaštitu i proučavanje Prispelo / Arrived: 22. 1. 2018 ptica, Podgorica. Sprejeto / Accepted: 4. 1. 2019 Schneider-Jacoby M., Schwarz U., Sackl P., Dhora D., Saveljic D., and Stumberger B. (2006): Rapid assessment of the Ecological value of the Bojana-Buna Delta (Albania/Montenegro). Euronatur, Radolfzell. Schönn, S. (1986): Zur Status, Biologie, Ökologie und Schutz des Steinkauzes (Athene noctua) in der D.D.R. – Acta Ornithoecologia 1: 103–133. Schröpfer L. (2000): Sýček obecný (Athene noctua) v České republice – početnost a rozšíření v letech 1998 – 1999. – Buteo 11: 161–174. Schwartz U. (2010): Habitat Mapping of the Livanjsko Polje (BA), the Neretva Delta (HR, BA), and Lake Skadar-Shkoder (ME, AL). In: Denac, D., Schneider-Jacoby, M. Stumberger, B. (Eds.): Adriatic Flyway – closing the gap in bird conservation. Euronatur, Radolfzell. Stumberger B., Sackl P., Saveljić D., Schneider- Jacoby M. (2008): Management Plan for the Conservation and Sustainable Use of the Natural Values of the Privately Owned Nature Park “Solana Ulcinj” Montenegro. – Joannea Zoologie 10: 5-84. 170 Acrocephalus 39 (178/179): 171–176, 2018 10.1515/acro-2018-0012

A contribution to the (Birdlife International 2004). Its diet has been studied more extensively than that of any knowledge of diet composition other bird of prey (Mikkola 1983, Everett of the Barn Owl Tyto alba in the et al. 1992, Taylor 1994, 2009, Bontzorlos area of Pisa (Italy) et al. 2005, Leonardi & Dell'arte 2006). It mostly hunts small terrestrial mammals, Prispevek k poznavanju prehrane mainly rodents (Mikkola 1983, Taylor 1994), members of the three mammal families pegaste sove Tyto alba na območju pise Soricidae (shrews), Cricetidae (voles) and (Italija) Muridae (mice and rats) (Mikkola 1983, Brichetti & Fracasso 2006). Occasionally it preys on insects, amphibians, reptiles, birds (Mikkola 1983, Taylor 1994, Bontzorlos Tjaša Zagoršek1 et al. 2005, Leonardi & Dell'arte 2006), fish and arthropods Bontzorlos( et al. 1 Cankarjeva ulica 11, SI-3240 Šmarje pri Jelšah, 2005). Its pellets are easy to find and small e-mail: [email protected] mammal bone parts are well preserved and easy to identify (Paspali et al. 2013). However, its hunting tactics remain controversial (Tor es et Abstract al. 2005). Most researchers claim that the Barn Owl shows no food preferences and that the We examined the pellets of the Barn Owl Tyto abundance of each species in the diet is a true alba, collected in Pisa, Italy, in 2012. Altogether, reflection of prey abundance or accessibility in 219 specimens of small mammals were found in the field Bunn( et al. 1982, Tor es et al. 2005, 85 pellets. The Barn Owl diet was composed of Yom-Tov & Wool 1997). On the other hand, ten species of small mammals, representing three some researchers suggest that it shows preference different families (Muridae, Cricetidae, Soricidae). for small-sized prey and that its diet does not The main prey species was the Wood Mouse reflect the abundance of prey species in the field Apodemus sylvaticus, followed by the House Mouse (Mikkola 1983, Tor es et al. 2005, Yom-Tov Mus musculus and the Savi’s Pine Vole Microtus & Wool 1997). These contrasting assumptions savii. While the smallest of the small mammals supposedly originate from different length of from the area, the Etruscan Shrew Suncus etruscus, the studies (Tor es et al. 2005). In his study, was well represented in the pellets, some larger Contoli (1981) asserts that analysis of Barn Owl species of small mammals were not represented at diet can provide information on the availability all. The reason for such result may lie in the upper of small mammal prey species in a particular area, limit for our Barn Owl’s prey size. Results suggest even when only few pellets are available (Bose that optimal prey weight for our Barn Owl may & Guidali 2001). Mikkola (1983) suggests be between 26–75 g of body mass, however, the that the study of the Barn Owl's diet is suitable prey can be occasionally as heavy as almost 100 g, for determining the presence of nocturnal small represented by adult Rat Rattus spp. Nevertheless, mammal species within its hunting territory. On our results may not reflect the true hunting strategy the other hand, some researchers have claimed of the Barn Owl, but the availability of a certain that the Barn Owl is a selective predator, hunting food item at one point in time. its prey by preference (Yom-Tov & Wool 1997, Tor es et al. 2005) and that its diet would not 1. Introduction represent the true abundance of prey species in the field (Tor es et al. 2005). Barn Owl Tyto alba (Scopoli, 1769) is a Nevertheless, studies that compared pellet widespread resident across much of Europe, which analyses with data from field trapping have also accounts for less than a quarter of its global range shown that prey size is an obvious limiting factor 171 T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy)

2. Materials and methods

2.1. Study area

Pellets were collected in an abandoned house (43°39'38.2"N 10°17'55.9"E) near Marina di Pisa in Italy. Marina di Pisa lies on the left bank of the Arno River and is located directly north of Tirrenia and about 10 kilometres west from Pisa. The area is mostly cultivated with fields of corn and cereals, with coniferous woods nearby. The climate in this region is warm and temperate (Merkel 2018). Precipitation occurs mostly in winter, with relatively little rain in the summer. The average annual temperature is 14.8°C and the average annual rainfall is 877 mm (Merkel 2018).

Figure 1: Study area near Marina di Pisa in Italy where the Barn Owl pellets were collected 2.2. Methods

Slika 1: Obravnavano območje blizu kraja Marina di Pellets (n=85) were collected in July 2012 during Pisa (Italija), kjer so bili nabrani izbljuvki pegaste sove a single visit of the nest site. We only collected pellets that were 4 – 5 days old (still damp and (Tor es et al. 2005, Yom-Tov & Wool 1997). soft), 1 – 2 months old (dried out, black and shiny) And for that, its diet may reflect not the true or 2 – 4 months old (black colour slowly wears off, hunting strategy of a predator, but the availability and they turn progressively grey). We determined of a certain food item at one point in time (Tor es the age of the pellets collected by following et al. 2005, Yom-Tov & Wool 1997). A selective Chandler (2011). predator is expected to consume a narrow range of Their content was examined in the laboratory. prey species regardless of their abundance, while Pellets were examined individually. To identify the an opportunistic predator will take its prey in skulls, teeth and other remains found in pellets, proportion to its abundance at any point in time a stereo microscope with 20x magnification was (Tor es et al. 2005, Yom-Tov & Wool 1997). used. We identified the remains to the species level The Italian population of the Barn Owl is by following Kryštufek (1985) and Aulagnier poorly known (Galeotti 2003). It appears to et al. (2009). The mean body mass of prey was taken be declining in almost the entire Po Valley and in from literature Aulagnier et al. (2009). Statistical some central Italian areas of Mugello and province analysis was conducted in the programme Past of Florence (0,03 pairs/km2) (Galeotti 2003). In version 3.16 (Hammer et al. 2001). Tuscany, its population is estimated at 500-1,500 pairs, which are locally in decline (Brichetti & 3. Results Fracasso 2006). The aim of our study was to: (1) present the We identified 219 individual mammal species from 85 diet of a local Barn Owl in Pisa (Italy); (2) examine pellets. The owl's diet was composed of ten species of whether its diet reflects species assemblage of the small mammals representing three different families, local fauna of small mammals in the community Muridae, Cricetidae and Soricidae (Table 1). the owl preyed upon, and (3) to check if there is an The main prey species of the Barn Owl was upper limit in prey size. Wood Mouse (Apodemus sylvaticus) (34.7%). The This paper should be considered to contribute second most important prey species in its diet was to the knowledge of the Tyto alba 's diet in Italy. House Mouse (Mus musculus) (16.9%), followed by 172 Acrocephalus 39 (178/179): 171–176, 2018

the Savi's Pine Vole (Microtus savii) (14.9%). The We tested if there were statistically significant presence of Black Rat (Rattus rattus) and Brown differences between the proportions of prey species Rat (Rattus norvegicus) was low (0.45 %). in different samples (Table 2). Only a single prey The commonest prey weight in the investigated item in the pellet was present in 18.8% of all pellets area was 11 – 30 g (Figure 2). Only in two cases was the collected. The observed proportion of all species prey heavier than 70 g, reaching a maximum of almost found in the pellets contained a single prey item, 100 g. In both cases, the prey species was an adult Rat and the proportion expected from the content of (Rattus rattus and Rattus norvegicus, respectively). all pellets showed statistical differences between

Table 1: Proportion of species identified from pellets of the Barn Owl (Tyto alba) found in an abandoned house near Marina di Pisa, Italy, in July 2012 (N=219)

Tabela 1: Delež vrst, ki so bile identificirane iz izbljuvkov pegaste sove (Tyto alba), najdenih v zapuščeni hiši blizu Marina di Pisa (Italija) julija 2012 (N=219)

Family Species Proportion (%) Number of prey (N) Wood Mouse (Apodemus sylvaticus) 34,7 76 House Mouse (Mus musculus) 16,9 37 Muridae Yellow-Necked Mouse (Apodemus flavicollis) 2,7 6 Black Rat (Rattus rattus) 0,45 1 Brown Rat (Rattus norvegicus) 0,45 1 Savi's Pine Vole (Microtus savii) 14,9 33 Cricetidae European Water Vole (Arvicola terrestris) 9,6 21 Lesser White-Toothed Shrew (Crocidura suaveolens) 13,2 29 Soricidae Etruscan Shrew (Suncus etruscus) 3,6 8 Bicolored Shrew (Crocidura leucodon) 3,2 7

Figure 2: The percentage of individual mass classes of prey in the diet of Barn Owl (Tyto alba) from the pellets found in an abandoned house near Marina di Pisa, Italy, in July 2012 (N=219)

Slika 2: Odstotek posameznih masnih razredov plena v prehrani pegaste sove (Tyto alba), ki so bili najdeni v izbljuvkih, nabranih v zapuščeni hiši blizu kraja Marina di Pisa (Italija) julija 2012 (N=219) 173 T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy)

Table 2: Chi-square test of expected and observed percentage of small mammals where one prey item was present in a pellet (N=16)

Tabela 2: Hi-kvadrat test med pričakovanimi in opazovanimi odstotki malih sesalcev, kjer je bil v izbljuvku najdena vsaj ena enota plena (N=16)

Species Expected Observed P

Apodemus sylvaticus 34.7 43.8 N.S.

Mus musculus 16.9 0 < 0.001

Microtus savii 15.1 12.5 N.S.

Crocidura suaveolens 13.2 6.3 N.S.

Arvicola terrestris 9.6 37.5 < 0.001

Suncus etruscus 3.7 0 N.S.

Crocidura leucodon 3.2 0 N.S.

Apodemus flavicollis 2.7 0 N.S.

Rattus rattus 0.5 0 N.S.

Rattus norvegicus 0.5 0 N.S.

χ² – test = 47.7 < 0.001 samples. The comparison of two samples, first while its congeneric species, the Bicoloured White- representing the whole sample and other containing toothed Shrew, was four times less common. The only one item, showed statistically significant Etruscan Shrew is making a very small contribution differences indicating that the hunting strategy of to our Barn Owl diet. This may be due to the fact our Barn Owl is not opportunistic. that species is very small in size and has a low biomass. The presence of Black Rat and Brown Rat 4. Discussion was low, and its presence can be explained by a farm and farmland in the study area. Small mammals were the most important In his study of the Barn Owl diet, Taylor prey in the Barn Owl's diet in the area of Marina (1994) analyzed pellets from the different di Pisa, Italy. The most preyed species was the European countries. He assumed that one pellet Wood Mouse, which is consistent with the articles per day is produced by an owl, and came up with a of other authors (Lovari et al. 1976, Lovari figure of about 75g of food per day needed for the 1974, Mikkola 1983, Obuch & Benda 2009, adult Barn Owl. This indicates that prey body mass Chandler 2011). Small presence (2.7%) of the is a limiting factor. This may be due to the fact that Yellow-necked Mouse in the diet may be due to for any predator, and particularly a flying one, there the fact that habitat suitable for this species is very may be an upper limit for prey size which can be rare within the hunting area of the Barn Owl. captured and carried away (Taylor 1994). The The important species in the diet was also Lesser results from our analysis of the pellets indicate that White-toothed Shrew with the frequency of 13.2%, our Barn Owl does not prey opportunistically. The 174 Acrocephalus 39 (178/179): 171–176, 2018

commonest prey weight in the investigated area was do 100 g, npr. odrasle podgane Rattus spp. Kljub 11 – 30 g. Only in two cases was the prey heavier vsemu se moramo zavedati, da naši rezultati kažejo than 70 g, reaching a maximum of almost 100 g. In na razpoložljivost plena v določenem časovnem both cases, the prey species was an adult Rat (Rattus obdobju, ne pa nujno prehranske strategije pegaste rattus and Rattus norvegicus, respectively). Numbers sove. of prey individuals of small mammals in our pellets are showing that by increasing the number of prey Key words: Barn Owl, Tyto alba, diet, small items within a single pellet the relative abundance mammals, Pisa, Italy of large species – in this case, the heaviest of the Ključne besede: Pegasta sova, Tyto alba, prehrana, five most commonly preyed species is Arvicola mali sesalci, Pisa, Italija terrestris – decreases, whereas on the other hand the smallest species Suncus etruscus was only detected in pellets with four and five prey items and never 5. References less. Our results suggest that pellet contents do not reflect the relative abundance of small mammals in Aulagnier S., Haffner P., Mitchell-Jones, A. J., the area, but it can be used as a complementary tool Moutou F., Zima J. (2009): Mammals of Europe to supplement the faunal lists of small mammals North Africa and the Middle East. –A&B Black London. in a given area. This study also indicates that Barn Birdlife International (2004): Birds in Europe: Owl may not be an opportunistic predator as the population estimates trends and conservation proportion of small mammals in different samples status. – BirdLife International Cambridge. of pellets greatly differs and an obvious upper limit Brichetti P. Fracasso G. (2006): Ornitologia in prey body size exists for our Barn Owl. Italiana Vol.3 Stercorariidae-Caprimulgidae. – Alberto Perdisa Editore Bologna. Acknowledgements Bontzorlos V. Peris S. Vlachos G. C. Bakaloudis D. (2005): The diet of Barn Owl in the agricultural landscapes of central Greece. – Folia I am grateful to Katarina Denac and Urša Koce for Zoologica. 54 (1/2): 99–110. their valuable comments and suggestions on the Bose M. Guidali F. (2001): Seasonal and geographic draft. A very special thank you goes to Dr Gianluca differences in the diet of the Barn Owl in an agro- Bedini from Centro Recupero Uccelli Marini ecosystem in northern Italy. – Journal of Raptor e Acquatici di Livorno with his help during the Research 35 (3): 240–246. Bunn D.S. War burton A.B. Wilson R.D.S. (1982): fieldwork. The Barn Owl. – Poyser Calton. Chandler D. (2011): Barn Owl. Firefly Books. – New Holland Publishers (UK) Ltd. Povzetek Contoli L. (1981): Ruolo dei Micromammiferi nella nicchia trofica del barbagianni (Tyto alba) nell'Italia Preučili smo izbljuvke pegaste sove Tyto alba, Gentro Meridionale. – Avocetta 5: 49–64. zbrane v okolici Pise (Italija) leta 2012. Skupno smo Everett M. Prestt I. Wgagestaffe R. (1992): Barn and bay owls. Owls of the World: Their Evolution našli 219 osebkov malih sesalcev v 85 izbljuvkih. Structure and Ecology – Peter Lowe London. Prehrano pegaste sove je sestavljalo 10 vrst malih Galeotti P. (2003): Barbagianni. In: Uccelli d'Italia. sesalcev iz treh družin (Muridae, Cricetidae, (a cura di: Spagnesi M. Serra L.). Quad. Cons. Natura Soricidae). Glavna vrsta v prehrani je bila gozdna 16 Min. Ambiente – Ist. Naz. Fauna Selvatica: 202– miš Apodemus sylvaticus, sledita ji hišna miš Mus 204. musculus in Savijeva kratkouha voluharica Microtus Hammer O. Harper D.A.T. Ryan P.D. (2001): Najmanjša vrsta z območja, etruščanska rovka Past: Paleontological Statistics software package savii. for education and data analysis. – Palaeontologia Suncus etruscus, je bila dobro zastopana v izbljuvkih, Electronica 4(1). medtem ko nekaterih večjih vrst nismo ugotovili, Kryštufek B. (1985): Naša rodna zemlja. 4 Mali sesalci kar morda odseva zgornjo mejo velikosti za plen (Mladinska raziskovalna akcija "Okolje v Sloveniji" pegaste sove. Zdi se, da je optimalna teža plena med III Raziskovanje tal). – Prirodoslovno društvo 26 in 75 g, občasno pa upleni tudi osebke, ki tehtajo Slovenije Ljubljana. 175 T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy)

Leonardi G. Dell’arte G. (2006): Food habits of the Barn Owl ( Tyto alba) in a steppe area of Tunisia. – Journal of Arid Environments 65: 677–681. Lovari S. (1974): The feeding habits of four raptors in central Italy. – Raptor Research 8: 61–63. Lovari S., Renzoni A., Fondi R. (1976): The Predatory Habits of the Barn Owl (Tyto Alba Scopoli) in Relation to the Vegetation Cover. – Italian Journal of Zoology 43: 173–191. Merkel A. (2018): Climate data – climate: Marina di Pisa. Accessible online: https://en.climate-data.org/ location/710944/ Mikkola H. (1983): Owls of Europe. – T. & AD Poyser, London. Obuch J., Benda P. (2009): Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean. – Slovak Raptor Journal 3: 41–50. Paspali G., Oruci S., Koni M., Wilson I. F., Krystufek B., Bego F. (2013): Seasonal variation of small mammals in the diet of the barn owl (Tyto alba) in the Drinos River valley southern Albania. – Turkish Journal of Zoology 37: 97–105. Taylor I. (1994): Barn owls: Predator-prey relationship and conservation. – Cambridge University press, Cambridge. Taylor I. R. (2009): How owls select their prey: a study of Barn Owls Tyto alba and their small mammal prey. – Ardea: 97(4): 635–644. Tores M., Motro Y., Motro U., Yoram Y.T. (2005): The Barn Owl – a selective opportunist predator. – Israel Journal of Zoology 51: 349–360. Yom-Tov Y., Wool D. (1997): Do the contents of Barn Owl (Tyto alba) pellets accurately represent the proportion of prey species in the field? – Condor 99: 972–976.

Prispelo / Arrived: 12. 11. 2018 Sprejeto / Accepted: 29. 12. 2018

176 Acrocephalus 39 (178/179): 177–182, 2018 10.1515/acro-2018-0013

Redke vrste ptic v Sloveniji gress) (Gill & Donsker 2018). Številki v oklepaju ob imenu posamezne vrste pomenita število opa- v letu 2017 – Poročilo zovanj med 1. 1. 1950 in 31. 12. 2016 ter število Nacionalne komisije za opazovanih osebkov v istem časovnem obdobju. redkosti Takšno podajanje opazovanj je standardizirano po priporočilih Združenja evropskih komisij za red- Rare birds in Slovenia in 2017 – kosti (AERC – Association of European Rarities Committees) (AERC 2007). Za redke vrste, ki jih Slovenian Rarities Committee's Report KRED obravnava od 1. 1. 2013 (37 dodatnih vrst, od tega 17 regionalnih redkosti), podatki o opazo- vanjih pred tem datumom niso sistematično zbrani,

1 2 zato tudi niso predstavljeni. Iz istega razloga ta opa- Jurij Hanžel , Mitja Denac zovanja niso oštevilčena. Opazovanja nacionalnih in regionalnih redkosti so predstavljena ločeno. Od 1 Židovska ulica 1, SI–1000 Ljubljana, Slovenija, 1. 1. 2017 zaradi rednega pojavljanja ne obravnava- e–mail: [email protected] mo več opazovanj srebrnega galeba 2 Mala Slevica 2, SI – 1315 Velike Lašče, Slovenija, Larus argenta- e-mail: [email protected] tus iz porečja Drave. V letu 2017 smo zabeležili prve podatke iz Poročilo Nacionalne komisije za redkosti (KRED) kategorije A za belolično gos Branta leucopsis. obravnava opazovanja redkih vrst med 1. 1. in 31. Pozornost zbujajo tudi tretje opazovanje rdečevrate 12. 2017 z dodanimi datumi iz leta 2018, če je bil gosi Branta ruficollis, peto opazovanje za brkatega osebek, prvič zabeležen v letu 2017, opazovan tudi v sera Gypaetus barbatus, lopatasto govnačko tem letu. Pri nekaterih vrstah so dodane dopolnitve Stercorarius pomarinus in prekomorskega prodnika za prejšnja leta. Komisija je delovala v naslednji Calidris melanotos ter sedmo opazovanje za sestavi (po abecednem vrstnem redu): Dejan ploskokljunega liskonožca Phalaropus fulicarius in Bordjan, Luka Božič, Jurij Hanžel (predsednik), velikega galeba Larus marinus. Zaradi prilagoditve Kajetan Kravos, Milan Vogrin. taksonomije smo seznamu dodali eno vrsto: njivska Kot redke so obravnavane vrste, ki so bile gos Anser fabalis je sedaj ločena na vrsti Anser fabalis kot take označene v Seznamu ugotovljenih ptic in Anser serrirostris (vsebuje podvrsto rossicus, ki je Slovenije s pregledom redkih vrst ter v zadnjem bila opazovana v Sloveniji). Do vključno 31. 12. poročilu komisije (Hanžel & Šere 2011, Hanžel 2017 je bilo v Sloveniji ugotovljenih 390 vrst (375 2016, Hanžel 2017a), ne glede na poprej veljavni v kategoriji A, 6 v kategoriji B, 9 samo v kategoriji kriterij, da je vrsta redka, če zanjo obstaja manj C; štiri vrste so uvrščene v kategoriji A in C hkrati). kot 10 podatkov, znanih po 1. 1. 1950. Seznam V kategoriji D je sedem vrst, v kategoriji E pa 39, * obravnavanih vrst in podvrst je dostopen na med katerimi sta dve v podkategoriji E . Vrste teh [http://cdn.ptice.si/ptice/2014/wp-content/ dveh kategorij niso del seznama. uploads/2015/10/2015_redke_vrste_si.xlsx]. V Dodatku 1 so dokumentarne fotografije Razvrstitev v kategorije, način navajanja kraja opazovanj, ki doslej še niso bile objavljene v opazovanja in način navajanja virov sledijo smer- slovenskih tiskanih virih z navedenim krajem, nicam v Seznamu. Upoštevane so sprotne spre- datumom in številom osebkov. membe iz poročil Taksonomske podkomisije komisije za redkosti pri Britanski zvezi ornitologov Potrjena opazovanja iz kategorije A / Accepted (British Ornithologists' Union Rarities Commit- Category A records tee Taxonomic Subcommittee) (BOURC TSC). Taksonom­ska podkomisija je avgusta 2016 prene- Rdečevrata gos Branta ruficollis (2, 2) hala z delovanjem, zato je to poročilo prvo, kjer − 14. 1. 2017, Gajševsko jezero, 2 os. (Božič sledimo priporočilom Mednarodnega ornitološke- 2017) ga kongresa (International Ornithological Con-

177 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti

Belolična gos Branta leucopsis (0, 0) − 25. 10. 2017, Šturmovci, Ptujsko jezero, 1 1cy − 12. 1. 2017, Babinci, 1 os. (R. Šiško pisno) (L. Božič pisno) − 14. 1. 2017, Amerika, Ormoško jezero, 1 os. − 3. 11. 2017, Turnišče, Ptujsko jezero, 2 ad. (L. (L. Božič pisno) Božič, A., E., G. Vrezec, P. Vrh Vrezec pisno) − 28. 10. 2017, zadrževalnik Medvedce, 1 os. (E. − 10. 11. 2017, zadrževalnik Medvedce, 1 os. Horvat pisno) (M. Gamser pisno) − 10. 11. 2017, Ptuj, Ptujsko jezero, 2 ad. (L. Labod pevec Cygnus cygnus (13, 27) Božič pisno) − 1.–14. 2. 2017, HE Brežice, reka Sava, 2 os. (D. − 13. 12. 2017, Turnišče, Ptujsko jezero, 2 ad. (L. Klenovšek pisno) Božič pisno) − 30. 12. 2017, Šturmovci, Ptujsko jezero, 2 ad. (L. Božič pisno) Beloliska Melanitta fusca − 11. 3. 2017, Fontanigge, Sečoveljske soline, 15 Plamenec (17, 69) os. (B. Blažič ) Phoenicopterus roseus pisno − 6. 10. 2017, Fontanigge, Sečoveljske soline, 1 os. (A. Božič pisno) Črna raca Melanitta nigra − 22. 2.–29. 3. 2017, Žovneško jezero, 1 ♀ (M. Plevica Gamser, J. Novak ) Plegadis falcinellus pisno − 1. 1. 2017, Fontanigge, Sečoveljske soline, 1 os. (M. Sešlar ) Zimska raca pisno Clangula hyemalis − 28. 9. 2017, Amerika, Ormoško jezero, 8 os. − 7. 2.–29. 4. 2017, Šturmovci, Ptujsko jezero, (L. Božič, M. Gamser pisno) 1–3 os. (1 ♂, 2 ♀) (L. Božič ) pisno − 5.–10. 10. 2017, Amerika, Ormoško jezero, 2 − 8. 1.–7. 2. 2017, Ormoško jezero, 2 os. (1 ♂, 1 ad. (L. Božič pisno) 2cy ♀) (L. Božič pisno) − 17. 2. 2017, zadrževalnik Medvedce, 1 ♂ (M. Kravja čaplja (34, 97)1 Gamser ) Bubulcus ibis pisno − 17. 5. 2017, zadrževalnik Medvedce, 1 os. v − 9.–17. 3. 2017, Amerika, Ormoško jezero, 1 ♀ svatovskem perju (D. Bordjan ) (L. Božič ) pisno pisno − 18. 9. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser ) Ledni slapnik (7, 16) pisno Gavia immer − 20. 12. 2017–25. 1. 2018, Cerkno, 1 os. (D. − 24. 11.–17. 12. 2017, Prule, Ljubljana, reka Vidmar ) Ljubljanica, 1 ad. (Poljanec 2017) pisno Mali klinkač (8, 8) Sredozemski viharnik Clanga pomarina Puffinus yelkouan − 21. 5. 2017, Kozlarjeva gošča, Ljubljansko − 17.–18. 6. 2017, morje pred Piranom, do 75 os. barje, 1 os. (Šere 2017) (Hanžel 2017b) Veliki klinkač (25, 27) Zlatouhi ponirek Clanga clanga Podiceps auritus − 15. 11. 2017, zadrževalnik Medvedce, 1 1cy − 1. 1. 2017, Fontanigge, Sečoveljske soline, 3 os. (Bordjan 2017) (M. Sešlar pisno) − 11. 2.–11. 3. 2017, Fontanigge, Sečoveljske Kraljevi orel (9, 9) soline, 1–11 os. (B. Blažič ) Aquila heliaca pisno − 12. 3. 2017, Griško polje, Senožeče, 1 imm. (I. − 9. 4. 2017, Piran, 1 os. (J. Hanžel ) pisno Kljun ) − 20. 9. 2017, zadrževalnik Medvedce, 1 os. (M. pisno Gamser pisno)

1 Od 1. 1. 2015 ne obravnavamo več opazovanj iz Naravnega rezervata Škocjanski zatok, saj se vrsta tam redno pojavlja vse leto. / From 1 Jan 2015, the Committee no longer assesses records from Škocjanski Zatok Nature Reserve, where the species is regularly present throughout the year. 178 Acrocephalus 39 (178/179): 177–182, 2018

Stepski lunj (50, 52) Peščenec Calidris alba − 15. 4. 2017, zadrževalnik Medvedce, 1 ♀ (D. − 18. 8. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. Bordjan pisno) Božič pisno) − 25. 4. 2017, Mengeš, 1 2cy (D. Bordjan pisno) − 18. 9. 2017, zadrževalnik Medvedce, 1 juv. (M. − 10. 9.–15. 9. 2017, Šikole, 1 ad. ♂ (M. Gamser Gamser pisno) pisno) − 25. 9. 2017, Pobrežje, Ptujsko jezero, 1 juv. (L. − 8. 11. 2017, Dolenje Jezero, Cerkniško jezero, Božič pisno) 1 2cy ♀ (M. Gamser pisno) Prekomorski prodnik Calidris melanotos (4, 4) Koconoga kanja Buteo lagopus − 6. 7. 2017, zadrževalnik Medvedce, 1 os. (M. − 5. 2. 2017, Velike Bloke, 1 os. (A. Kotnik Gamser pisno) pisno) − 4–17. 2. 2017, zadrževalnik Medvedce, do 3 Čoketa Gallinago media (15, 15) os. (D. Bordjan, M. Gamser pisno) − 13. 9. 2017, Ig, Ljubljansko barje, 1 os. (M. − 8. 11. 2017, letališče Lesce, 1 os. (B. Blažič, B. Denac pisno) Kozinc, A. Mulej pisno) − 8. 11. 2017, Bloke, 1 os. (P. Veenvliet pisno) Ploskokljuni liskonožec Phalaropus fulicarius (6, 6) − 23. 11. 2017, Divača, 1 os. (M. Hario pisno) − 3. 11. 2017, Turnišče, Ptujsko jezero, 1 ad. − 2. 12. 2017, zadrževalnik Medvedce, 1 1cy (D. ♂ (kadaver; zbirka Prirodoslovnega muzeja Bordjan pisno) Slovenije 2017/378) (A., E., G. Vrezec, P. Vrh Vrezec pisno) Rjasta kanja Buteo rufinus(7, 7) − 29. 8. 2017, Kalič, 1 os. (M. Gamser pisno) Triprsti galeb Rissa tridactyla − 10. 11. 2017, zadrževalnik Medvedce, 1 1cy Dular Charadrius morinellus (19, 42) (M. Gamser pisno) − 22.–23. 9. 2017, planina Klek, Pokljuka, 1 os. (R. Iskra pisno) Veliki galeb Larus marinus (6, 8) − 8. 9. 2017, Podova, 1 2cy (M. Gamser pisno) Kamenjar Arenaria interpres Lopatasta govnačka Stercorarius pomarinus (4, 5) − 11. 9. 2016, Amerika, Ormoško jezero, 3 os. − 18. 9. 2017, zadrževalnik Medvedce, 1 ad. (M. (L. Božič pisno) Gamser pisno)

Veliki prodnik Calidris canutus Bodičasta govnačka Stercorarius parasiticus (11, 11) − 7. 8. 2017, Fontanigge, Sečoveljske soline, 1 os. − 23. 5. 2017, Ptujsko jezero, 1 ad. (temna (A. Božič, M. Sešlar pisno) oblika) (M. Gamser pisno) − 2. 9. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. − 26. 7. 2017, zadrževalnik Medvedce, 1 3cy (M. Božič pisno) Gamser pisno) − 3. 9. 2017, Fontanigge, Sečoveljske soline, 1 os. (M. Denac, A, Kotnik, M. Mlakar Medved, Močvirska uharica Asio flammeus(33, 49) M. Sešlar pisno) − 28. 11. 2016–6. 3. 2017, Kozlarjeva gošča, − 18. 9. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. Ljubljansko barje, do 14 os. (Denac 2017c, Božič, M. Gamser pisno) Hanžel 2017) − 5.–6. 10. 2017, Ormoško jezero, 1 juv. (L. − 11. 2.–18. 4. 2017, zadrževalnik Medvedce, Božič pisno) do 2 os. (T. Basle, D. Bordjan, M. Gamser pisno) Ploskokljunec Calidris falcinellus (12, 29) − 20. 9. 2017, zadrževalnik Medvedce, 1 os. (M. − 29. 8.–3. 9. 2017, Fontanigge, Sečoveljske Gamser pisno) soline, 1 obr. (Vrezec & Fekonja 2018) − 10. 11. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) 179 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti

Zlatovranka Coracias garrulus Potrjena opazovanja iz kategorije D / Accepted − 16. 5. 2017, Brestovica pri Povirju, 1 ad. Category D records (Denac 2017b) − 26. 7. 2017, Vodice, 1 ad. (Blažič 2017a) Mala gos Anser erythropus (0, 0) − 17. 2.–18. 4. 2017, Družmirsko jezero, 1 os. Rjavoglavi srakoper Lanius senator (A. Bolčina, M. Gabor, J. Gojznikar, R. − 13. 5. 2017, Lesce, 1 ♂ (A. Mulej pisno) Kraševec pisno) 19. 5. 2017, Prhajevo, Velike Lašče, 1 ♂ (Denac K. 2017) Regionalne redkosti / Regional rarities − Kratkoprsti škrjanček Calandrella brachydactyla (14, 45) Pritlikavi kormoran Microcarbo pygmeus − 13.–14. 5. 2017, Ig, Ljubljansko barje, 2 os. (A. − 4. 7. 2017, Teharsko jezero, 1 os. (A. Božič, M. Kotnik pisno) Gamser pisno)

Mušja listnica Phylloscopus inornatus (19, 19) Školjkarica Haematopus ostralegus − 27. 10. 2017, Lipe, Ljubljansko barje, 1 1cy − 3. 5. 2017, Pobrežje, Ptujsko jezero, 1 ad. (L. obr. (Vidic 2017) Božič pisno)

Plevelna trstnica Acrocephalus agricola (8, 8) Srebrni galeb Larus argentatus − 16. 9. 2016, Verd, Vrhnika, 1 1cy obr. (Vrezec − 19. 2. 2017, Zbiljsko jezero, 1 2cy (M. Sešlar & Fekonja 2017) pisno) − 31. 7. 2017, Verd, Vrhnika, 1 1cy obr. (Vrezec & Fekonja 2018) Črnomorski galeb Larus cachinnans − 27. 1. 2017, HE Moste, reka Sava, 1 2cy Svetlooka penica Sylvia crassirostris (3, 3) (Rutnik 2017) − 8. 4. 2017, Hrastovlje, 1 ♂ (Šere 2017b) − 11. 3. 2017, Fontanigge, Sečoveljske soline, 1 2cy (A. Božič pisno) Rožnati škorec Pastor roseus (16, 150) − 23. 5. 2017, Naravni rezervat Škocjanski Kaspijska čigra Hydroprogne caspia zatok, 1 os. (I. Brajnik pisno) − 6. 4. 2017, zadrževalnik Medvedce, 3 os. (B. Blažič pisno) Snežni strnad Plectrophenax nivalis − 7. 4. 2017, Žovneško jezero, 2 os. (J. − 13. 2. 2017, HE Brežice, 1 os. (D. Klenovšek Gojznikar pisno) pisno) Mala čigra Sternula albifrons Beloglavi strnad Emberiza leucocephalos (18, 19) − 17. 5. 2017, Turnišče, Ptujsko jezero, 2 ad. (D. − 23. 10. 2017, letališče Lesce, 1 ad. ♂ (Blažič Bordjan, L. Božič pisno) 2017b) − 23. 5. 2017, Turnišče, Ptujsko jezero, 1 ad. (M. Gamser pisno) Mali strnad Emberiza pusilla (22, 22) − 10. 9. 2017, Amerika, Ormoško jezero, 3 ad. − 13. 10. 2017, Bistrica, Šentrupert, 1 1cy w./1cy (L. Božič pisno) (Vrezec & Fekonja 2018) Taščična penica Sylvia cantillans − 19. 5. 2017, Žovneško jezero, 1 ♂ (J. Leskošek pisno)

Rjava cipa Anthus campestris

180 Acrocephalus 39 (178/179): 177–182, 2018

− 6. 5. 2017, Ptujsko jezero, 2 os. (B. Blažič, A. Božič, M. Denac, R. Lobnik, M. Mlakar Aleksander Psittacula krameri (6, 12) Medved, M. Sešlar pisno) − 28. 1. 2017, Fužine, Ljubljana, 1 os. (I. A. Božič pisno) Potrjena opazovanja iz kategorije C / Accepted Category C records Zebrica Taeniopygia guttata (0, 0) − 6. 7. 2017, Ig, Ljubljansko barje, 1 os. (E. Brkati ser Gypaetus barbatus (4, 4) Gašparič pisno) − 17. 6. 2017, Velika Zelnarica, 1 1cy (Denac 2017a) Zavrnjena opazovanja / Rejected records

Potrjena opazovanja iz kategorije E / Accepted Leta 2017 ni bilo zavrnjenih opazovanj. / There Category E records were no rejected records in 2017.

Tibetanska gos Anser indicus (4, 5) Summary − 12. 4. 2009, Hraške mlake, Smlednik, 1 os. (M. Cerar pisno) This report by the Slovenian Rarities Committee presents records of rare bird species in Slovenia in Moškatna bleščavka Cairina moschata (76, 194) 2017, with some addenda for previous years. The − 28. 12. 2017, zadrževalnik Medvedce, 1 os. numbers in brackets refer to the number of records (A., E., G. Vrezec, P. Vrh Vrezec pisno) (first number) and individuals (second number) recorded between 1 Jan 1950 and 31 Dec 2016. Nevestica Aix sponsa (22, 24) Since 1 Jan 2013, submission to the Committee − 14. 1. 2017, Gazice, Cerklje ob Krki, 3 os. (1 ♂, has been required for 37 additional species, 17 of 2 ♀) (G. Bernard, A. Božič, J. Vidmar pisno) which are regional rarities. Records of these species − 16. 2. 2017, Ptujsko jezero, 1 ♀ (M. Gamser are not numbered, since records from previous pisno) years were not collected by the Committee. The − 18. 2. 2017, Nova Gorica, 1 ♂ (S. Tzar pisno) Barnacle Goose Branta leucopsis was first recorded in Category A, in addition to previous Category Mandarinka Aix galericulata D and E records. Other notable observations − 14. 1. 2017, Gazice, Cerklje ob Krki, 1 ♂ (G. were the third record of Red-breasted Goose Bernard, A. Božič, J. Vidmar pisno) Branta ruficollis, fifth records of Lammergeier − 27. 1. 2017, Trnovo, reka Ljubljanica, Ljubljana Gypaetus barbatus and Pomarine Skua Stercorarius 1 ♀ (M. Gaberšek pisno) pomarinus, and seventh records of Greater Black- − 29. 1. 2017, Lent, Maribor, reka Drava, 1 ♂ (M. backed Gull Larus marinus and Red Phalarope Sešlar pisno) Phalaropus fulicarius. The list of birds recorded in Slovenia (as of 31 Dec 2017) contains 390 species Virginijski kolin Colinus virginianus (8, 18) (375 in Category A, 6 in Category B, 9 exclusively − 5. 6. 2017, Sečovlje, 1 os. (A. Božič pisno) in Category C; 4 species are both in Categories A and C). Category D contains 7 species, while Klavžar Geronticus eremita (12, 21) Category E contains 39, two of which are classified − 5. 6. 2017, Groblje pri Prekopi, Šentjernejsko into Subcategory E*. These two categories are not polje, 1 os. (E. Šinkec pisno) part of the list. − 6. 6. 2017, Vopovlje, Cerklje na Gorenjskem, 1 os. (B. Blažič, M. Sešlar pisno) Literatura − 1. 7.–8. 7. 2017, Kranj, 1 os. (M. Bežek, G. Ceferin pisno) Blažič B. (2017a): Zlatovranka Coracias garrulus. – − 22. 8. 2017, letališče Lesce, 1 os. (G. Kobler Acrocephalus 38 (174/175): 220–221. pisno) 181 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti

Blažič B. (2017b): Beloglavi strnad Emberiza leucocephala. – Acrocephalus 38 (174/175): 226. Bordjan D. (2017): Veliki klinkač Aquila clanga. – Acrocephalus 38 (174/175): 218. Božič L. (2017): Rezultati januarskega štetja vodnih ptic leta 2017 v Sloveniji. – Acrocephalus 38 (174/175): 203–215. Denac K. (2017): Rjavoglavi srakoper Lanius senator. – Acrocephalus 38 (172/173): 71. Denac M. (2017a): Brkati ser Gypaetus barbatus. – Acrocephalus 38 (172/173): 63–64. Denac M. (2017b): Zlatovranka Coracias garrulus. – Acrocephalus 38 (172/173): 65. Denac M. (2017c): Močvirska uharica Asio flammeus. – Acrocephalus 38 (172/173): 66–67. Gill F., Donsker D. (eds.) (2018): IOC World Bird List (v 8.2). DOI: 10.14344/IOC.ML.8.2. – [www. worldbirdnames.org], 10/12/2018. Hanžel J. (2016): Redke vrste ptic v Sloveniji v letu 2015 – Poročilo Nacionalne komisije za redkosti. – Acrocephalus 37 (168/169): 69–78. Hanžel J. (2017a): Redke vrste ptic v Sloveniji v letu 2016 – Poročilo Nacionalne komisije za redkosti. – Acrocephalus 38 (172/173): 21–30. Hanžel J. (2017b): Sredozemski viharnik Puffinus yelkouan. – Acrocephalus 38 (174/175): 218. Hanžel J., Šere D. (2011): Seznam ugotovljenih ptic Slovenije s pregledom redkih vrst. – Acrocephalus 32 (150/151): 143–203. Poljanec L. (2017): Ledni slapnik Gavia immer. – Acrocephalus 38 (174/175): 217–218. Rutnik K. (2017): Črnomorski galeb Larus cachinnans. – Acrocephalus 38 (174/175): 220. Šere D. (2017a): Mali klinkač Aquila pomarina. – Acrocephalus 38 (172/173): 65. Šere D. (2017b): Svetlooka penica Sylvia crassirostris. – Acrocephalus 38 (172/173): 69. Vidic B. (2017): Mušja listnica Phylloscopus inornatus. – Acrocephalus 38 (172/173): 70. Vrezec A., Fekonja D. (2017): Poročilo o obročkanju ptic v Sloveniji v letu 2016 in pojavljanje mušje listnice Phylloscopus inornatus v zadnjih 25 letih v Sloveniji. – Acrocephalus (174/175): 171–202. Vrezec A., Fekonja D. (2018): Poročilo o obročkanju ptic v Sloveniji leta 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017. – Acrocephalus 39 (178/179): 129–163.

Prispelo / Arrived: 5. 2. 2019 Sprejeto / Accepted: 3. 3. 2019

182 Acrocephalus 39 (178/179): 177–182, 2018

DODATEK 1 / APPENDIX 1 Dokumentarne fotografije izbranih opazovanj iz leta 2017, ki doslej še niso bile objavljene v slovenskih tiskanih virih z navedenim krajem, datumom in številom osebkov. Documentary photos from 2017, so far unpublished in Slovenian printed sources with site name, date and number of individuals given.

(1) (2)

(3) (4)

(5) (6)

Slike 1–6 / Figures 1–6: (1) belolična gos Branta leucopsis, 12. 1. 2017, Babinci (foto: R. Šiško); (2) belolična gos Branta leucopsis, 14. 1. 2017, Ormoško jezero (foto: L. Božič); (3) belolična gos Branta leucopsis, 28. 10. 2017, zadrževalnik Medvedce (foto: E. Horvat); (4) črna raca Melanitta nigra, Žovneško jezero, 22. 2. 2017 (foto: J. Novak); (5) veliki klinkač Clanga clanga, 15. 11. 2017, zadrževalnik Medvedce (foto: D. Bordjan); (6) kraljevi orel Aquila heliaca, 12. 3. 2017, Griško polje, Senožeče (foto: I. Kljun). 183 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti

Nadaljevanje dodatka 1 / Continuation of Appendix 1

(7) (8)

(9) (10)

Slike 7–10 / Figures 7–10: (7) ploskokljuni liskonožec Phalaropus fulicarius, 3. 11. 2017, Ptujsko jezero (foto: A. Vrezec); (8) rjavoglavi srakoper Lanius senator, 13. 5. 2017, Lesce (foto: A. Mulej); (10–11) mala gos Anser erythropus, 17. 2. 2017, Družmirsko jezero (foto: J. Gojznikar

184 Acrocephalus 39 (178/179): 185–195, 2018 10.1515/acro-2018-0014

Rezultati januarskega sočasno s štetjem drugih vodnih ptic popisali s pomočjo predvajanja posnetka oglašanja. Metoda štetja vodnih ptic leta 2018 je podrobneje opisana v Božič (2002). V štetje so v Sloveniji bile tako kot vsako leto vključene vrste iz naslednjih skupin ptic: plovci Anatidae, slapniki Gaviidae, Results of the January 2018 waterbird kormorani Phalacrocoracidae, čaplje Ardeidae, census in Slovenia štorklje Ciconiidae, plamenci Phoenicopteridae, ponirki Podicipedidae, tukalice Rallidae, pobrežniki Charadriiformes ter belorepec Haliaeetus albicilla, rjavi lunj Circus aeruginosus, Luka Božič močvirska uharica Asio flammeus, vodomec Alcedo atthis in povodni kos Cinclus cinclus. DOPPS – Društvo za opazovanje in proučevanje ptic Januar 2018 je bil občutno toplejši od Slovenije, Kamenškova 18, SI–2000 Maribor, Slovenija, dolgoletnega povprečja, saj je bila povprečna e–mail: [email protected] mesečna temperatura v pretežnem delu Slovenije višja za 3 do 5 °C; nekoliko manjši je bil le odklon Januarsko štetje vodnih ptic (IWC) poteka v na Goriškem. Najvišja izmerjena temperatura Sloveniji od leta 1988, leta 1997 pa je bilo prvič v januarju je v kar nekaj krajih presegla 15 °C, zastavljeno kot celosten, koordiniran in stan- odkloni povprečne dnevne temperature pa so dardiziran popis vodnih ptic na ozemlju celotne bili marsikje največji ravno v tednu pred štetjem. Slovenije (Štumberger 1997). Od takrat naprej Dolgoletno povprečje padavin je bilo preseženo v štetje pokriva vse večje reke, Obalo in večino več kot polovici Slovenije, največ v delu Dolenjske in pomembnejših stoječih vodnih teles v državi Zasavja. Manj od povprečja je bilo padavin na Obali, (Štumberger 1997, 1998, 1999, 2000, 2001, 2002, delu Gorenjske, na Koroškem in v severovzhodni 2005, Božič 2005, 2006, 2007, 2008a, 2008b, 2010, Slovenije, najbolj izrazito na vzhodu Pomurja. 2011, 2012, 2013, 2014, 2015, 2016, 2017). K temu sta December 2017 je bil v večjem delu države toplejši pripomogla predvsem dobra organizacija in veliko kot običajno, vendar pa temperaturni odkloni, z število sodelujočih prostovoljnih popisovalcev. izjemo skrajnega severovzhoda in jugovzhoda, niso V poročilu so predstavljeni rezultati januarskega presegli 2 °C. V delu Gorenjske in na Goriškem štetja vodnih ptic leta 2018, ki je v podobnem je povprečna mesečna temperatura nekoliko obsegu potekalo že dvaindvajsetič zapored. zaostajala za dolgoletnim povprečjem. Padavine so Leta 2018 smo vodne ptice šteli 13. in 14. decembra povsod v Sloveniji presegle dolgoletno januarja. Organizacija, potek, uporabljena metoda povprečje, bolj v zahodni polovici države, kjer so na štetja in popisni obrazci so bili takšni kot leta 1997 Obali zabeležili do 272 % dolgoletnega povprečja (Štumberger 1997). Pri obdelavi in predstavitvi (Cegnar 2017, 2018). Prva polovica januarja bila rezultatov smo upoštevali tudi nekatere podatke, izredno vodnata, s pretoki rek približno 50 % nad zbrane zunaj organiziranega štetja, nekaj dni povprečjem, reke so se ponekod razlile na območjih pred ali po koncu tedna, predvidenega za štetje. pogostih poplav, ojezerjena so bila kraška polja. Kormorane Phalacrocorax carbo smo na števnih Podobne razmere so bile tudi decembra, ko je območjih Mure, Drave in Savinje sistematično bila vodnatost rek v povprečju enkrat večja kot v posebej šteli na znanih in domnevnih skupinskih dolgoletnem primerjalnem obdobju. Ob poplavah prenočiščih. Na skupinskih prenočiščih smo šteli v zahodni in osrednji Sloveniji so bile ponekod tudi pritlikave kormorane P. pygmeus, velike bele dosežene 20–30-letne povratne dobe velikih čaplje Ardea alba, zvonce Bucephala clangula, male pretokov (Strojan 2017, 2018). V času štetja je žagarje Mergellus albellus, velike žagarje Mergus nad severovzhodno Evropo prevladovalo območje merganser in galebe Laridae na števnem območju visokega zračnega tlaka, nad južnim Balkanom pa Drave ter velike žagarje na števnem območju ciklonsko območje. Z vetrovi vzhodnih smeri je Savinje. Mokože Rallus aquaticus smo na ptujskih nad naše kraje pritekal postopno hladnejši in vlažen studenčnicah in potoku Črnec (Murska ravan) zrak. Na Primorskem je bilo zmerno oblačno, pihala 185 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji

Slika 1: Popisni odseki januarskega štetja vodnih ptic (IWC) na rekah in obalnem morju v Sloveniji leta 2018; črne črte označujejo popisane, bele pa nepopisane odseke.

Figure 1: Survey sections of the January 2018 waterbird census (IWC) on the rivers and coastal sea in Slovenia, with black lines denoting examined and white lines unexamined sections

Slika 2: Lokalitete, popisane med januarskim štetjem vodnih ptic (IWC) v Sloveniji leta 2018; beli krogi označujejo stoječe vode, temni krogi pa potoke in manjše reke.

Figure 2: Localities surveyed during the January 2018 waterbird census (IWC) in Slovenia, with white circles denoting standing waters, and dark circles designating smaller rivers and streams 186 Acrocephalus 39 (178/179): 185–195, 2018

je šibka do zmerna burja, ki pa je drugi dan oslabela. Sodelovalo je 246 popisovalcev. Pregledali smo Drugod je bilo oblačno, občasno so bile ponekod 415 popisnih odsekov na rekah in obalnem morju rahle padavine, vendar je bila količina padavin v skupni dolžini 1415,6 km (tabela 1), kar je 77,4 % večinoma majhna. Najvišje dnevne temperature so celotne dolžine odsekov, vključenih v popis. Poleg bile od −1 do nekaj stopinj nad 0, na Primorskem do tega smo pregledali tudi 211 lokalitet (168 stoječih 11 °C (Markošek 2018). V času štetja 2017 so bila in 43 tekočih voda) od skupno 331 (tabela 2), vsa popisana vodna telesa nezaledenela. kar je 63,7 % vseh lokalitet, evidentiranih v bazi

Tabela 1: Število vseh in pregledanih popisnih odsekov na rekah in obalnem morju ter njihova skupna dolžina na posameznem števnem območju in v celotni državi med januarskim štetjem vodnih ptic (IWC) leta 2018 v Sloveniji

Table 1: Number of all and surveyed sections on the rivers and coastal sea, as well as their total length in separate count areas and in the entire country during the January 2018 waterbird census (IWC) in Slovenia

Števno območje/ Št. vseh popisnih Dolžina/ Št. pregledanih odsekov/ Dolžina/ Count area odsekov / Total no. of Length (km) No. of sections surveyed Length (km) survey sections Mura 61 220,2 56 198,0 Drava 138 374,4 127 333,5 Savinja 38 141,5 36 130,5 Zgornja Sava / Upper Sava 113 387,1 101 324,3 Spodnja Sava / Lower Sava 71 272,7 50 181,1 Kolpa 14 118,0 5 38,6 Notranjska in Primorska 44 272,9 28 167,0 Obala / Coastland 12 42,6 12 42,6 Skupaj / Total 491 1829,4 415 1415,6

Tabela 2: Število vseh in pregledanih lokalitet (stoječih voda, potokov in manjših rek) na posameznem števnem območju in v celotni državi med januarskim štetjem vodnih ptic (IWC) leta 2018 v Sloveniji

Table 2: Number of all and surveyed localities (standing waters, streams and smaller rivers) in separate count areas and in the entire country during the January 2018 waterbird census (IWC) in Slovenia

Števno območje/ Št. vseh lokalitet – Št. vseh lokalitet – Št. pregledanih lokalitet Št. pregledanih Count area stoječe vode/ tekoče vode/ - stoječe vode/ lokalitet - tekoče vode/ Total no. of localities Total no. of No. of surveyed localities No. of surveyed (standing waters) localities (streams) (standing waters) localities (streams) Mura 81 10 67 7 Drava 56 23 38 7 Savinja 19 6 14 5 Zgornja Sava/ 24 15 18 5 Upper Sava Spodnja Sava/ 11 10 4 4 Lower Sava Kolpa 1 4 1 3 Notranjska in 21 33 16 12 Primorska Obala / Coastland 14 3 10 0 Skupaj / Total 227 104 168 43 187 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji

januarskega štetja vodnih ptic do vključno leta drugačen od običajnega. Kormoran in čopasta 2018. Popisne odseke, pregledane v štetju leta 2018, črnica še nikoli nista bila tako visoko na seznamu prikazuje slika 1, razširjenost pregledanih lokalitet najštevilnejših vrst, liska pa še nikoli doslej tako pa slika 2. nizko. Še bolj izrazito to velja za sivo gos Anser Skupaj smo prešteli 45.194 vodnih ptic, anser (6. najštevilnejša vrsta), ki v nobenem izmed pripadajočih 58 vrstam. Poleg tega smo zabeležili predhodnih štetij ni bila med 15 najštevilnejšimi še tri druge taksone (domačo gos, domačo raca vrstami. Število 1000 preštetih osebkov so leta in en vrstno nedoločen takson). Tako skupno 2018 presegli še sivka Aythya ferina, labod grbec število vodnih ptic kot število zabeleženih vrst Cygnus olor, rumenonogi galeb Larus michahellis, sta bila podpovprečna (51.162 / 60) in manjša kot zvonec Bucephala clangula in kreheljc Anas crecca. v prejšnjem štetju. Skupno število vodnih ptic je Sivka in zvonec sta omenjeno mejo tokrat presegla bilo v zadnjih 22 letih manjše le v štetjih leta 1997 sedmič, nazadnje leta 2014 oz. 2011, ko sta bila tudi in 1998. Tako kot v vseh štetjih doslej smo tudi zadnjič pred letom 2018 med 10 najštevilnejšimi leta 2018 največ vodnih ptic prešteli na števnem zabeleženimi vrstami. Rezultati januarskega štetja območju reke Drave, in sicer 20.103. To je 44,5 % vodnih ptic leta 2018 po shemi razdelitve na vseh vodnih ptic, preštetih v Sloveniji. S tem je bil osem števnih območij (Božič 2007, 2008a, 2008b, odstotek vodnih ptic na tem števnem območju 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017) blizu povprečnemu (43,3 %), samo število pa so predstavljeni v tabeli 3. V dodatku 1 so števna občutno manjše od povprečnega (22.165). Tako kot območja podrobneje razčlenjena na posamezne v večini štetij doslej števila 10.000 preštetih vodnih reke in manjša območja z večjim številom lokalitet, ptic nismo presegli na nobenem drugem števnem kot so poplavne ravnice, doline, ravnine ipd. območju. Leta 2018 na nobenem števnem območju Leta 2018 smo prvič med januarskim štetjem nismo prešteli največjega ali najmanjšega števila vodnih ptic zabeležili plevico Plegadis falcinellus vodnih ptic v dosedanjih januarskih štetjih. Med (Škocjanski zatok), kar je verjetno prvi podatek najmanjšimi doslej so bila števila vodnih ptic na o zimskem pojavljanju te vrste v Sloveniji (npr. območjih Mure in Zgornje Save (najmanjše po letu Sovinc 1994), objavljenih podatkov pa ni tudi za 2004) in Obale (drugo najmanjše število doslej). druga severnojadranska mokrišča (Guzzon et al. Na območjih Kolpe ter Notranjske in Primorske sta 2005, Kravos et al. 2014). Vrsta v manjšem številu bili števili vodnih ptic večji od povprečja in največji prezimuje v Sredozemlju, večinoma pa v podsaharski po letu 2012 oz. 2013. Na območju Savinje je bilo Afriki (Bauer et al. 2005). Od redkejših vrst smo število vodnih ptic večje od povprečja, vendar popisali nilsko gos Alopochen aegyptiacus (drugič najmanjše po letu 2012. Majhna števila vodnih zapored v glinokopu Volčja Draga, Primorska; ptic so vsaj ponekod posledica velike vodnatosti tretje opazovanje v januarskem štetju vodnih ptic), rek v času popisa – popisovalci so poročali o zlatouhega ponirka Podiceps auritus (Strunjanski kalni in deroči vodi s srednje Save, Ljubljanice in zaliv in Planinsko polje; devetič v januarskem Krke. Poplavljena kraška polja na Notranjskem štetju vodnih ptic), pukleža Lymnocryptes minimus so privabila številne vodne ptice (največ po letu (Radensko polje; tretje zaporedno in skupaj peto 2013), med katerimi so bile tudi nekatere za ta del opazovanje v januarskem štetju vodnih ptic), sloko Slovenije neobičajne vrste. Scolopax rusticola (zadrževalnik Medvedce; deveto Mlakarica Anas platyrhynchos je bila leta opazovanje v januarskem štetju vodnih ptic, prvo 2018, tako kot med vsemi štetji doslej, daleč po 2010) in rjavega galeba Larus fuscus (Ptujsko najštevilnejša vrsta (18.415 os., 40,7 % vseh vodnih jezero, peto opazovanje v januarskem štetju vodnih ptic). Po številu preštetih osebkov sledijo kormoran ptic). Leta 2018 smo prešteli največ sivih gosi, (3112 os., 6,9 % vseh vodnih ptic), čopasta črnica duplinskih kozark Tadorna tadorna (skupaj z Aythya fuligula (2878, 6,4 % vseh vodnih ptic), letom 2014), dolgorepih rac Anas acuta, tatarskih rečni galeb Chroicocephalus ridibundus (2721 os., žvižgavk Netta rufina in čopastih črnic v okviru 6,0 % vseh vodnih ptic) in liska Fulica atra (2492 januarskih štetij vodnih ptic doslej. Razen tega je os., 5,5 % vseh vodnih ptic). S tem je bil vrstni bilo izmed vrst, ki se pojavljajo redno, konopnic red najštevilnejših vrst, z izjemo mlakarice, precej Anas strepera več le med štetjem leta 2008, rac 188 Acrocephalus 39 (178/179): 185–195, 2018

žličaric A. clypeata leta 2015, zelenonogih martincev et al. 2011 presežena na IBA Drava, Savinji med Tringa nebularia pa leta 2008. Med največjimi Mozirjem in sotočjem s Savo ter zgornji Savi s doslej so bila tudi števila preštetih beločelih gosi pritoki) sta to vrednost na navedenih delih rek že (večje le 2013 in 2017), moškatnih bleščavk (večje dosegla v preteklih štetjih, siva gos pa tokrat prvič v le trikrat pred tem), sivk (večje le 1998 in 2003), Sloveniji. Preštetih 1534 sivih gosi na zadrževalniku zvoncev (večje le trikrat pred tem), velikih žagarjev Medvedce sestavlja po najnovejših podatkih c. 2 % (večje le v predhodnih treh štetjih), kozic Gallinago regionalne populacije podvrste anser v Srednji gallinago (večje le 2006 in 2010) in pritlikavih Evropi/Severni Afriki (1 % mejna vrednost je 770 kormoranov. Najmanjše število v dvaindvajsetih os.). Na tej lokaliteti je bilo prešteto tudi večje letih januarskih štetij vodnih ptic smo leta 2018 število beločelih gosi, ki pa nove, povečane mejne zabeležili pri žvižgavki Anas penelope, liski in vrednosti za populacijo zahodne Sibirije/srednje kričavi čigri Sterna sandvicensis. Števila naslednjih Evrope (1600 os.), v nasprotju s štetjem leta 2017 vrst so bila med najmanjšimi doslej: kreheljcu tokrat ni doseglo. (manjše le 2004 in 2016), mlakarici (manjše le Streljanje vodnih ptic v času štetja je bilo 1997 in 1998), malem žagarju Mergellus albellus zabeleženo na nekaterih odsekih Drave, Voglajne, (manjše le v obdobju 2012–2014), srednjem žagarju Krke in Kolpe ter tudi na slovenski strani Mergus serrator (manjše le 2015), malem ponirku Ormoškega jezera, ki je zavarovano kot Rezervat Tachybaptus ruficollis (manjše le 2014), čopastem Ormoško jezero (Uradni vestnik občin Ptuj in ponirku Podiceps cristatus (manjše le 2004 in 2012), Ormož 1992). Plašenje kormoranov s strani ribičev zelenonogi tukalici Gallinula chloropus (manjše le je potekalo na nekaterih odsekih Save Bohinjke. trikrat pred tem), rečnem galebu (manjše le 2005) Zahvala: Vsem popisovalcem, ki so šteli vodne in rumenonogem galebu (manjše le trikrat pred ptice, in lokalnim koordinatorjem gre zasluga, da tem). Od redno pojavljajočih se vrst smo rdečegrlega smo ponovno in sistematično hkrati popisali vse slapnika Gavia stellata in spremenljivega prodnika pomembnejše vodne površine v Sloveniji. Brez Calidris alpina prešteli prvič po dveh letih brez nesebičnega truda to ne bi bilo mogoče. Vsem podatka, slednjega šele drugič v zadnjih petih letih. najlepša hvala. Drugič doslej v štetju nismo zabeležili črnoglavega galeba Larus melanocephalus. Summary Pri večini vrst z največjimi (siva gos, duplinska kozarka, dolgorepa raca) in velikimi In 2018, the International Waterbird Census zabeleženimi števili (veliki žagar, pritlikavi (IWC) was carried out in Slovenia on 13 and 14 kormoran, konopnica, raca žličarica, zelenonogi Jan. Waterbirds were counted on all larger rivers, martinec), kot tudi nekaterih vrstah z najmanjšimi along the entire Slovenian Coastland and on (žvižgavka, liska) oz. majhnimi zabeleženimi števili most of the major standing waters in the country. (mlakarica, mali in srednji žagar, oba omenjena During the census, in which 246 observers took ponirka, zelenonoga tukalica, rečni galeb), so part, 415 sections of the rivers and coastal sea rezultati štetja leta 2018 nadaljevanje dolgoročnih with a total length of 1,415.6 km and 211 other populacijskih trendov njihovih januarskih localities (168 standing waters and 43 streams) populacij v Sloveniji (Božič 2014, 2015, 2016, were surveyed. The census was characterized by 2017). Ti trendi zlasti pri vrstah z naraščajočimi mild winter conditions and unfrozen water bodies. populacijami večinoma ustrezajo recentnim Altogether, 45,194 waterbirds of 58 species were trendom širših regionalnih biogeografskih counted. Thus, the number of waterbirds and the populacij (Wetlands International 2018). number of species recorded were below the 22-year V štetju leta 2018 so na posameznih območjih tri average, the former was lower only during the vrste dosegle mejno vrednost 1 % za opredeljevanje 1997 and 1998 censuses. The highest numbers of mokrišč mednarodnega pomena (Wetlands waterbirds were counted in the Drava count area, International 2018). Pritlikavi kormoran (c. i.e. 20,103 individuals (44.5% of all waterbirds 1 % črnomorsko-mediteranske populacije na IBA in Slovenia). By far the most numerous species Drava) in veliki žagar (mejna vrednost iz Denac was Mallard Anas platyrhynchos (40.7% of all 189 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji

Tabela 3: Števila preštetih vodnih ptic na posameznem števnem območju in v celotni Sloveniji med januarskim štetjem vodnih ptic (IWC) leta 2018 (1 – Mura, 2 – Drava, 3 – Savinja, 4 – Zgornja Sava, 5 – Spodnja Sava, 6 – Kolpa, 7 – Notranjska in Primorska, 8 – Obala)

Table 3: Numbers of waterbirds counted in separate count areas and in the entire Slovenia during the January 2018 waterbird census (IWC) (1 – Mura, 2 – Drava, 3 – Savinja, 4 – Upper Sava, 5 – Lower Sava, 6 – Kolpa, 7 – Notranjska & Primorska, 8 – Coastland)

Vrsta / Species 1 2 3 4 5 6 7 8 Skupaj / Total Cygnus olor 368 585 100 196 115 3 14 120 1501 Anser albifrons 574 3 577 Anser anser 1534 3 220 4 1761 Alopochen aegyptiaca 1 1 domača gos / domestic goose 1 1 Tadorna tadorna 1 2 54 103 160 Aix galericulata 3 3 Cairina moschata 9 7 1 17 Anas penelope 6 106 2 20 46 180 Anas strepera 116 1 4 6 2 23 152 Anas crecca 128 458 80 28 28 27 113 270 1132 Anas platyrhynchos 2331 6421 1715 2355 2098 723 2108 664 18415 Anas acuta 18 2 1 8 1 30 Anas clypeata 1 1 145 147 Netta rufina 14 1 1 1 17 Aythya ferina 206 1230 55 41 3 8 6 1549 Aythya nyroca 1 1 Aythya fuligula 42 2419 75 322 11 9 2878 Bucephala clangula 1 1093 3 15 1 45 1158 Mergellus albellus 44 44 Mergus serrator 24 24 Mergus merganser 52 151 133 228 40 13 47 664 domača raca / domestic duck 1 1 Gavia stellata 1 1 2 Gavia arctica 2 1 19 22 Phalacrocorax carbo 496 694 349 451 739 34 68 281 3112 Phalacrocorax aristotelis 52 52 Phalacrocorax pygmeus 912 2 914 Botaurus stellaris 1 1 Egretta garzetta 1 125 126 Ardea alba 79 307 11 68 59 1 36 19 580 Ardea cinerea 79 272 132 163 199 14 59 56 974 Plegadis falcinellus 3 3 Tachybaptus ruficollis 7 173 9 131 98 17 19 42 496 Podiceps cristatus 8 42 20 17 43 2 5 60 197 Podiceps grisegena 2 2

190 Acrocephalus 39 (178/179): 185–195, 2018

Nadaljevanje tabele 3 / Continuation of Table 3

Vrsta / Species 1 2 3 4 5 6 7 8 Skupaj / Total Podiceps auritus 1 2 3 Podiceps nigricollis 1 7 2 35 43 88 Haliaeetus albicilla 6 2 1 9 Rallus aquaticus 10 32 2 3 2 4 53 Gallinula chloropus 22 19 18 18 17 4 2 13 113 Fulica atra 210 1291 151 265 39 7 529 2492 Vanellus vanellus 2 2 Calidris alpina 6 6 Lymnocryptes minimus 1 1 Gallinago gallinago 17 1 20 2 27 12 79 Scolopax rusticola 1 1 Numenius arquata 10 10 Actitis hypoleucos 1 5 6 Tringa ochropus 17 9 1 1 28 Tringa nebularia 22 22 Chroicocephalus ridibundus 2 877 5 10 2 1825 2721 Larus canus 30 366 2 1 32 4 435 Larus fuscus 2 2 Larus argentatus 4 4 Larus michahellis 178 3 2 174 1064 1421 Larus cachinnans 98 98 Larus michahellis / cachinnans 8 2 53 63 Sterna sandvicensis 7 7 Alcedo atthis 6 13 15 17 22 1 9 10 93 Cinclus cinclus 8 21 57 293 15 149 543 Skupaj / Total 4131 20103 2945 4660 3606 839 3282 5628 45194 waterbirds), followed by Cormorant Phalacrocorax Plegadis falcinellus (registered for the first time carbo (6.9% of all waterbirds), Tufted DuckAythya during the January Waterbird Censuses) deserves fuligula (6.4% of all waterbirds), Black-headed Gull special mention. Numbers of the following species Chroicocephalus ridibundus (6.0% of all waterbirds) were the highest so far recorded during the IWC: and Coot Fulica atra (5.5% of all waterbirds). The Greylag Goose Anser anser, Shelduck Tadorna number of 1,000 counted individuals was also tadorna (together with 2014), Pintail Anas acuta, surpassed by Pochard Aythya ferina, Mute Swan Red-crested Pochard Netta rufina and Tufted Cygnus olor, Yellow-legged Gull Larus michahellis, Duck. Number of Wigeons Anas penelope, Coots Goldeneye Bucephala clangula and Teal An. crecca. and Sandwich Terns Sterna sandvicensis were the Among the rarer recorded species, the Glossy Ibis lowest so far recorded during the IWC. 191 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji

Literatura najnovejših kriterijev za določitev mednarodno pomembnih območij za ptice (IBA). Končno Bauer H.-G., Bezzel E., Fiedler W. (eds.) (2005): Das poročilo (dopolnjena verzija). – DOPPS, Ljubljana. Kompendium der Vögel Mitteleuropas. – AULA Guzzon C., Tout P., Utmar P. (2005): I censimenti degli Verlag, Wiebelsheim. uccelli acquatici svernanti nelle zone umidae del Friuli Božič L. (2002): Zimsko štetje mokožev Rallus Venezia Giulia, anni 1997-2004. – Associazione Studi aquaticus v Sloveniji. – Acrocephalus 23 (110/111): Ornitologici e Ricerche Ecologiche del Friuli-Venezia 27–33. Giulia (A.S.T.O.R.E.-FVG). “Centro Stampa" di A. Božič L. (2005): Rezultati januarskega štetja vodnih Candito & F. Spanghero Snc, Monfalcone. ptic leta 2004 in 2005 v Sloveniji. – Acrocephalus 26 Kravos K., Candotto S., Perco F. (2014): Compendio (126): 123–137. Avifaunistico (1990-2013). – Riserva Naturale Foce Božič L. (2006): Rezultati januarskega štetja vodnih Isonzo. ptic leta 2006 v Sloveniji. – Acrocephalus 27 Markošek J. (2018): Razvoj vremena v januarju 2018. – (130/131): 159–169. Naše okolje. Bilten Agencije RS za okolje 25 (1): Božič L. (2007): Rezultati januarskega štetja vodnih 25–31. ptic leta 2007 v Sloveniji. – Acrocephalus 28 (132): Sovinc, A. (1994): Zimski ornitološki atlas Slovenije. – 23–31. Tehniška založba Slovenije, Ljubljana. Božič L. (2008a): Rezultati januarskega štetja vodnih Strojan I. (2017): Pretoki rek v decembru 2017. – Naše ptic leta 2008 v Sloveniji. – Acrocephalus 29 (136): okolje. Bilten Agencije RS za okolje 24 (12): 77–80. 39–49. Strojan I. (2018): Pretoki rek v januarju 2018. – Naše Božič L. (2008b): Rezultati januarskega štetja vodnih okolje. Bilten Agencije RS za okolje 25 (1): 43–46. ptic leta 2009 v Sloveniji. – Acrocephalus 29 Štumberger B. (1997): Rezultati štetja vodnih ptic v (138/139): 169–179. januarju 1997 v Sloveniji. – Acrocephalus 18 (80/81): Božič L. (2010): Rezultati januarskega štetja vodnih ptic 29–39. leta 2010 v Sloveniji. – Acrocephalus 31 (145/146): Štumberger B. (1998): Rezultati štetja vodnih ptic v 131–141. januarju 1998 v Sloveniji. – Acrocephalus 19 (87/88): Božič L. (2011): Rezultati januarskega štetja vodnih ptic 36–48. leta 2011 v Sloveniji. – Acrocephalus 32 (148/149): Štumberger B. (1999): Rezultati štetja vodnih ptic v 67–77. januarju 1999 v Sloveniji. – Acrocephalus 20 (92): Božič L. (2012): Rezultati januarskega štetja vodnih ptic 6–22. leta 2012 v Sloveniji. – Acrocephalus 33 (152/153): Štumberger B. (2000): Rezultati štetja vodnih ptic 109–119. v januarju 2000 v Sloveniji. – Acrocephalus 21 Božič L. (2013): Rezultati januarskega štetja vodnih ptic (102/103): 271–274. leta 2013 v Sloveniji. – Acrocephalus 34 (156/157): Štumberger B. (2001): Rezultati štetja vodnih ptic v 93–103. januarju 2001 v Sloveniji. – Acrocephalus 22 (108): Božič L. (2014): Rezultati januarskega štetja vodnih ptic 171–174. leta 2014 v Sloveniji. – Acrocephalus 35 (160/161): Štumberger B. (2002): Rezultati štetja vodnih ptic 73–83. v januarju 2002 v Sloveniji. – Acrocephalus 23 Božič L. (2015): Rezultati januarskega štetja vodnih ptic (110/111): 43–47. leta 2015 v Sloveniji. – Acrocephalus 36 (164/165): Štumberger B. (2005): Rezultati štetja vodnih ptic v 57–67. januarju 2003 v Sloveniji. – Acrocephalus 26 (125): Božič L. (2016): Rezultati januarskega štetja vodnih ptic 99–103. leta 2016 v Sloveniji. – Acrocephalus 37 (170/171): Uradni vestnik občin Ptuj in Ormož (1992): Odlok 209–219. o razglasitvi naravnih znamenitosti v občini Ormož Božič L. (2017): Rezultati januarskega štetja vodnih ptic (št. 37/92). leta 2017 v Sloveniji. – Acrocephalus 38 (174/175): Wetlands International (2018): Waterbird 203–215. Population Estimates. – [http://wpe.wetlands.org], Cegnar T. (2017): Podnebne razmere v decembru 24/12/2018. 2017. – Naše okolje. Bilten Agencije RS za okolje 24 (12): 3–27. Prispelo / Arrived: 18. 1. 2019 Cegnar T. (2018): Podnebne razmere v januarju 2018. – Sprejeto / Accepted: Naše okolje. Bilten Agencije RS za okolje 25 (1): 31. 1. 2019 3–24. Denac K., Mihelič T., Božič L., Kmecl P., Jančar T., Figelj J., Rubinić B. (2011): Strokovni predlog za revizijo posebnih območij varstva (SPA) z uporabo 192 Acrocephalus 39 (178/179): 185–195, 2018

DODATEK / APPENDIX 1

Število preštetih vodnih ptic v januarskem štetju leta 2018 v Sloveniji (M – Mura, ŠČ – Ščavnica, LD – Ledava, MR – Mura razno: jezera, ribniki, gramoznice, mrtvice in potoki v Pomurju ter bližnji okolici, DA – Drava Alpe: meja z Avstrijo pri Libeličah–Selnica ob Dravi, MM – Meža in Mislinja, D – Drava: Selnica ob Dravi–meja s Hrvaško pri Središču ob Dravi, DV – Dravinja, P – Pesnica, DPP – Dravsko in Ptujsko polje: ribniki, gramoznice, kanali, potoki in polja na Dravskem in Ptujskem polju ter bližnji okolici, S – Savinja (vključuje Pako in Voglajno), ŠAL – Šaleška jezera: Škalsko, Velenjsko, Šoštanjsko in Gabrško jezero, SR – Savinja razno: jezera, ribniki, manjše reke in potoki na Savinjski ravni ter v bližnji okolici, ZGS – zgornja Sava: Sava Bohinjka, Sava Dolinka, Sava do Gornje Save (Kranj), vključuje Radovno, Tržiško Bistrico in Kokro, SOR – Selška Sora, Poljanska Sora in Sora, SRS – srednja Sava: Gornja Sava (Kranj)–Breg pri Litiji, KBI – Kamniška Bistrica, LB – Ljubljanica, SAR – Savska ravan: jezera, gramoznice, manjše reke in potoki na Savski ravni, LBA – Ljubljansko barje: jezera, ribniki, kanali in potoki na Ljubljanskem barju, SSO – Sava soteska: Breg pri Litiji–Zidani Most, SS – spodnja Sava: Zidani Most–meja s Hrvaško, K – Krka, ST – Sotla, SSR – spodnja Sava razno: jezera, ribniki, gramoznice in potoki na Krški ravni ter bližnji okolici, KO – Kolpa, KOR – Kolpa razno: vodna telesa v Beli krajini in Ribniško-Kočevskem podolju, SO – Soča, I – Idrijca, VI – Vipava, VID – Vipavska dolina: jezera, glinokopi in potoki v Vipavski dolini, NOT – Notranjska: notranjska kraška polja in ponikalnice, Cerkniško jezero, O – Obala: slovensko obalno morje, OS – Obala soline: Sečoveljske in Strunjanske soline, OZ – Obala zatok: Škocjanski zatok, OR – Obala razno: stoječe vode in smetišča v Koprskih brdih. Število vodnih ptic, ki so bile v celoti preštete na prenočiščih, je označeno s krepkim tiskom.

The number of waterbirds counted during the January 2018 waterbird census (IWC) in Slovenia (M – Mura, ŠČ – Ščavnica, LD – Ledava, MR – Mura other: lakes, fishponds, gravel pits, oxbows and streams in Pomurje and its immediate vicinity, DA – Drava Alps: from the border with Austria at Libeliče to Selnica ob Dravi, MM – Meža and Mislinja, D – Drava: from Selnica ob Dravi to the border with Croatia at Središče ob Dravi, DV – Dravinja, P – Pesnica, DPP – Dravsko polje and Ptujsko polje: fishponds, gravel pits, channels, streams and fields on Dravsko and Ptujsko poljes and in their immediate vicinity, S – Savinja (including Paka and Voglajna), ŠAL – Šalek Lakes: Škalsko, Velenjsko, Šoštanjsko and Gabrško Lakes, SR – Savinja other: lakes, fishponds, small rivers and streams on Savinja plain and along it, ZGS – Upper Sava: Sava Bohinjka, Sava Dolinka, Sava to Gornja Sava (Kranj); including Radovna, Tržiška Bistrica and Kokra, SOR – Selška Sora, Poljanska Sora and Sora, SRS – Middle Sava: from Gornja Sava (Kranj) to Breg pri Litiji, KBI – Kamniška Bistrica, LB – Ljubljanica, SAR – lakes, gravel pits, small rivers and streams on the Sava plain, LBA – lakes, fishponds, channels and streams on Ljubljansko barje, SSO – Sava gorge: from Breg pri Litiji to Zidani Most, SS – Lower Sava: from Zidani Most to the border with Croatia, K – Krka, ST – Sotla, SSR – Lower Sava other: lakes, fishponds, gravel pits and streams on Krško plain and nearby, KO – Kolpa, KOR – Kolpa other: water bodies in Bela krajina and Ribnica-Kočevje valley, SO – Soča, I – Idrijca, VI – Vipava, VID – lakes, gravel pits and streams in Vipava Valley, NOT – Notranjska: karst fields and disappearing streams, Cerkniško jezero (Lake Cerknica), O – Slovene coastal sea, OS – Coastal saltpans: Sečovlje and Strunjan saltpans, OZ –Škocjanski zatok, OR – other localities on the coastland: standing waters and rubbish tips in Koprska brda. The number of waterbirds counted entirely at their roosting places is denoted in bold.

193 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji

Mura Drava Savinja Zgornja Sava / Upper Sava Spodnja Sava / Lower Sava Kolpa Notranjska & Primorska Obala / Coastland Slovenija Vrsta / Species Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj vse/ M ŠČ LD MR To t a l DA MM D DV P DPP To t a l S ŠAL SR To t a l ZGS SOR SRS KBI LB SAR LBA To t a l SSO SS K ST SSR To t a l KO KOR To t a l SO I VI VID NOT To t a l O OS OZ OR To t a l Total overall Cygnus olor 86 87 76 119 368 60 356 5 67 97 585 53 47 100 8 1 116 4 26 41 196 C. olo. 22 93 115 3 3 1 13 14 90 30 120 1501 Anser albifrons 2 572 574 A. alb. 3 3 577 Anser anser 1534 1534 3 3 A. ans. 186 34 220 4 4 1761 Alopochen aegyptiaca A. aeg. 1 1 1 domača gos / domestic goose 1 1 1 Tadorna tadorna 1 1 2 2 T. tad. 54 54 102 1 103 160 Aix galericulata A. gal 1 2 3 3 Cairina moschata 4 5 9 7 7 1 1 C. mos. 17 Anas penelope 4 2 6 1 58 47 106 1 1 2 A. pen. 20 20 21 25 46 180 Anas strepera 115 1 116 1 1 4 4 A. str. 5 1 6 2 2 7 16 23 152 Anas crecca 2 2 47 77 128 30 316 112 458 29 51 80 5 21 2 28 A. cre. 22 2 4 28 4 23 27 113 113 122 148 270 1132 Anas platyrhynchos 215 438 464 1214 2331 307 163 2822 217 225 2687 6421 1088 58 569 1715 532 152 472 300 427 293 179 2355 A. pla. 11 816 552 712 7 2098 648 75 723 240 102 52 309 1405 2108 49 403 187 25 664 18415 Anas acuta 12 6 18 2 2 1 1 A. acu. 8 8 1 1 30 Anas clypeata 1 1 A. cly. 1 1 72 73 145 147 Netta rufina 14 14 1 1 1 1 N. ruf. 1 1 17 Aythya ferina 1 205 206 4 1194 1 31 1230 26 29 55 26 15 41 A. fer. 1 2 3 8 8 6 6 1549 Aythya nyroca A. nyr. 1 1 1 Aythya fuligula 5 37 42 5 2404 8 2 2419 65 10 75 2 318 2 322 A. ful. 11 11 9 9 2878 Bucephala clangula 1 1 1093 1093 2 1 3 15 15 B. cla. 1 1 45 45 1158 Mergellus albellus 44 44 M. alb. 44 Mergus serrator M. ser. 18 6 24 24 Mergus merganser 51 1 52 45 63 27 16 151 2 131 133 21 23 109 10 26 39 228 M. mer. 9 31 40 13 13 22 12 6 7 47 664 domača raca / domestic duck 1 1 1 Gavia stellata 1 1 G. ste. 1 1 2 Gavia arctica 2 2 1 1 G. arc. 19 19 22 Phalacrocorax carbo 220 43 233 496 38 464 192 694 304 45 349 211 4 176 58 2 451 P. car. 40 434 176 89 739 33 1 34 13 4 12 10 29 68 165 85 31 281 3112 Phalacrocorax aristotelis P. ari. 52 52 52 Phalacrocorax pygmeus 912 912 P. pyg. 2 2 914 Botaurus stellaris B. ste. 1 1 1 Egretta garzetta 1 1 E. gar. 5 109 11 125 126 Ardea alba 4 32 21 22 79 129 27 151 307 11 11 6 6 4 52 68 A. alb. 26 16 15 2 59 1 1 1 7 5 23 36 16 3 19 580 Ardea cinerea 11 23 21 24 79 15 20 133 34 35 35 272 85 3 44 132 53 32 31 10 23 9 5 163 A. cin. 4 69 82 38 6 199 13 1 14 9 6 13 16 15 59 5 35 16 56 974 Plegadis falcinellus P. fal. 3 3 3 Tachybaptus ruficollis 1 1 5 7 14 159 173 1 5 3 9 18 87 14 8 4 131 T. ruf. 31 67 98 9 8 17 2 2 3 12 19 15 6 20 1 42 496 Podiceps cristatus 1 7 8 40 2 42 20 20 10 7 17 P. cri. 43 43 2 2 5 5 51 1 8 60 197 Podiceps grisegena P. gri. 2 2 2 Podiceps auritus P. aur. 1 1 2 2 3 Podiceps nigricollis 1 1 3 4 7 P. nig. 2 2 35 35 37 6 43 88 Haliaeetus albicilla 3 3 6 2 2 H. alb. 1 1 9 Rallus aquaticus 1 9 10 32 32 1 1 2 1 2 3 R. aqu. 2 2 1 3 4 53 Gallinula chloropus 4 12 6 22 19 19 18 18 11 7 18 G. chl. 17 17 2 2 4 1 1 2 2 6 5 13 113 Fulica atra 27 183 210 22 1176 8 85 1291 115 36 151 38 214 11 2 265 F. atr. 10 26 3 39 5 2 7 11 513 5 529 2492 Vanellus vanellus V. van. 2 2 2 Calidris alpina C. alp. 6 6 6 Lymnocryptes minimus 1 1 L. min. 1 Gallinago gallinago 15 2 17 1 1 20 20 G. gal. 2 2 27 27 7 5 12 79 Scolopax rusticola 1 1 S. rus. 1 Numenius arquata N. arq. 5 1 4 10 10 Actitis hypoleucos 1 1 A. hyp. 5 5 6 Tringa ochropus 17 17 9 9 1 1 T. och. 1 1 28 Tringa nebularia T. neb. 5 2 15 22 22 Chroicocephalus ridibundus 2 2 7 870 877 5 5 C. rid. 10 10 2 2 1046 583 191 5 1825 2721 Larus canus 30 30 363 1 2 366 1 1 2 L. can. 1 1 32 32 2 1 1 4 435 Larus fuscus 2 2 L. fus. 2 Larus argentatus 4 4 L. arg. 4 Larus michahellis 177 1 178 3 3 1 1 2 L. mic. 3 2 46 123 174 594 431 37 2 1064 1421 Larus cachinnans 97 1 98 L. cac. 98 Larus michahellis / cachinnans 6 2 8 2 2 L. mic. / cac. 53 53 63 Sterna sandvicensis S. san. 7 7 7 Alcedo atthis 3 1 2 6 10 2 1 13 11 3 1 15 3 2 5 6 1 17 A. att. 6 7 9 22 1 1 3 2 1 1 2 9 1 4 3 2 10 93 Cinclus cinclus 8 8 1 19 1 21 57 57 195 61 17 19 1 293 C. cin. 2 13 15 83 44 4 16 2 149 543 Skupaj / Total 625 669 878 1959 4131 527 232 13098 257 597 5392 20103 1589 417 939 2945 1128 276 1617 339 582 398 320 4660 66 1597 1056 870 17 3606 723 116 839 378 173 144 715 1872 3282 2103 2108 1372 45 5628 45194

194 Acrocephalus 39 (178/179): 185–195, 2018

Mura Drava Savinja Zgornja Sava / Upper Sava Spodnja Sava / Lower Sava Kolpa Notranjska & Primorska Obala / Coastland Slovenija Vrsta / Species Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj/ Skupaj vse/ M ŠČ LD MR To t a l DA MM D DV P DPP To t a l S ŠAL SR To t a l ZGS SOR SRS KBI LB SAR LBA To t a l SSO SS K ST SSR To t a l KO KOR To t a l SO I VI VID NOT To t a l O OS OZ OR To t a l Total overall Cygnus olor 86 87 76 119 368 60 356 5 67 97 585 53 47 100 8 1 116 4 26 41 196 C. olo. 22 93 115 3 3 1 13 14 90 30 120 1501 Anser albifrons 2 572 574 A. alb. 3 3 577 Anser anser 1534 1534 3 3 A. ans. 186 34 220 4 4 1761 Alopochen aegyptiaca A. aeg. 1 1 1 domača gos / domestic goose 1 1 1 Tadorna tadorna 1 1 2 2 T. tad. 54 54 102 1 103 160 Aix galericulata A. gal 1 2 3 3 Cairina moschata 4 5 9 7 7 1 1 C. mos. 17 Anas penelope 4 2 6 1 58 47 106 1 1 2 A. pen. 20 20 21 25 46 180 Anas strepera 115 1 116 1 1 4 4 A. str. 5 1 6 2 2 7 16 23 152 Anas crecca 2 2 47 77 128 30 316 112 458 29 51 80 5 21 2 28 A. cre. 22 2 4 28 4 23 27 113 113 122 148 270 1132 Anas platyrhynchos 215 438 464 1214 2331 307 163 2822 217 225 2687 6421 1088 58 569 1715 532 152 472 300 427 293 179 2355 A. pla. 11 816 552 712 7 2098 648 75 723 240 102 52 309 1405 2108 49 403 187 25 664 18415 Anas acuta 12 6 18 2 2 1 1 A. acu. 8 8 1 1 30 Anas clypeata 1 1 A. cly. 1 1 72 73 145 147 Netta rufina 14 14 1 1 1 1 N. ruf. 1 1 17 Aythya ferina 1 205 206 4 1194 1 31 1230 26 29 55 26 15 41 A. fer. 1 2 3 8 8 6 6 1549 Aythya nyroca A. nyr. 1 1 1 Aythya fuligula 5 37 42 5 2404 8 2 2419 65 10 75 2 318 2 322 A. ful. 11 11 9 9 2878 Bucephala clangula 1 1 1093 1093 2 1 3 15 15 B. cla. 1 1 45 45 1158 Mergellus albellus 44 44 M. alb. 44 Mergus serrator M. ser. 18 6 24 24 Mergus merganser 51 1 52 45 63 27 16 151 2 131 133 21 23 109 10 26 39 228 M. mer. 9 31 40 13 13 22 12 6 7 47 664 domača raca / domestic duck 1 1 1 Gavia stellata 1 1 G. ste. 1 1 2 Gavia arctica 2 2 1 1 G. arc. 19 19 22 Phalacrocorax carbo 220 43 233 496 38 464 192 694 304 45 349 211 4 176 58 2 451 P. car. 40 434 176 89 739 33 1 34 13 4 12 10 29 68 165 85 31 281 3112 Phalacrocorax aristotelis P. ari. 52 52 52 Phalacrocorax pygmeus 912 912 P. pyg. 2 2 914 Botaurus stellaris B. ste. 1 1 1 Egretta garzetta 1 1 E. gar. 5 109 11 125 126 Ardea alba 4 32 21 22 79 129 27 151 307 11 11 6 6 4 52 68 A. alb. 26 16 15 2 59 1 1 1 7 5 23 36 16 3 19 580 Ardea cinerea 11 23 21 24 79 15 20 133 34 35 35 272 85 3 44 132 53 32 31 10 23 9 5 163 A. cin. 4 69 82 38 6 199 13 1 14 9 6 13 16 15 59 5 35 16 56 974 Plegadis falcinellus P. fal. 3 3 3 Tachybaptus ruficollis 1 1 5 7 14 159 173 1 5 3 9 18 87 14 8 4 131 T. ruf. 31 67 98 9 8 17 2 2 3 12 19 15 6 20 1 42 496 Podiceps cristatus 1 7 8 40 2 42 20 20 10 7 17 P. cri. 43 43 2 2 5 5 51 1 8 60 197 Podiceps grisegena P. gri. 2 2 2 Podiceps auritus P. aur. 1 1 2 2 3 Podiceps nigricollis 1 1 3 4 7 P. nig. 2 2 35 35 37 6 43 88 Haliaeetus albicilla 3 3 6 2 2 H. alb. 1 1 9 Rallus aquaticus 1 9 10 32 32 1 1 2 1 2 3 R. aqu. 2 2 1 3 4 53 Gallinula chloropus 4 12 6 22 19 19 18 18 11 7 18 G. chl. 17 17 2 2 4 1 1 2 2 6 5 13 113 Fulica atra 27 183 210 22 1176 8 85 1291 115 36 151 38 214 11 2 265 F. atr. 10 26 3 39 5 2 7 11 513 5 529 2492 Vanellus vanellus V. van. 2 2 2 Calidris alpina C. alp. 6 6 6 Lymnocryptes minimus 1 1 L. min. 1 Gallinago gallinago 15 2 17 1 1 20 20 G. gal. 2 2 27 27 7 5 12 79 Scolopax rusticola 1 1 S. rus. 1 Numenius arquata N. arq. 5 1 4 10 10 Actitis hypoleucos 1 1 A. hyp. 5 5 6 Tringa ochropus 17 17 9 9 1 1 T. och. 1 1 28 Tringa nebularia T. neb. 5 2 15 22 22 Chroicocephalus ridibundus 2 2 7 870 877 5 5 C. rid. 10 10 2 2 1046 583 191 5 1825 2721 Larus canus 30 30 363 1 2 366 1 1 2 L. can. 1 1 32 32 2 1 1 4 435 Larus fuscus 2 2 L. fus. 2 Larus argentatus 4 4 L. arg. 4 Larus michahellis 177 1 178 3 3 1 1 2 L. mic. 3 2 46 123 174 594 431 37 2 1064 1421 Larus cachinnans 97 1 98 L. cac. 98 Larus michahellis / cachinnans 6 2 8 2 2 L. mic. / cac. 53 53 63 Sterna sandvicensis S. san. 7 7 7 Alcedo atthis 3 1 2 6 10 2 1 13 11 3 1 15 3 2 5 6 1 17 A. att. 6 7 9 22 1 1 3 2 1 1 2 9 1 4 3 2 10 93 Cinclus cinclus 8 8 1 19 1 21 57 57 195 61 17 19 1 293 C. cin. 2 13 15 83 44 4 16 2 149 543 Skupaj / Total 625 669 878 1959 4131 527 232 13098 257 597 5392 20103 1589 417 939 2945 1128 276 1617 339 582 398 320 4660 66 1597 1056 870 17 3606 723 116 839 378 173 144 715 1872 3282 2103 2108 1372 45 5628 45194

195

Acrocephalus 39 (178/179): 199–204, 2018

Iz ornitološke beležnice From the ornithological notebook

Slovenija / Slovenia Prejšnji dan je zapadlo 3–5 cm snega. Domneval sem, da je sneg, ki je zapadel na kopno površino, zmedel nekatere vrste ptičev. Na tem polju je ogromna površina Rjavi lunj Circus aeruginosus sončnic (osem njiv), ki jih kmetje očitno ne nameravajo Marsh Harrier – a dark-morph individual observed pospraviti, in računal sem, da bi lahko opazil tudi katero on 25 Apr 2016 at Medvedce Reservoir (NE od redkejših vrst. Še preden sem prišel od omenjenih njiv Slovenia); first Slovenian record of this rare morph s sončnicami, sem opazil na koruzišču veliko jato ptic, ki so iskale hrano okoli koruznih stebel. Okoli teh stebel Dne 25. 4. 2016 sem opazoval ptice na zadrževalniku so srne razbrskale sneg, verjetno je bilo tam najti ostanke Medvedce. Ker nisem imel daljnogleda, sem oddaljene ptice koruznih zrn. Ko sem se približal omenjenemu mestu, se določal s pomočjo teleobjektiva in fotoaparata. Šele doma je jata spreletela in že po oglašanju sem ugotovil, da gre sem med pregledovanjem fotografij na računalniku opazil, za poljske škrjance, naštel sem jih 48 (slika 2). Naslednji da sem med drugim fotografiral tudi temno obliko rjavega dan sem ponovno obiskal to mesto, vendar škrjancev ni lunja (slika 1). Po mojem vedenju in pregledu literature ta bilo več. Tako velike jate so pozimi redke, najpogosteje oblika v Sloveniji doslej še ni bila dokumentirana. Temna opazimo posameznike ali jate do deset osebkov (Sovinc oblika je redka in se pojavlja predvsem v vzhodni polovici 1994), na Barju pa jih pozimi opazimo le izjemoma območja razširjenosti vrste (Clark 1987). (Tome et al. 2005). Največja pozimi zabeležena jata pri nas pa je štela 300 osebkov, in sicer 2. 1. 1995 v Alen Ploj, Rošpoh 10 e, SI–2000 Maribor, Slovenija, Škocjanskem zatoku (Senegačnik et al. 1998). e–mail: [email protected] Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e-mail: [email protected]

Slika 1 / Figure 1: Rjavi lunj / Marsh Harrier Circus aeruginosus, zadrževalnik Medvedce, 25. 4. 2016 (Foto: A. Ploj) Slika 2 / Figure 2: Poljski škrjanec / Skylark Alauda arvensis, Lavrica, Ljubljansko barje, 19. 1. 2019 Poljski škrjanec Alauda arvensis (Foto: D. Šere) Skylark – 48 individuals recorded on 19 Jan 2019 near Lavrica (Ljubljansko barje, C Slovenia); an unusually large winter flock Črnoglavi muhar Ficedula hypoleuca Pied Flycatcher – unusually high numbers of the Dne 19. 1. 2019 sem se namenil pogledat na Ljubljansko species observed in September 2017; eventually, barje, in sicer na polje z imenom V Doleh pri Lavrici. 370 individuals were ringed, as opposed to the 197 Iz ornitološke beležnice / From the ornithological notebook

average annual numbers between 50 and 90; no v tem času na selitvi črnoglavi muharji iz Finske, Rusije recoveries were made ali držav vzhodno od naštetih. Prezimujejo na območju zahodne Afrike, severno od ekvatorja, in to od Senegala September leta 2017 je bil po številu opazovanih prek Liberije do Nigerije (Ouwehand et al. 2016). črnoglavih muharjev v Sloveniji nekaj posebnega, če ne Številčno pojavljanje te vrste jeseni 2017 je zanimivo tudi enkratnega. Številni so bili opazovani praktično povsod, zato, ker od leta 1974 dalje nisem imel priložnosti videti od parkov v mestih in naseljih, do sadovnjakov in gozdnih toliko osebkov v mesecu septembru. Prav je, da takšno obronkov. Posedali so tudi po živih mejah, grmih in pojavljanje ne gre v pozabo, saj sem v naslednjem letu različnih rastlinah pri tleh – povsod tam, kjer so lahko z ob istem času (jesen 2018) videl samo enega črnoglavega malo višjega mesta oprezali za hrano in se spuščali na tla. muharja na Ljubljanskem barju, ujel pa nobenega. Dne 21. 9. 2017 sem se s kolesom peljal iz Ljubljane proti Lavrici in na manjšem avtobusnem postajališču Debeli Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e–mail: dare. [email protected] hrib na Lavrici opazil črnoglavega muharja, ki se je v letu zaletaval v prozorno steklo omenjenega postajališča (slika 3). Ker mu nikakor ni uspelo najti poti iz te avtobusne postaje, sem odložil kolo in ga z roko ujel. Odnesel sem ga do svojega avtomobila v bližini, kjer sem ga obročkal, zapisal vse biometrične podatke, fotografiral (slika 4) in izpustil. Vreme v septembru 2017 je bilo zelo nestabilno, občasno je deževalo, potem se je zjasnilo in sledilo je zopet oblačno in deževno vreme. Ljubljansko barje je bilo tudi poplavljeno, vendar v okviru običajnih vsakoletnih poplav. Temu vremenu pa je verjetno pripisati neobičajno število opazovanih črnoglavih muharjev, ki so bili v tem času na selitvi prek Slovenije. Tudi obročkovalci smo se srečali s to vrsto na terenu in v mreže so se radi lovili. V Sloveniji v jesenskem času navadno obročkamo okoli Slika 4 / Figure 4: Črnoglavi muhar Ficedula hypoleuca, 50 do 90 črnoglavih muharjev, v jeseni 2017 pa kar 370. Lavrica, Ljubljansko barje, 21. 9. 2017 (foto: D. Šere) Po podatkih Slovenskega centra za obročkanje ptičev (SCOP) ni bila zabeležena nobena najdba te vrste od drugod, da bi lahko ugibali o njihovem izvoru. Na Močvirska Sinica Poecile palustris osnovi podatkov z geolokatorji iz skandinavskih držav Marsh Tit – two individuals in their 10th calendar (Ouwehand et al. 2016) lahko domnevam, da so bili year caught – in Sp. Radvanje, Maribor (NE Slovenia) and at Tomačevski prod, Ljubljana (C Slovenia)

Pri lovu in obročkanju močvirsko sinico ujamemo v mreže v manjšem številu. Na primer: v obdobju 1926–1982 je bilo v Sloveniji obročkanih 3532 osebkov (BOŽIČ 2009). V letih 1983–2008 pa 3781 močvirskih sinic (ŠERE 2009). Tako je bilo v tem zadnjem obdobju v posameznem letu, obročkanih najmanj 112 in največ 459 osebkov (povprečno 145,4). Od gozdnih sinic v manjšem številu obročkamo le še čopasto sinico Lophophanes cristatus in gorsko sinico Poecile montanus. Leta 1998 je bila v vrbovju na vznožju Pohorja v Sp. Radvanju v Mariboru obročkana močvirska sinica in znova ujeta ob Slika 3 / Figure 3: Avtobusno postajališče / Bus stop, krmilnici na istem mestu leta 2007, v 10 koledarskem Lavrica, Ljubljansko barje (Foto: D. Šere) letu starosti. Prav toliko star je bil tudi osebek ujet 198 Acrocephalus 39 (178/179): 199–204, 2018

Tabela 1: Podatki o obročkanju in ponovno ujetih močvirskih sinic Poecile palustris v 10 koledarskem letu starosti.

Številka obročka Starost Dol. peruti Teža Datum Kraj A938058 1y 66 - 16.09.1998 Sp. Radvanje, Maribor AD 68 11,2 10.02.2007 Sp. Radvanje, Maribor A827830 1y 63 10,1 04.12.1996 Tomačevski prod, LJ AD 63 10,3 01.01.2005 Tomačevski prod, LJ

ob krmilnici na Tomačevskem produ v Ljubljani leta škrjanček 15. 5. 2016 opazovan ob podobnem datumu in 2005, obročkan na istem mestu leta 1996. Oba podatka skorajda na istem kraju (Denac 2016, Hanžel 2017). Res predstavljata pomembni starostni najdbi za to vrsto. zanimiv pojav, ki morda ni posledica naključja, a bi lahko bil znak večjega pojavljanja v prihodnosti, morda pa celo Euring na svoji spletni strani (https://euring.org/files/ gnezditve. Opazovanje je potrdila Komisija za redkosti documents /EURING longevity_list_20170405. kot 15. za Slovenijo. pdf), objavlja dve najstarejši najdbi močvirske sinice iz Švedske, prva je bila stara 13 let in 2 meseca, druga pa 11 Alex Kotnik, Abramova 12, SI–1000 Ljubljana, Slovenija, e–mail: [email protected] let in 11 mesecev.

Franc Bračko, Gregorčičeva 27, SI–2000 Maribor, Slovenija, e–mail: [email protected] Dolgoprsti plezalček Certhia Dare Fekonja, Prirodoslovni muzej Slovenije, Prešernova c. 20, p.p. 290, SI–1001 Ljubljana, Slovenija, e–mail: [email protected] familiaris Treecreeper – nest found behind a sign nailed onto a Spruce Picea abies at Krvavec (C Slovenia) on 2 Jun 2018 Kratkoprsti škrjanček Calandrella brachydactyla Dne 2. 6. 2018 sem s prijateljem Dušanom Dimnikom Short-toed Lark – two individuals observed on 13 obročkal ptice na Krvavcu. Ko sva se vračala proti Kriški and 14 May 2017 near Ig (C Slovenia); fifth record planini (1450 mnv), sem iz avtomobila zagledal letečega for Ljubljansko barje, 15th for Slovenia plezalčka, ki je imel nekaj v kljunu. Ustavila sva se in iz Dne 13. 5. 2017 sem se odpravil na Ljubljansko barje, da bi pregledal območje in naštel pojoče kobiličarje. Na Barje sem prispel že zelo zgodaj, zato je bilo Barje še ovito v meglo in mrak. Sprehajal sem se po makadamski potki v okolici Iga, ko mi je izpod nog zletel škrjanec in pristal 50 metrov stran od mene. Že v letu mi je deloval nekoliko manjši, in ko sem ga videl še na tleh, sem takoj vedel, da gre za opazovanje kratkoprstega škrjančka. V istem trenutku pa je za škrjancem stal Mitja Denac, s katerim sva škrjanca kasneje še fotografirala. Megla se je kasneje že razpršila in vidljivost je bila odlična. Izkazalo se je, da škrjanec ni sam, saj sva prav kmalu opazovala še enega. Kasneje sta se nam pri opazovanju pridružila še Dare Fekonja in Aleksander Božič. Škrjanca sta se na Barju zadržala še do naslednjega dne, pozneje pa ju nisem več opazil. Slika 5 / Figure 5: Gnezdo dolgoprstega plezalčka Kratkoprsti škrjanček je na Barju naključen preletni gost Certhia familiaris za opozorilno tablo / Treecreeper's (Tome et al. 2005). Vsa opazovanja prejšnjega stoletja na Certhia familiaris nest behind a signpost, Kriška planina, Barju so bila zabeležena v aprilu. Zanimivo pa je, da je bil Krvavec, 1,450 m n.v. / a.s.l., 2. 6 .2018 (Foto: D. Šere) 199 Iz ornitološke beležnice / From the ornithological notebook

avtomobila opazovala osamljene smreke v bližini. Ni (zimski) podatek o brkati sinici za Perniško jezero. Tudi bilo treba dolgo čakati, ko je ponovno mimo naju priletel v raziskavi o ptičih Pesniške doline (GREGORI 1989) dolgoprsti plezalček s hrano za mladiče v kljunu. Začel brkata sinica ni bila ugotovljena. Dne 9. 12. sem ponovno je plezati po deblu nama najbližje smreke in ob pribiti obiskal omenjeno trstišče. V celotnem dopoldnevu o kovinski tabli na deblu smreke smuknil za njo (slika brkatih ni bilo več sledu. Me je pa dogodek spomnil na 5). Oba sva bila presenečena, saj nisva pričakovala, da konec osemdesetih let, ko sva z Iztokom Vrešem v oktobru bo gnezdo prav za to opozorilno tablo. Običajno ima in novembru v trstišču Ormoškega jezera ujela prek dolgoprsti plezalček gnezdo za starim lubjem ali v špranji 120 teh zanimivih dolgorepih sinic (BRAČKO 1990, med dvema skupaj zraščenima smrekama. Pred leti sva MLAKAR 1990). Pojavljale so se v skupinah od 10–80 ravno tako našla gnezdo te vrste v špranji na lesenem osebkov, posebno leta 1990. V Ormožu obročkane štiri opazovalnem stolpu na barju Šijec na Pokljuki. Dne brkate sinice so bile kasneje znova ujete v tujini, ena leta 7.6.2018 je Dušan v tem gnezdu obročkal šest mladičev, 1990 v kraju Gbelce na Češkem (239 km, 295 dni), kar je ki so bili tik pred tem, da zapustijo gnezdo. Znano je, da prva slovenska najdba za to vrsto (ŠERE 2009). Naslednje je možno ob deblo pribiti ostanke lubja od sečnje in tako leto pa so bile tri ujete 89 km proč, in sicer ob Balatonu na ponuditi tej vrsti primerno gnezdišče. Madžarskem (podatkovna baza SCOP).

Dare Šere, Langusova 10, SI–1000 Ljubljana, Slovenija, e–mail: dare. Franc Bračko, Gregorčičeva 27, SI – 2000 Maribor, Slovenija, e–mail: [email protected] [email protected]

Hrvaška / Croatia Brkata sinica Panurus biarmicus Bearded Tit – 5 individuals caught and ringed on 4 Dec 2018 at Lake Pernica in the Pesnica Valley Ploskokljunec Calidris falcinellus (NE Slovenia); first record for the site Broad-billed Sandpiper – two observations on 10 and 19 Aug 2018 at Nin Saltworks (N Dalmatia); Torek, 4. 12. 2018, je bil nenavadno topel, bolj a rare species in Croatia with only seven records spomladanski kakor pa zimski dan, z dnevno temp. do in 2005–2016 from Dalmatian coast and north 12 ˚C. Zjutraj sem se odpravil lovit in obročkat ptiče v Kvarner islands trstišče zgornjega dela Perniškega jezera. Že v mraku so se pričeli loviti stržki Troglodytes troglodytes, kar 15 jih je bilo Naključen obisk solin pri Ninu je bila dobra priložnost na koncu. Pri jemanju stržkov iz mrež v bližini zaslišim tudi za opazovanje in fotografiranje nekaterih tamkajšnjih oglašanje brkate sinice in brž pričnem predvajati njeno ptic. Med primerki malih belih čapelj, pritlikavih oglašanje. Kmalu se ujameta samec in samica, čez kakšno kormoranov ter gracioznih polojnikov se je 10. 8. 2018 v uro še dva samca in nato še eden (slika 6). To je moj prvi eni izmed plitvin Ninskih solin med rastlinjem sprehajal tudi ploskokljunec (slika 7, spodaj). Teden kasneje, 18. 8. 2018, sem obisk ponovil v zgodnjih jutranjih urah in v enem izmed skoraj praznih bazenov, vzhodno od solin, v plitvini ponovno opazil ploskokljunca. Opazovani osebek se je neboječe prehranjeval in ponudila se je priložnost tudi za bližnje fotografiranje (slika 8, zgoraj). Na osnovi dosedanjih podatkov so ploskokljunci redko zabeleženi na Hrvaškem, kjer so omejeni na dalmatinsko obalo in južne otoke Kvarnerja (Tome 2011, Kralj & Barišić 2013, Barišić et al. 2016). Skupno je bilo v letih med 2005 in 2016 dokumentiranih le sedem opazovanj. Pri Ninu oziroma bližnjih Ninskih solinah je bil opazovan en primerek avgusta leta 2016 (Barišić et al. 2016).

Slika 6 / Figure 6: Brkata sinica / Bearded Tit Panurus Matija Križnar, Vojkova cesta 73, SI–1000 Ljubljana, Slovenija, e– biarmicus, Perniško jezero, 4. 12. 2018 (foto: F. Bračko) mail: [email protected] 200 Acrocephalus 39 (178/179): 199–204, 2018

Slika 7 / Figure 7: Ploskokljunec / Broad-billed Sandpiper Calidris falcinellus, Nin Saltworks, Nin, 19. 8. in / and 10. 8. 2018 (določitev na osnovi fotografij / determination from photo by Al Vrezec) (foto: M. Križnar)

Mali galeb Hydrocoloeus minutus Grčija / Greece Little Gull – three individuals observed on 22 Aug 2015 at Kolansko blato (Pag Island, N Dalmatia); a rare record for the island Pochard x Ferruginous Duck Aythya ferina x Aythya nyroca Dne 22. 8. 2015 sem bil na Kolanskem blatu. Na Sivka x kostanjevka – križanec opazovan na jezeru območju, kjer se občasno izteka voda iz Kolanskega blata Kerkini (SZ Grčija) dne 4. 2. 2019 v morje (Rogoza), sem okoli poldneva iz tamkajšnjega kampa opazil tri male galebe (slika 8). To je moje prvo On 4 Feb 2019 at 16.00hrs along the Eastern dike of lake opazovanje vrste na otoku Pagu. Verjetno je na Pagu Kerkini I photographed a male hybrid looking duck, which mali galeb v času preleta ali prezimovanja bolj pogost, was later identified as a hybrid between Ferruginous Duck kot priča moj podatek. Rucner (1998) poroča, da vrsta and Common Pochard (Figure 9). The bird was beside prileti na jadransko obalo na prezimovanje, ravno tako male Common Pochards which allowed easily spotting ga je možno videti v toplih obdobjih leta. the difference between the birds. The bird stayed in the area for several days at least and was repeatedly spotted. Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e–mail: [email protected] Nicky Petkov, BSPB, Sofia, , e–mail: [email protected]

Slika 8 / Figure 8: Mali galeb / Little Gull Hydrocoloeus Slika 9 / Figure 9: Sivka x kostanjevka / Pochard x minutus, Rogoza, Kolansko blato, otok Pag, 22. 8. 2015 Ferruginous Duck Aythya ferina x Aythya nyroca, Kerkini, (foto: D. Šere) 4. 2. 2019 (foto: N. Petkov) 201 Iz ornitološke beležnice / From the ornithological notebook

Literatura / References

Barišić S., Kralj J., Jurinović L. (2016): Rare birds in Croatia. The Fourth report of the Croatian birds Rarities Committee (Rijetke ptice u Hrvatskoj Četvrti izvještaj komisije za rijetke vrste ptica). – Larus 51: 38–65. Božič I. A. (2009): Rezultati obročkanja ptičev v Sloveniji: 1926 – 1982. – Scopolia, Suppl. 4-2009. Bračko F. (1990): Brkata sinica Panurus biarmicus. – Acrocephalus 11(43/44): 32–33. Clark W. S. (1987): The dark morph of the Marsh Harrier. – British Birds 80: 61–72. Denac M. (2016): Kratkoprsti škrjanček Calandrella brachydactyla. – Acrocephalus 37 (168/169): 101. Gregori J. (1989): Favna in ekologija ptičev Pesniške doline (SV Slovenija, Jugoslavija). – Scopolia 19: 1–59. Hanžel J. (2017): Redke vrste ptic v Sloveniji v letu 2016 – Poročilo Nacionalne komisije za redkosti. – Acrocephalus 37 (172/173): 21–30. Kralj J., Barišić S. (2013): Rare birds in Croatia. Third report of the Croatian Rarities Committe (Rijetke ptice u Hrvatskoj. Treći izvještaj Hrvatske komisije za rijetke vrste). – Natura Croatica 22 (2): 375–396. Mlakar G. (1990): Brkata sinica Panurus biarmicus. – Acrocephalus 11 (43/44): 32. Ouwehand J., Ahola M. P., Ausems A. N. M. A., Bridge E. S., Burgess M., Hahn S., Hewson C. M., Klaassen R. H. G., Laaksonen T., Lampe H. M., Velmala W., Both C. (2016): Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca. – Journal of Avian Biology 47: 69–83. Rucner D. (1998): Ptice Hrvatske obale Jadrana. – Hrvatski prirodoslovni muzej, Zagreb. Senegačnik K., Sovinc A., Šere D. (1998): Ornitološka kronika 1994, 1995. – Acrocephalus 19 (87/88): 77–91. Sovinc A. (1994): Zimski ornitološki atlas Slovenije. – Tehniška založba Slovenije, Ljubljana. Šere D. (2009): Kratko poročilo o obročkanih ptičih v Sloveniji, 1983–2008. – Scopolia Suppl. 4. Tome D. (2011): Ploskokljunec Limicola falcinellus. – Acrocephalus 32 (148/149): 105. Tome D., Sovinc A., Trontelj P. (2005): Ptice Ljubljanskega barja. Monografija DOPPS št. 3. – Društvo za opazovanje in proučevanje ptic Slovenije, Ljubljana.

202 203 *Tiskano na NEO STARR 204 205 206 207 208

letnik 39 številka 178/179 strani 63–202 volume 39 number 178/179 pages 63–202

Uvodnik / Editorial 165 Little Owl Athene noctua survey in the area 63 Sobivanje ptic in kmetijstva? (K. Denac) of Ulcinj (S Montenegro) in 2015 Cohabitation between birds and agriculture? (I. Kljun, D. Bordjan) (K. Denac) Popis čuka Athene noctua na območju Ulcinja (J. Črna gora) leta 2015 (I. Kljun, D. Bordjan) Originalni članki / Original articles 71 Black Kite Milvus migrans in Slovenia – Kratki prispevki / Short communications its distribution, phenology, breeding 171 A contribution to the knowledge of diet and habitat (D. Bordjan) composition of the Barn Owl Tyto alba in the area of Pisa (Italy) (T. Zagoršek) 85 Candling and field atlas of early egg Prispevek k poznavanju prehrane pegaste sove development in Common Eiders Somateria Tyto alba na območju pise (Italija) (T. Zagoršek) mollissima in the central Baltic (S-E. Garbus, P. Lyngs, A. P. Thyme, J. P. Christensen, C. Sonne) 177 Redke vrste ptic v Sloveniji v letu 2017 – Ovoskopija in terenski atlas zgodnjega razvoja pri Poročilo Nacionalne komisije za redkosti gagah Somateria mollissima v Osrednjem Baltiku ( J. Hanžel, M. Denac) (S-E. Garbus, P. Lyngs, A. P. Thyme, J. P. Christensen, C. Sonne) Rare birds in Slovenia in 2017 – Slovenian Rarities Committee's Report ( J. Hanžel, M. Denac) 91 Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: 185 Rezultati januarskega štetja vodnih ptic Nest attendance and loss in body mass leta 2018 v Sloveniji (L. Božič) (S-E. Garbus, P. Lyngs, M. Garbus, P. Garbus, I. Eulaers, Results of the January 2018 waterbird census A. Mosbech, R. Dietz, H. Grant Gilchrist, R. Huusmann, in Slovenia (L. Božič) J. P. Christensen, C. Sonne) Valilno vedenje gag Somateria mollissima 201 Iz ornitološke beležnice / v Osrednjem Baltiku: prisotnost na gnezdu in From the ornithological notebook izguba telesne mase (S-E. Garbus, P. Lyngs, M. Garbus, Slovenija / Slovenia: Circus aeruginosus P. Garbus, I. Eulaers, A. Mosbech, R. Dietz, H. Grant Alauda arvensis, Ficedula hypoleuca, Poecile Gilchrist, R. Huusmann, J. P. Christensen, C. Sonne) palustris, Calandrella brachydactyla, Certhia familiaris, Panurus biarmicus 101 New marine IBAs for the Mediterranean Hrvaška / Croatia: Calidris falcinellus, Shag Phalacrocorax aristotelis desmarestii in Hydrocoloeus minutus Slovenia (U. Koce) Grčija / Greece: Aythya ferina x Aythya nyroca Nova območja IBA za sredozemskega vranjeka Phalacrocorax aristotelis desmarestii v Sloveniji (U. Koce)

129 Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 (A. Vrezec, D. Fekonja) Bird ringing report for Slovenia in 2017 and short overview of colour ringing in the period of 2012–2017 (A. Vrezec, D. Fekonja)