Elected −− Paul Erdõs. 26 March 1913
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Manjul Bhargava
The Work of Manjul Bhargava Manjul Bhargava's work in number theory has had a profound influence on the field. A mathematician of extraordinary creativity, he has a taste for simple problems of timeless beauty, which he has solved by developing elegant and powerful new methods that offer deep insights. When he was a graduate student, Bhargava read the monumental Disqui- sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss (1777-1855). All mathematicians know of the Disquisitiones, but few have actually read it, as its notation and computational nature make it difficult for modern readers to follow. Bhargava nevertheless found the book to be a wellspring of inspiration. Gauss was interested in binary quadratic forms, which are polynomials ax2 +bxy +cy2, where a, b, and c are integers. In the Disquisitiones, Gauss developed his ingenious composition law, which gives a method for composing two binary quadratic forms to obtain a third one. This law became, and remains, a central tool in algebraic number theory. After wading through the 20 pages of Gauss's calculations culminating in the composition law, Bhargava knew there had to be a better way. Then one day, while playing with a Rubik's cube, he found it. Bhargava thought about labeling each corner of a cube with a number and then slic- ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally forms a matrix. A simple calculation with these matrices resulted in a bi- nary quadratic form. From the three ways of slicing the cube, three binary quadratic forms emerged. -
LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students. -
Arxiv:1603.03361V3 [Math.GN] 18 May 2016 Eeecs R O Eddfrtermidro Hspaper
PRODUCTS OF MENGER SPACES: A COMBINATORIAL APPROACH PIOTR SZEWCZAK AND BOAZ TSABAN Abstract. We construct Menger subsets of the real line whose product is not Menger in the plane. In contrast to earlier constructions, our approach is purely combinatorial. The set theoretic hypothesis used in our construction is far milder than earlier ones, and holds in all but the most exotic models of real set theory. On the other hand, we establish pro- ductive properties for versions of Menger’s property parameterized by filters and semifilters. In particular, the Continuum Hypothesis implies that every productively Menger set of real numbers is productively Hurewicz, and each ultrafilter version of Menger’s property is strictly between Menger’s and Hurewicz’s classic properties. We include a number of open problems emerging from this study. 1. Introduction A topological space X is Menger if for each sequence U1, U2,... of open covers of the space X, there are finite subsets F1 ⊆ U1, F2 ⊆ U2, . whose union forms a cover of the space X. This property was introduced by Karl Menger [17], and reformulated as presented here by Witold Hurewicz [11]. Menger’s property is strictly between σ-compact and Lindelöf. Now a central notion in topology, it has applications in a number of branches of topology and set theory. The undefined notions in the following example, which are available in the indicated references, are not needed for the remainder of this paper. Example 1.1. Menger spaces form the most general class for which a positive solution of arXiv:1603.03361v3 [math.GN] 18 May 2016 the D-space problem is known [2, Corolarry 2.7], and the most general class for which a general form of Hindman’s Finite Sums Theorem holds [25]. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
LOO-KENG HUA November 12, 1910–June 12, 1985
NATIONAL ACADEMY OF SCIENCES L OO- K EN G H U A 1910—1985 A Biographical Memoir by H E I N I H A L BERSTAM Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2002 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LOO-KENG HUA November 12, 1910–June 12, 1985 BY HEINI HALBERSTAM OO-KENG HUA WAS one of the leading mathematicians of L his time and one of the two most eminent Chinese mathematicians of his generation, S. S. Chern being the other. He spent most of his working life in China during some of that country’s most turbulent political upheavals. If many Chinese mathematicians nowadays are making dis- tinguished contributions at the frontiers of science and if mathematics in China enjoys high popularity in public esteem, that is due in large measure to the leadership Hua gave his country, as scholar and teacher, for 50 years. Hua was born in 1910 in Jintan in the southern Jiangsu Province of China. Jintan is now a flourishing town, with a high school named after Hua and a memorial building celebrating his achievements; but in 1910 it was little more than a village where Hua’s father managed a general store with mixed success. The family was poor throughout Hua’s formative years; in addition, he was a frail child afflicted by a succession of illnesses, culminating in typhoid fever that caused paralysis of his left leg; this impeded his movement quite severely for the rest of his life. -
Roman Duda (Wrocław, Poland) EMIGRATION OF
ORGANON 44:2012 Roman Duda (Wrocław, Poland) EMIGRATION OF MATHEMATICIANS FROM POLAND IN THE 20 th CENTURY (ROUGHLY 1919–1989) ∗ 1. Periodization For 123 years (1795–1918) Poland did not exist as an independent state, its territory being partitioned between Prussia (Germany), Austria and Russia 1. It was a period of enforced assimilation within new borders and thus of restraining native language and culture which first provoked several national uprisings against oppressors, and then – in the three decades at the turn of the 19 th to 20 th centuries – of a slow rebuilding of the nation’s intellectual life. Conditions, however, were in general so unfavourable that many talents remained undeveloped while some talented people left the country to settle and work elsewhere. Some of the mathematicians emigrating then (in the chronological order of birth): • Józef Maria Hoene–Wro ński (1776–1853) in France, • Henryk Niew ęgłowski (1807–1881) in Paris, • Edward Habich (1835–1909) in Peru, • Franciszek Mertens (1840–1929) in Austria, • Julian Sochocki (1842–1927) in Petersburg, • Jan Ptaszycki (1854–1912) in Petersburg, • Bolesław Młodziejewski (1858–1923) in Moscow, • Cezary Russyan (1867–1934) in Kharkov, • Władysław Bortkiewicz (1868–1931) in Berlin, • Alexander Axer (1880–1948) in Switzerland. Thus the period of partitions was a time of a steady outflow of many good names (not only mathematicians), barely balanced by an inflow due to assim- ilation processes. The net result was decisively negative. After Poland regained independence in 1918, five newly established or re–established Polish universities (Kraków, Lwów, Warsaw, Vilnius, Pozna ń) ∗ The article has been prepared on the suggestion of Prof. -
Full History of The
London Mathematical Society Historical Overview Taken from the Introduction to The Book of Presidents 1865-1965 ADRIAN RICE The London Mathematical Society (LMS) is the primary learned society for mathematics in Britain today. It was founded in 1865 for the promotion and extension of mathematical knowledge, and in the 140 years since its foundation this objective has remained unaltered. However, the ways in which it has been attained, and indeed the Society itself, have changed considerably during this time. In the beginning, there were just nine meetings per year, twenty-seven members and a handful of papers printed in the slim first volume of the ’s Society Proceedings. Today, with a worldwide membership in excess of two thousand, the LMS is responsible for numerous books, journals, monographs, lecture notes, and a whole range of meetings, conferences, lectures and symposia. The Society continues to uphold its original remit, but via an increasing variety of activities, ranging from advising the government on higher education, to providing financial support for a wide variety of mathematically-related pursuits. At the head of the Society there is, and always has been, a President, who is elected annually and who may serve up to two years consecutively. As befits a prestigious national organization, these Presidents have often been famous mathematicians, well known and respected by the mathematical community of their day; they include Cayley and Sylvester, Kelvin and Rayleigh, Hardy and Littlewood, Atiyah and Zeeman.1 But among the names on the presidential role of honour are many people who are perhaps not quite so famous today, ’t have theorems named after them, and who are largely forgotten by the majority of who don modern-day mathematicians. -
Embedding Graphs Into Larger Graphs: Results, Methods, and Problems
Embedding graphs into larger graphs: results, methods, and problems Mikl´os Simonovits and Endre Szemer´edi Alfr´ed R´enyi Institute of Mathematics, Hungarian Academy of Sciences, email: [email protected], [email protected] arXiv:1912.02068v1 [math.CO] 4 Dec 2019 2 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 Contents 1 Introduction.............................. 6 2 Thebeginnings............................ 9 2.1 Veryearlyresults....................... 9 2.2 Constructions......................... 13 2.3 Somehistoricalremarks . .. .. .. .. .. .. .. 13 2.4 Earlyresults ......................... 14 2.5 WhichUniverse? ....................... 16 2.6 Ramseyordensity? ..................... 21 2.7 Whyaretheextremalproblemsinteresting? . 22 2.8 Ramsey Theory and the birth of the Random Graph Method 23 2.9 Dichotomy, randomness and matrix graphs . 24 2.10 Ramsey problems similar to extremal problems . 25 2.11 Applications in Continuous Mathematics . 26 2.12 TheStabilitymethod .................... 26 2.13 The“typicalstructure” . 29 2.14 SupersaturatedGraphs . 31 2.15 Lov´asz-Simonovits Stability theorem . 32 2.16 Degeneratevs Non-degenerateproblems . 33 2.17 Diractheorem:introduction. 36 2.18 Equitable Partition . 36 2.19 Packing, Covering, Tiling, L-factors ............ 37 3 “Classicalmethods” ......................... 40 3.1 DetourI:Induction? ..................... 40 3.2 Detour II: Applications of Linear Algebra . 41 4 Methods: Randomness and the Semi-random method . 43 4.1 Various ways to use randomness in Extremal Graph Theory 44 4.2 Thesemi-randommethod . 45 4.3 Independentsetsinuncrowdedgraphs . 45 4.4 Uncrowdedhypergraphs . 47 4.5 Ramseyestimates ...................... 48 4.6 InfiniteSidonsequences . .. .. .. .. .. .. .. 49 4.7 The Heilbronn problem, old results . 50 4.8 Generalizations of Heilbronn’s problem, new results . 50 4.9 TheHeilbronnproblem,anupperbound. 51 4.10 TheGowersproblem..................... 51 3 4 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 4.11 Pippenger-Spencertheorem . -
The Riemann Hypothesis in Characteristic P in Historical Perspective
The Riemann Hypothesis in Characteristic p in Historical Perspective Peter Roquette Version of 3.7.2018 2 Preface This book is the result of many years' work. I am telling the story of the Riemann hypothesis for function fields, or curves, of characteristic p starting with Artin's thesis in the year 1921, covering Hasse's work in the 1930s on elliptic fields and more, until Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time which I found in various archives, mostly in the University Library in G¨ottingen but also at other places in the world. I am trying to show how the ideas formed, and how the proper notions and proofs were found. This is a good illustration, fortunately well documented, of how mathematics develops in general. Some of the chapters have already been pre-published in the \Mitteilungen der Mathematischen Gesellschaft in Hamburg". But before including them into this book they have been thoroughly reworked, extended and polished. I have written this book for mathematicians but essentially it does not require any special knowledge of particular mathematical fields. I have tried to explain whatever is needed in the particular situation, even if this may seem to be superfluous to the specialist. Every chapter is written such that it can be read independently of the other chapters. Sometimes this entails a repetition of information which has al- ready been given in another chapter. The chapters are accompanied by \summaries". Perhaps it may be expedient first to look at these summaries in order to get an overview of what is going on. -
Ownership and Publication of Mathematika Mathematika Was Founded in the Early 1950S by Harold Davenport and Is Owned by Mathematika University College London
Ownership and Publication of Mathematika Mathematika was founded in the early 1950s by Harold Davenport and is owned by Mathematika University College London. Since 2010, the journal has been published on behalf of its owner by the London Mathematical Society (LMS). The LMS celebrated its 150th A JOURNAL OF PURE AND APPLIED MATHEMATICS anniversary in 2015; it is the major British learned Society for mathematics and publishes eleven other journals, five of which are in collaboration with other learned societies. Editorial Board Cambridge University Press prints and distributes Mathematika under agreement with the London Mathematical Society. Managing Editor All articles are available electronically via Cambridge Core. ALEX SOBOLEV, University College London Analysis, spectral theory, PDEs Aims and Scope Mathematika publishes both pure and applied mathematical articles of the highest quality. KEITH BALL FRS, University of Warwick FRANCIS JOHNSON, University College London The traditional emphasis has been towards the purer side of mathematics but applied Discrete geometry, functional analysis, Algebra, geometric group theory and topology mathematics and articles addressing both aspects are equally welcome. information theory MINHYONG KIM, University of Oxford and Submission of Manuscripts IMRE BAR´ ANY´ , University College London Ewha Womans University Convex geometry with applications Number theory, algebraic geometry Authors wishing to submit a paper for publication should follow the guidelines available JONATHAN BENNETT, IMRE LEADER, University of Cambridge via the webpage www.lms.ac.uk/publications. Combinatorics, graphs University of Birmingham Authors will be asked to assign copyright to University College London prior to Classical harmonic analysis ALEXANDER MOVCHAN, University of Liverpool publication. Mathematical methods of solids, boundary value WILLIAM CHEN, Macquarie University Sydney problems No paper should have been published or be under consideration for publication elsewhere. -
Graduate Texts in Mathematics 74
Graduate Texts in Mathematics 74 Editorial Board F. W. Gehring P. R. Halmos (Managing Editor) C. C. Moore Harold Davenport Multiplicative Number Theory Second Edition Revised by Hugh L. Montgomery I Springer-Verlag Berlin Heidelberg GmbH Harold Davenport Hugh L. Montgomery (Deceased) Department of Mathematics Cambridge University University of Michigan Cambridge Ann Arbor, MI48109 England USA Editorial Board P. R. Halmos F. W. Gehring Managing Editor Department of Mathematics Department of Mathematics University of Michigan Indiana University Ann Arbor, MI 48109 Bloomington, IN 47401 USA USA C. C. Moore Department of Mathematics University of California Berkeley, CA 94720 USA AMS Subject Classification (1980): 10-0 I, IOHxx Library of Congress Cataloging in Publication Data Davenport, Harold, 1907-1969 Multiplicative number theory. (Graduate texts in mathematics; 74) Revised by Hugh Montgomery. Bibliography: p. Includes index. 1. Numbers, Theory of. 2. Numbers, Prime. I. Montgomery, Hugh L. II. Title. III. Series. QA241.D32 1980 512'.7 80-26329 The first edition of this book was published by Markham Publishing Company, Chicago, IL, 1967. All rights reserved. No part of this book may be translated or reproduced in any form with out written permission from the copyright holder. @ 1967, 1980 by Ann Davenport. Originally published by Springer-Verlag Berlin Heidelberg New York in 1980. Softcover reprint of the hardcover 2nd edition 1980 9 8 7 6 5 4 3 2 1 ISBN 978-1-4757-5929-7 ISBN 978-1-4757-5927-3 (eBook) DOI 10.1007/978-1-4757-5927-3 CONTENTS -
The Role of GH Hardy and the London Mathematical Society
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.