Mallumo: Framework for Real-Time Global Illumination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Seamscape a Procedural Generation System for Accelerated Creation of 3D LandscapesSeamScape A procedural generation system for accelerated creation of 3D landscapes Bachelor Thesis in Computer Science and Engineering Link to video demonstration: youtu.be/K5yaTmksIOM Sebastian Ekman Anders Hansson Thomas Högberg Anna Nylander Alma Ottedag Joakim Thorén Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Gothenburg, Sweden, June 2016 The Authors grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. SeamScape A procedural generation system for accelerated creation of 3D landscapes Sebastian Ekman Anders Hansson Thomas Högberg Anna Nylander Alma Ottedag Joakim Thorén c Sebastian Ekman, 2016. c Anders Hansson, 2016. c Thomas Högberg, 2016. c Anna Nylander, 2016. c Alma Ottedag, 2016.
- 
												  Coping with the Bounds: a Neo-Clausewitzean Primer / Thomas JAbout the CCRP The Command and Control Research Program (CCRP) has the mission of improving DoD’s understanding of the national security implications of the Information Age. Focusing upon improving both the state of the art and the state of the practice of command and control, the CCRP helps DoD take full advantage of the opportunities afforded by emerging technologies. The CCRP pursues a broad program of research and analysis in information superiority, information operations, command and control theory, and associated operational concepts that enable us to leverage shared awareness to improve the effectiveness and efficiency of assigned missions. An important aspect of the CCRP program is its ability to serve as a bridge between the operational, technical, analytical, and educational communities. The CCRP provides leadership for the command and control research community by: • articulating critical research issues; • working to strengthen command and control research infrastructure; • sponsoring a series of workshops and symposia; • serving as a clearing house for command and control related research funding; and • disseminating outreach initiatives that include the CCRP Publication Series. This is a continuation in the series of publications produced by the Center for Advanced Concepts and Technology (ACT), which was created as a “skunk works” with funding provided by the CCRP under the auspices of the Assistant Secretary of Defense (NII). This program has demonstrated the importance of having a research program focused on the national security implications of the Information Age. It develops the theoretical foundations to provide DoD with information superiority and highlights the importance of active outreach and dissemination initiatives designed to acquaint senior military personnel and civilians with these emerging issues.
- 
												  Multi-User Game DevelopmentCalifornia State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2007 Multi-user game development Cheng-Yu Hung Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Software Engineering Commons Recommended Citation Hung, Cheng-Yu, "Multi-user game development" (2007). Theses Digitization Project. 3122. https://scholarworks.lib.csusb.edu/etd-project/3122 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. ' MULTI ;,..USER iGAME DEVELOPMENT '.,A,.'rr:OJ~c-;t.··. PJ:es·~nted ·t•o '.the·· Fa.8lllty· of. Calif0rr1i~ :Siat~:, lJniiV~r~s'ity; .•, '!' San. Bernardinti . - ' .Th P~rt±al Fu1fillrnent: 6f the ~~q11l~~fuents' for the ;pe'gree ···•.:,·.',,_ .. ·... ··., Master. o.f.·_s:tience•· . ' . ¢ornput~r •· ~6i~n¢e by ,•, ' ' .- /ch~ng~Yu Hung' ' ' Jutie .2001. MULTI-USER GAME DEVELOPMENT A Project Presented to the Faculty of California State University, San Bernardino by Cheng-Yu Hung June 2007 Approved by: {/4~2 Dr. David Turner, Chair, Computer Science ate ABSTRACT In the Current game market; the 3D multi-user game is the most popular game. To develop a successful .3D multi-llger game, we need 2D artists, 3D artists and programme.rs to work together and use tools to author the game artd a: game engine to perform \ the game. Most of this.project; is about the 3D model developmept using too.ls such as Blender, and integration of the 3D models with a .level editor arid game engine.
- 
												  Procedural Generation of a 3D Terrain Model Based on a PredefinedProcedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Bachelor of Science Thesis in Applied Information Technology Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 Bachelor of Science Thesis Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 The Authors grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström © Matilda Andersson, 2017.
- 
												  Annual Report 20182018 Annual Report 4 A Message from the Chair 5 A Message from the Director & President 6 Remembering Keith L. Sachs 10 Collecting 16 Exhibiting & Conserving 22 Learning & Interpreting 26 Connecting & Collaborating 30 Building 34 Supporting 38 Volunteering & Staffing 42 Report of the Chief Financial Officer Front cover: The Philadelphia Assembled exhibition joined art and civic engagement. Initiated by artist Jeanne van Heeswijk and shaped by hundreds of collaborators, it told a story of radical community building and active resistance; this spread, clockwise from top left: 6 Keith L. Sachs (photograph by Elizabeth Leitzell); Blocks, Strips, Strings, and Half Squares, 2005, by Mary Lee Bendolph (Purchased with the Phoebe W. Haas fund for Costume and Textiles, and gift of the Souls Grown Deep Foundation from the William S. Arnett Collection, 2017-229-23); Delphi Art Club students at Traction Company; Rubens Peale’s From Nature in the Garden (1856) was among the works displayed at the 2018 Philadelphia Antiques and Art Show; the North Vaulted Walkway will open in spring 2019 (architectural rendering by Gehry Partners, LLP and KXL); back cover: Schleissheim (detail), 1881, by J. Frank Currier (Purchased with funds contributed by Dr. Salvatore 10 22 M. Valenti, 2017-151-1) 30 34 A Message from the Chair A Message from the As I observe the progress of our Core Project, I am keenly aware of the enormity of the undertaking and its importance to the Museum’s future. Director & President It will be transformative. It will not only expand our exhibition space, but also enhance our opportunities for community outreach.
- 
												  USER GUIDE 1 CONTENTS OverviewUSER GUIDE 1 CONTENTS Overview ......................................................................................................................................... 2 System requirements .................................................................................................................... 2 Installation ...................................................................................................................................... 2 Workflow ......................................................................................................................................... 3 Interface .......................................................................................................................................... 8 Tool Panel ................................................................................................................................................. 8 Texture panel .......................................................................................................................................... 10 Tools ............................................................................................................................................. 11 Poly Lasso Tool ...................................................................................................................................... 11 Poly Lasso tool actions ........................................................................................................................... 12 Construction plane .................................................................................................................................
- 
												  Ac 2008-325: an Architectural Walkthrough Using 3D Game EngineAC 2008-325: AN ARCHITECTURAL WALKTHROUGH USING 3D GAME ENGINE Mohammed Haque, Texas A&M University Dr. Mohammed E. Haque is a professor and holder of the Cecil O. Windsor, Jr. Endowed Professorship in Construction Science at Texas A&M University at College Station, Texas. He has over twenty years of professional experience in analysis, design, and investigation of building, bridges and tunnel structural projects of various city and state governments and private sectors. Dr. Haque is a registered Professional Engineer in the states of New York, Pennsylvania and Michigan, and members of ASEE, ASCE, and ACI. Dr. Haque received a BSCE from Bangladesh University of Engineering and Technology, a MSCE and a Ph.D. in Civil/Structural Engineering from New Jersey Institute of Technology, Newark, New Jersey. His research interests include fracture mechanics of engineering materials, composite materials and advanced construction materials, architectural/construction visualization and animation, computer applications in structural analysis and design, artificial neural network applications, knowledge based expert system developments, application based software developments, and buildings/ infrastructure/ bridges/tunnels inspection and database management systems. Pallab Dasgupta, Texas A&M University Mr. Pallab Dasgupta is a graduate student of the Department of Construction Science, Texas A&M University. Page 13.173.1 Page © American Society for Engineering Education, 2008 An Architectural Walkthrough using 3D Game Engine Abstract Today’s 3D game engines have long been used by game developers to create dazzling worlds with the finest details—allowing users to immerse themselves in the alternate worlds provided. With the availability of the “Unreal Engine” these same 3D engines can now provide a similar experience for those working in the field of architecture.
- 
												  Prime Gradient NoiseComputational Visual Media https://doi.org/10.1007/s41095-021-0206-z Research Article Prime gradient noise Sheldon Taylor1,∗, Owen Sharpe1,∗, and Jiju Peethambaran1 ( ) c The Author(s) 2021. Abstract Procedural noise functions are fundamental 1 Introduction tools in computer graphics used for synthesizing virtual geometry and texture patterns. Ideally, a Visually pleasing 3D content is one of the core procedural noise function should be compact, aperiodic, ingredients of successful movies, video games, and parameterized, and randomly accessible. Traditional virtual reality applications. Unfortunately, creation lattice noise functions such as Perlin noise, however, of high quality virtual 3D content and textures exhibit periodicity due to the axial correlation induced is a labour-intensive task, often requiring several while hashing the lattice vertices to the gradients. months to years of skilled manual labour. A In this paper, we introduce a parameterized lattice relatively cheap yet powerful alternative to manual noise called prime gradient noise (PGN) that minimizes modeling is procedural content generation using a discernible periodicity in the noise while enhancing the set of rules, such as L-systems [1] or procedural algorithmic efficiency. PGN utilizes prime gradients, a noise [2]. Procedural noise has proven highly set of random unit vectors constructed from subsets of successful in creating computer generated imagery prime numbers plotted in polar coordinate system. To (CGI) consisting of 3D models exhibiting fine detail map axial indices of lattice vertices to prime gradients, at multiple scales. Furthermore, procedural noise PGN employs Szudzik pairing, a bijection F : N2 → N. is a compact, flexible, and low cost computational Compositions of Szudzik pairing functions are used in technique to synthesize a range of patterns that may higher dimensions.
- 
												  Design and Development of a Roguelike Game with Procedurally Generated Dungeons and Neural Network Based AIDesign and development of a Roguelike game with procedurally generated dungeons and Neural Network based AI. Video game Design and Development Degree Technical Report of the Final Degree Project Author: Andoni Pinilla Bermejo Tutor: Raúl Montoliu Colás Castellón de la Plana, July 2018 1 Abstract In games, other aspects have always been preferred over artificial intelligence. The graphic part is usually the most important one and it alone can use a huge amount of resources, leaving little space for other features such as AI. Machine Learning techniques and Neural Networks have re-emerged in the last decade and are very popular at the moment. Every big company is using Machine Learning for different purposes and disciplines, such as computer vision, engineering and finances among many others. Thanks to the progress of technology, computers are more powerful than ever and these artificial intelligence techniques can be applied to videogames. A clear example is the recent addition of the Machine Learning Agents to the Unity3D game engine. This project consists of the development of a Roguelike game called Aia in which procedural generation techniques are applied to create procedural levels, and Machine Learning and Neural Networks are the main core of the artificial intelligence. Also, all the necessary mechanics and gameplay are implemented. 2 Contents List of Figures 5 List of Tables 6 1 Technical proposal 7 1. 1 Summary 7 1.2 Key Words 7 1. 3 Introduction and motivation 7 1.4 Related Subjects 8 1.5 Objectives 8 1.6 Planning 8 1.7 Expected
- 
												  CPSC 427 Video Game ProgrammingHelge Rhodin CPSC 427 Video Game Programming Transformations for Skeleton Kinematics 1 © Alla Sheffer, Helge Rhodin Recap: Fun to play? https://www.androidauthority.com/level-design-mobile-games-developers- make-games-fun-661877/ 2 © Alla Sheffer, Helge Rhodin Recap: Indirect relationships Value of a piece • It is not possible to get a knight for 3 pawns • But one can ‘trade’ pieces • A currency How to determine the value? • Ask the users • Auction house 3 © Alla Sheffer, Helge Rhodin Recap: Relationships • Linear relations • Exponential relations • Triangular relationship • 1, 3, 6, 10, 15, 21, 28, … • The difference increases linearly • The function has quadratic complexity • Periodic relations 4 © Alla Sheffer, Helge Rhodin Asymptotic analysis? • Linear * linear? • Linear + linear? • Linear + exponential? • Linear * exponential? 5 © Alla Sheffer, Helge Rhodin Numerical Methods - Optimization • Iterative optimizers • Single variable? Exponential Target function • Multiple variables? Linear approx. • Gradient descent? Constant approx. Lecture 14: https://youtu.be/ZNsNZOnrM50 • Balancing demo starts at 1h20 • Optimizer used at ~ 1h30 6 © Alla Sheffer, Helge Rhodin Difficulties: • Placement of towers changes the time damage is dealt • Path of enemies can be hindered to increase time ➢ Measure during playtest ➢ cross-play • Some enemies are resistant to fire/magic/…? • kind of a periodic feature 7 © Alla Sheffer, Helge Rhodin Counter Measures • Transitive Mechanics • Repair costs • Consumables (food, potions, …) • Tax 8 © Alla Sheffer, Helge
- 
												  Design and Development of a Roguelike Game with Procedurally Generated Dungeons and Neural Network Based AIDesign and development of a Roguelike game with procedurally generated dungeons and Neural Network based AI. Video game Design and Development Degree Technical Report of the Final Degree Project Author: Andoni Pinilla Bermejo Tutor: Raúl Montoliu Colás Castellón de la Plana, July 2018 1 Abstract In games, other aspects have always been preferred over artificial intelligence. The graphic part is usually the most important one and it alone can use a huge amount of resources, leaving little space for other features such as AI. Machine Learning techniques and Neural Networks have re-emerged in the last decade and are very popular at the moment. Every big company is using Machine Learning for different purposes and disciplines, such as computer vision, engineering and finances among many others. Thanks to the progress of technology, computers are more powerful than ever and these artificial intelligence techniques can be applied to videogames. A clear example is the recent addition of the Machine Learning Agents to the Unity3D game engine. This project consists of the development of a Roguelike game called Aia in which procedural generation techniques are applied to create procedural levels, and Machine Learning and Neural Networks are the main core of the artificial intelligence. Also, all the necessary mechanics and gameplay are implemented. 2 Contents List of Figures 5 List of Tables 6 1 Technical proposal 7 1. 1 Summary 7 1.2 Key Words 7 1. 3 Introduction and motivation 7 1.4 Related Subjects 8 1.5 Objectives 8 1.6 Planning 8 1.7 Expected
- 
												  Ray Tracing a Tiny Procedural Planet Morgan Mcguire University of Waterloo & Nvidia @CasualeffectsRAY TRACING A TINY PROCEDURAL PLANET MORGAN MCGUIRE UNIVERSITY OF WATERLOO & NVIDIA @CASUALEFFECTS I’ll begin with an example of coding a real procedural content generator in 2D from scratch, before circling back to talk about the why, what, and how of “procgen” at a high level. From there we’ll look at ray tracing and implicit surfaces and end up by creating a 3D model of a cute little planet. At the end you’ll have resources and ideas to start your own experiments in this space. 1 CREATING A UNIVERSE FROM RULES A lot of graphics content development is done by artists, programmers, and writers placing each piece of their virtual universe and painting, animating, scripting, etc. it by hand. The alternative is to not create anything except the laws of physics for your universe, and then letting the laws and some initial conditions create all of the richness. That’s procedural generation. Watch me create such a universe right now: 2 (1, 1) (0, 0) In the beginning, we have formless darkness. That’s how every graphics program starts, with this black screen. In my coordinate system, the origin is the lower-left and the upper right corner is (1, 1) 3 void mainImage(out Color color, in Point coord) { float x = pixel.x / iResolution.x; float y = pixel.y / iResolution.y; color = Color(0.0); } Here’s the code for a GPU pixel program that draws the black screen. If you’re not used to writing graphics code, then I just have to tell you a few simple things to understand this: - “float” is a 32-bit real number.