Applying Model-Driven Architecture to Achieve Distribution Transparencies

Total Page:16

File Type:pdf, Size:1020Kb

Applying Model-Driven Architecture to Achieve Distribution Transparencies Information and Software Technology 48 (2006) 498–516 www.elsevier.com/locate/infsof Applying Model-Driven Architecture to achieve distribution transparencies Apostolos Zarras* Computer Science Department, University of Ioannina, P.O. Box 1186, GR 45110 Ioannina, Greece Received 6 September 2004; revised 14 May 2005; accepted 31 May 2005 Available online 12 July 2005 Abstract This paper proposes a principled methodology for the realization of distribution transparencies. The proposed methodology is placed within the general context of Model-Driven Architecture (MDA) development. Specifically, it consists of a UML-based representation for the specification of platform independent models of a system. Moreover, it comprises an automated aspect-oriented method for the refinement of platform independent models into platform specific ones (i.e. models describing the realization of the system’s distribution transparency requirements, based on a standard middleware platform like CORBA, J2EE, COMC, etc.). Finally, the proposed methodology includes an aspect-oriented method for the generation of platform specific code from platform specific models. q 2005 Elsevier B.V. All rights reserved. Keywords: Aspect-oriented modeling; Aspect-oriented programming; Refinement; Code generation; Middleware 1. Introduction the well-known results of these efforts. J2EE [4] and COMC[5] are further widely used infrastructures in both Middleware is the current practice in the development of industry and academia. today’s software systems [1]. It provides reusable solutions Given this wide variety of solutions, what is still missing, to pervasive software development problems like hetero- from an engineering point of view, is a principled geneity, interoperability, security, dependability, etc. These methodology that facilitates selecting and using the one solutions are offered either by the core of a middleware that better tackles the particular requirements of the system. platform (i.e. the middleware broker), or by complementary Recently, the OMG architecture board made a statement services. The broker mediates the interaction between the concerning the coordinated use of existing standards elements of a system and masks differences in data towards Model-Driven Architecture (MDA) development representations and communication mechanisms to enable [6]. MDA relies on early ideas, proposed by the software their interoperation. In other words, it provides access architecture community [7]. More specifically, structural transparency [2]. The complementary middleware services and behavioral models of the system are specified in terms enable several other distribution transparencies like the of a standard modeling notation like UML [8]. These ones for location, persistence, failure, transaction, etc. [2]. models direct the overall development process. In a first Lately, there have been efforts to come up with standards step, the models are platform independent, i.e. they describe describing the semantics and the structure of middleware the Platform Independent Elements (PIEs) of the system, platforms, capable of supporting a wide range of while abstracting away technological details that do not distribution transparencies. The Common Object Request relate with the fundamental functionality of these elements. Broker Architecture (CORBA) specification [3] is among The Platform Independent Models (PIMs) may be of the following kinds: * Tel.: C30 26510 98862. E-mail address: [email protected] † Enterprise models, describing the business domain and URL: http://www.cs.uoi.gr/zarras. the business processes of the system. 0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved. † Computational models, specifying the decomposition of doi:10.1016/j.infsof.2005.05.010 the system into basic computational elements. A. Zarras / Information and Software Technology 48 (2006) 498–516 499 † Information models, prescribing the semantics of the † An automated method for the generation of platform information, managed by the computational elements. specific code. † Engineering models, specifying the distribution transparency requirements of the system. Both the refinement and the code generation methods are completely independent from the selected middleware The step that follows the specification of PIMs amounts platform. They rely, respectively, on Aspect-Oriented in selecting a middleware platform that provides means for Modeling (AOM) [10,11] and Aspect-Oriented Program- achieving the distribution transparency requirements of the ming (AOP) [12,13]. Aspect-oriented methods are based on system. Given the selected platform, we have to refine the languages that enable the abstract specification of modeling engineering models of the system into technology models, or programming constructs, which must be incorporated in describing how the platform is used to achieve these specific points within a model or a program, respectively, requirements. In the context of MDA, technology models towards achieving pervasive concerns like concurrency are also called Platform Specific Models (PSMs). In general, control, access control, etc. Such kind of specifications are the technology models are quite complex compared to the called aspects. Aspect-oriented methods further rely on engineering models of the system and their specification automated tools, called weavers. The input of a weaver is a requires expertise on the selected middleware platform. set of aspects and a model or a program. Its output is also a The PSMs include Platform Specific Elements (PSEs), model or a program, enhanced with the additional modeling correspondingtothePIEsthat constitute the refined or programming constructs that are specified within the engineering models. Moreover, the PSMs comprise input aspect. additional PSEs that are part of the middleware services The remainder of this paper is structured as follows. used for the realization of the distribution transparency Section 2 presents the necessary background on Aspect- requirements. Finally, the PSMs specify relationships Oriented development, middleware and distribution trans- between the PSEs, prescribing the achievement of the parencies. Section 2, further introduces a motivating distribution transparency requirements. The specification of example, used throughout the paper to demonstrate the PSMs is necessary as they serve as a blueprint targeted to proposed methodology. Section 3 presents the main steps of the developers who take in charge of the system’s the methodology. Section 4 details the UML representation implementation. The previous is actually the last step in for the specification of engineering models. Sections 5 and 6 the MDA development process. The system’s implemen- detail the automated refinement and code generation tation can be divided into source code that realizes the methods, respectively. Section 7 provides an assessment fundamental behavior of the system’s PIEs and Platform of the proposed methodology. Section 8 presents related Specific Code (PSC), which integrates the corresponding work. Finally, Section 9 summarizes our contribution and system’s PSEs with the additional PSEs of the middleware points out the future directions of this work. services used. The provision of a disciplined development process that relies on standards is by itself a guarantee for building 2. Background and motivating example software while successfully balancing the trade-off between the quality of the product and the time-to-market. Aspect-Oriented development, middleware and Architects, designers and developers are constrained in distribution transparencies are the foundation concepts favor of the clear separation of concerns, which promotes employed in the proposed methodology. These concepts design/software reuse and simplifies evolution. However, are briefly discussed in this section together with a case MDA becomes even more beneficial with the support of study followed throughout the paper towards exemplifying automated methods that facilitate the individual steps of the the use of the methodology. development process. Into this context, in [9] we already proposed a systematic framework that enables the selection 2.1. Aspect-oriented programming and modeling of middleware platforms, given the distribution trans- parency requirements of the system over the middleware. Aspect-Oriented development is an emerging software In this paper, we focus on a principled methodology for development paradigm that originates from the need to the refinement of engineering models into technology achieve a high degree of separation of concerns [12,13]. The models and the automated generation of corresponding different concerns involved in the realization of a software platform specific code. Specifically, the main contributions system can be divided into problem-specific and cross- of this paper are: cutting ones. Problem-specific concerns relate to the main functionality † A UML representation for the specification of engineer- that should be provided by the system. Their realization is ing models. tackled in traditional software development methodologies † An automated method for the refinement of engineering by the functional decomposition of the system into models into technology models. abstractions like classes or modules, which represent 500 A. Zarras / Information and Software Technology 48 (2006) 498–516 Table 1 Basic forms of transparency provided by middleware platforms Transparency Semantics CORBA J2EE COMC Access Masks differences in data rep- CORBA GIOP JAVA RMI DCE
Recommended publications
  • Customizing UML with Stereotypes
    Customizing UML with Stereotypes Mirosáaw StaroĔ ii iii Blekinge Institute of Technology Dissertation Series No 2003:06 ISSN 1650-2140 ISBN 91-7295-028-5 Customizing UML with Stereotypes Mirosáaw StaroĔ Department of Software Engineering and Computer Science Blekinge Institute of Technology Sweden iv BLEKINGE INSTITUTE OF TECHNOLOGY Blekinge Institute of Technology, situated on the southeast coast of Sweden, started in 1989 and in 1999 gained the right to run Ph.D programmes in technology. Research programmes have been started in the following areas: • Applied signal processing • Computer science • Computer systems technology • Design and digital media • Human work science with a special focus on IT • IT and gender research • Mechanical engineering • Software engineering • Spatial planning • Telecommunication systems Research studies are carried out in all faculties and about a third of the annual budget is dedicated to research. Blekinge Institute of Technology S-371 79 Karlskrona, Sweden http://www.bth.se v Jacket illustration: © 2003 GillWorth gallery, www.gillworthreptiles.co.uk Publisher: Blekinge Institute of Technology Printed by Kaserntryckeriet, Karlskrona, Sweden 2003 ISBN 91-7295-028-5 vi Abstract The Unified Modeling Language (UML) is a visual modeling language for documenting and specifying software. It is gaining popularity as a language for a variety of purposes. It was designed as a result of a unifying activity in the last decade. Since this general purpose language cannot suit all possible needs, it has built-in mechanisms for providing extensibility for specific purposes. One such mechanism is the notion of stereotype, which is a means of branding the existing model element with a new semantics.
    [Show full text]
  • OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
    OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group.
    [Show full text]
  • A Model-Driven Engineering Approach to Support the Verification of Compliance to Safety Standards
    A Model-Driven Engineering Approach to Support the Verification of Compliance to Safety Standards Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel Briand Simula Research Laboratory, Lysaker, Norway University of Oslo, Norway Email: {rpanesar,mehrdad,briand}@simula.no Abstract—Certification of safety-critical systems according to system development. This means that they will have to well-recognised standards is the norm in many industries where reconstruct the missing evidence after the fact. Doing so the failure of such systems can harm people or the environment. is often very expensive, and the outcomes might be far Certification bodies examine such systems, based on evidence that the system suppliers provide, to ensure that the relevant from satisfactory. On the certifier side, poorly structured and safety risks have been sufficiently mitigated. The evidence is incomplete evidence often leads to significant delays and aimed at satisfying the requirements of the standards used loss of productivity, and further may not allow the certifier for certification, and naturally a key prerequisite for effective to develop enough trust in the system that needs to be collection of evidence is that the supplier be aware of these certified. It is therefore very important to devise a systematic requirements and the evidence they require. This often proves to be a very challenging task because of the sheer size of the methodology, which is amenable to effective automated standards and the fact that the textual standards are amenable support, to specify, manage, and analyze the safety evidence to subjective interpretation. In this paper, we propose an ap- used to demonstrate compliance to standards.
    [Show full text]
  • UML Notation Guide 3
    UML Notation Guide 3 This guide describes the notation for the visual representation of the Unified Modeling Language (UML). This notation document contains brief summaries of the semantics of UML constructs, but the UML Semantics chapter must be consulted for full details. Contents This chapter contains the following topics. Topic Page “Part 1 - Background” “Introduction” 3-5 Part 2 - Diagram Elements “Graphs and Their Contents” 3-6 “Drawing Paths” 3-7 “Invisible Hyperlinks and the Role of Tools” 3-7 “Background Information” 3-8 “String” 3-8 “Name” 3-9 “Label” 3-10 “Keywords” 3-11 “Expression” 3-11 “Type-Instance Correspondence” 3-14 Part 3 - Model Management March 2003 OMG-Unified Modeling Language, v1.5 3-1 3 UML Notation Guide Topic Page “Package” 3-16 “Subsystem” 3-19 “Model” 3-24 Part 4 - General Extension Mechanisms “Constraint and Comment” 3-26 “Element Properties” 3-29 “Stereotypes” 3-31 Part 5 - Static Structure Diagrams “Class Diagram” 3-34 “Object Diagram” 3-35 “Classifier” 3-35 “Class” 3-35 “Name Compartment” 3-38 “List Compartment” 3-38 “Attribute” 3-41 “Operation” 3-44 “Nested Class Declarations” 3-48 “Type and Implementation Class” 3-49 “Interfaces” 3-50 “Parameterized Class (Template)” 3-52 “Bound Element” 3-54 “Utility” 3-56 “Metaclass” 3-57 “Enumeration” 3-57 “Stereotype Declaration” 3-57 “Powertype” 3-61 “Class Pathnames” 3-61 “Accessing or Importing a Package” 3-62 “Object” 3-64 “Composite Object” 3-67 “Association” 3-68 “Binary Association” 3-68 3-2 OMG-Unified Modeling Language, v1.5 March 2003 3 UML Notation Guide
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • UML 2001: a Standardization Odyssey
    UML 2001: A Standardization Odyssey As the UML reaches the ripe age of four, both its proponents and its critics are scanning the recent changes in the UML 1.3 revision. CRIS KOBRYN In a relatively short period of time the Unified Modeling Language has emerged as the software industry’s dominant modeling language. UML is not only a de facto modeling language standard; it is fast becoming a de jure standard. Nearly two years ago the Object Management Group (OMG) adopted UML as its standard modeling language. As an approved Publicly Available Specification (PAS) submitter to the International Organization for Standardization (ISO), the OMG is proposing the UML specification for international timescales of standards usually conflict with the standardization. It is anticipated that the “fast competitive need to use the latest technology as track” PAS process will complete sometime next early as possible. From a technical perspective, the year, at which time UML will be formally recog- need to achieve consensus encourages “design by nized as an international standard for information committee” processes. In this sort of environment, technology. sound technical tradeoffs are often overridden by The major benefits of international standardiza- inferior political compromises. Too frequently the tion for a specification include wide recognition and resulting specifications become bloated with patches acceptance, which typically enlarge the market for in a manner similar to the way laws become fattened products based on it. However, these benefits often with riders in “pork belly” legislation. demand a high price. Standardization processes are This article explores how the UML is faring in typically formal and protracted, seeking to accom- the international standardization process.
    [Show full text]
  • Plantuml Language Reference Guide
    Drawing UML with PlantUML Language Reference Guide (Version 5737) PlantUML is an Open Source project that allows to quickly write: • Sequence diagram, • Usecase diagram, • Class diagram, • Activity diagram, • Component diagram, • State diagram, • Object diagram. Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples Every UML description must start by @startuml and must finish by @enduml. The sequence ”->” is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use ”-->”. It is also possible to use ”<-” and ”<--”. That does not change the drawing, but may improve readability. Example: @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: another authentication Response @enduml To use asynchronous message, you can use ”->>” or ”<<-”. @startuml Alice -> Bob: synchronous call Alice ->> Bob: asynchronous call @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 1 of 96 1.2 Declaring participant 1 SEQUENCE DIAGRAM 1.2 Declaring participant It is possible to change participant order using the participant keyword. It is also possible to use the actor keyword to use a stickman instead of a box for the participant. You can rename a participant using the as keyword. You can also change the background color of actor or participant, using html code or color name. Everything that starts with simple quote ' is a comment. @startuml actor Bob #red ' The only difference between actor and participant is the drawing participant Alice participant "I have a really\nlong name" as L #99FF99 Alice->Bob: Authentication Request Bob->Alice: Authentication Response Bob->L: Log transaction @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 2 of 96 1.3 Use non-letters in participants 1 SEQUENCE DIAGRAM 1.3 Use non-letters in participants You can use quotes to define participants.
    [Show full text]
  • On UML's Composite Structure Diagram
    On UML's Composite Structure Diagram Ian Oliver, Vesa Luukkala Nokia Research Center Helsinki, Finland fian.oliver,[email protected] Abstract. The composite structure diagram and related notions have been introduced into UML2.0 to supplement already existing artifacts such as classes. However the usage of these constructs by engineers and/or modellers is not always in the spirit of inventors of these con- structs. A number of additional interpretations develop which are not always consistent with the intended usage of the structure nor with the language itself. Understanding these additional usages assists in under- standing areas of ambiguity, extension, inconsistency and the future de- velopment of the language. 1 Introduction The composite structure diagram's and related structures' uses and semantics are well described in [1{3] while the notions of composition are adequately de- scribed in [4, 5]. Its function is to extend the modelling capabilities of the UML beyond that of classes and their relationships and is primarily aimed to assist the modelling of the internal structures of classes with a more well defined notion of decomposition. Similar notions exist in methods such as ROOM [6] (capsules) and languages such as SDL [7] and SysML [8] for example. As tools become more UML compliant and support more UML constructs, en- gineers and/or modellers start to use these additional constructs. The effect of this is that the semantics of these constructs is often learnt through an implicit process based around the name of the construct and what the tool appears to allow; the semantics are often based on the engineer's expectations and per- ceived meaning [9] rather than on the actual, intended semantics.
    [Show full text]
  • Quantitative Safety Analysis of UML Models
    University of Konstanz Department of Computer and Information Science Master Thesis for the degree Master of Science (M.Sc.) in Information Engineering Quantitative Safety Analysis of UML Models by Florian Leitner-Fischer (Matr.-Nr. 01 / 612538) 1st Referee: Prof. Dr. Stefan Leue 2nd Referee: Prof. Dr. Marc H. Scholl Konstanz, August 2, 2010 2 3 Abstract When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Another obstacle is, that the methods often require a profound knowledge of formal methods, which can rarely be found in industrial practice. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. We propose a UML profile that allows for the specification of all inputs needed for the analysis at the level of a UML model. The QuantUM tool which we have developed, automatically translates an UML model into an analysis model. Furthermore, the results gained from the analysis are lifted to the level of the UML specification or other high-level formalism to further facilitate the process. Thus the analysis model and the formal methods used during the analysis are hidden from the user.
    [Show full text]
  • UML Diagrams
    mywbut.com UML Diagrams Overview UML was designed to be the distillation of best practices in software development. To accomplish this ambitious goal, UML provides an extensive set of diagramming tools. Because UML is such a big subject and the diagramming tools are so diverse I thought it would be helpful to give you an overview of the diagrams themselves. This chapter presents some samples of each diagram with a brief introduction describing the purpose and benefits of each diagram. As a kind of roadmap I'll use the UML groupings that divide the diagrams into packages based on their roles in the Model Management, Structural, and Behavioral aspects of system design. Model Management diagrams include Packages, which are used to represent Subsystems, Models, and more. Structural diagrams include the Class diagram, Object diagram, Composite Structure diagram, Component diagram, Deployment diagram, and the Combined Component and Deployment diagram. Behavioral diagrams include the Use Case diagram, Activity diagram, Interaction diagrams, State Machine diagram, and Protocol State Machine diagram. UML Diagrams and Work Products Each diagram reveals a unique yet overlapping view of a system. That sounds a bit strange. How can a diagram be unique yet overlap other diagrams? The uniqueness comes from the different perspective taken by each diagram. The overlap comes from the fact that all of the diagrams are looking at the same problem. The big question that usually crops up about now is, "Why do I have to use all these diagrams? Joe and Susan have always just drawn Class diagrams." This question is valid. For small, simple projects you may not need to create all these diagrams.
    [Show full text]
  • Using UML for Modeling Complex Real-Time Systems
    Using UML for Modeling Complex Real-Time Systems Bran Selic, ObjecTime Limited Jim Rumbaugh, Rational Software Corporation March 11, 1998 Abstract The embedded real-time software systems encountered in applications such as telecommunications, aerospace, and defense typically tend to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but even more importantly, readily accommodates changes forced by a steady stream of new requirements. In this paper, we describe a set of constructs that facilitate the design of software architectures in this domain. The constructs, derived from field-proven concepts originally defined in the ROOM modeling language, are specified using the Unified Modeling Language (UML) standard. In particular, we show how these architectural constructs can be derived from more general UML modeling concepts by using the powerful extensibility mechanisms of UML. 1 04/08/98 1. Introduction We apply the Unified Modeling Language (UML [2], [3]) to describe a set of constructs suitable for modeling an important category of real-time software systems. They are derived from the set of concepts initially defined in the ROOM modeling language [1]. 1.1 The Application Domain The one common feature of all real-time software systems is timeliness; that is, the requirement to respond correctly to inputs within acceptable time intervals. However, this ostensibly simple property characterizes a vast spectrum of very different types of systems ranging from purely time-driven to purely event-driven systems, from soft real-time systems to hard real-time systems, and so on.
    [Show full text]
  • Case No COMP/M.4747 Œ IBM / TELELOGIC REGULATION (EC)
    EN This text is made available for information purposes only. A summary of this decision is published in all Community languages in the Official Journal of the European Union. Case No COMP/M.4747 – IBM / TELELOGIC Only the English text is authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 8(1) Date: 05/03/2008 Brussels, 05/03/2008 C(2008) 823 final PUBLIC VERSION COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) (Only the English text is authentic) (Text with EEA relevance) THE COMMISSION OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Community, Having regard to the Agreement on the European Economic Area, and in particular Article 57 thereof, Having regard to Council Regulation (EC) No 139/2004 of 20 January 2004 on the control of concentrations between undertakings1, and in particular Article 8(1) thereof, Having regard to the Commission's decision of 3 October 2007 to initiate proceedings in this case, After consulting the Advisory Committee on Concentrations2, Having regard to the final report of the Hearing Officer in this case3, Whereas: 1 OJ L 24, 29.1.2004, p. 1 2 OJ C ...,...200. , p.... 3 OJ C ...,...200. , p.... 2 I. INTRODUCTION 1. On 29 August 2007, the Commission received a notification of a proposed concentration pursuant to Article 4 and following a referral pursuant to Article 4(5) of Council Regulation (EC) No 139/2004 ("the Merger Regulation") by which the undertaking International Business Machines Corporation ("IBM", USA) acquires within the meaning of Article 3(1)(b) of the Council Regulation control of the whole of the undertaking Telelogic AB ("Telelogic", Sweden) by way of a public bid which was announced on 11 June 2007.
    [Show full text]