The Hymenopteran Tree of Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, Western North America S
1 New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America S. Bruce Archibald,1 Alexandr P. Rasnitsyn Abstract—We describe three new genera and four new species (three named) of siricomorph sawflies (Hymenoptera: Symphyta) from the Ypresian (early Eocene) Okanagan Highlands: Pamphiliidae, Ulteramus republicensis new genus, new species from Republic, Washington, United States of America; Siricidae, Ypresiosirex orthosemos new genus, new species from McAbee, British Columbia, Canada; and Cephidae, Cuspilongus cachecreekensis new genus, new species from McAbee and another cephid treated as Cephinae species A from Horsefly River, British Columbia, Canada. These are the only currently established occurrences of any siricomorph family in the Ypresian. We treat the undescribed new siricoid from the Cretaceous Crato Formation of Brazil as belonging to the Pseudosiricidae, not Siricidae, and agree with various authors that the Ypresian Megapterites mirabilis Cockerell is an ant (Hymenoptera: Formicidae). The Miocene species Cephites oeningensis Heer and C. fragilis Heer, assigned to the Cephidae over a century and a half ago, are also ants. Many of the host plants that siricomporphs feed upon today first appeared in the Eocene, a number of these in the Okanagan Highlands in particular. The Okanagan Highlands sites where these wasps were found also had upper microthermal mean annual temperatures as are overwhelmingly preferred by most modern siricomorphs, but were uncommon -
Mcabee Fossil Site Assessment
1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13 -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
Insect Classification Standards 2020
RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification. -
Evolution of the Insects
CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999). -
New Data on Chromosomes of Sawflies in the Families Argidae, Cimbicidae and Cephidae
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Beiträge zur Entomologie = Contributions to Entomology... Beitr. Ent. Keltern ISSN 0005 - 805X 52 (2002) 2 S. 347 - 352 16.12.2002 New data on chromosomes of sawflies in the families Argidae, Cimbicidae and Cephidae (Hymenoptera, Symphyta) With 7 figures and 1 table M agdalene W estendorff and Andreas Taeger Summary New data on chromosomes of cytogenetically little known sawfly families are presented. Five argid species {Arge gracilicornis, A. pagana, A. melanochra, A. cyanocrocea, and A. nigripes), Abia candens (Cimbicidae), and Calameutafiliformis (Cephidae) were karyotyped. Zusammenfassung Neue Ergebnisse der Chromosomenanalyse in zytogenetisch weitgehend unbekannten Blattwespenfamilien werden mitgeteilt. Die Karyotypen von fünf Arten der Argidae (Arge gracilicornis, A. pagana, A. melanochra, A. cyanocrocea und A. nigripes) sowie von Abia candens (Cimbicidae) und Calameuta filiformis (Cephidae) wur den untersucht. Keywords Karyotypes, Hymenoptera / Symphyta: Argidae, Cimbicidae, Cephidae Introduction The karyotypes of sawfly species in the families Argidae, Cephidae, and Cimbicidae are largely unknown. The Argidae is the second largest family of Symphyta and comprises some 800 species (SMITH, 1993). Only three of them have been studied cytogenetically (BENSON, 1950; M a x w e l l , 1958). The haploid chromosome numbers of two of the 150 or more species of Cimbicidae (SMITH, 1993) have so far been reported (BENSON, 1950). In Cephidae with about 100 species known (SMITH, 1993), karyotypes of two species have been published (MACKAY, 1955; CROZIER & TASCHENBERG, 1972). This study presents the first information about chromosomes of five argid species, Arge cyanocrocea, A. gracilicornis, A. -
A Review of the South American Genera of Cimbicidae (Insecta, Hymenoptera)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2018 Band/Volume: 0482 Autor(en)/Author(s): Vilhelmsen Lars, Smith David R., Malagon-Aldana Leonardo A. Artikel/Article: A review of the South American genera of Cimbicidae (Insecta, Hymenoptera) 1-36 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 482: 1–36 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.482 www.europeanjournaloftaxonomy.eu 2018 · Vilhelmsen L. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:6F3B12C7-2311-48EA-8727-5B90489E26E3 A review of the South American genera of Cimbicidae (Insecta, Hymenoptera) Lars VILHELMSEN 1,*, David R. SMITH 2 & Leonardo A. MALAGÓN-ALDANA 3 1,3 Zoological Museum, Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark. 2 Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington D.C. 20013-7012, USA. * Corresponding author: [email protected] 2 Email: sawfl [email protected] 3 Email: [email protected] * urn:lsid:zoobank.org:author:96FC3783-9FA7-421E-B292-6718A3762D45 2 urn:lsid:zoobank.org:author:B25C3A30-9EF6-4561-8DCE-C95869DFD7E8 3 urn:lsid:zoobank.org:author:4682DF93-FD43-4DDD-BC55-C323F1D2C738 Abstract. The South American genera of the Cimbicidae are reviewed. Five genera and nine species are recognized. -
Hymenoptera: Symphyta): Evidence for Multiple Increases in Sperm Bundle Size
J. HYM. RES. Vol. 10(Z), 2001, pp. 119-125 Spermatodesmata of the Sawflies (Hymenoptera: Symphyta): Evidence for Multiple Increases in Sperm Bundle Size NATHAN SCHIFF, ANTHONY J. FLEMMINC, AND DONALD L. J. QUICKE (NS) U.S. Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, P.O. Box 227, Stoneville, MS 38776, USA; (AJF) Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, U.K.; (DLJQ) Unit of Parasitoid Systematics, Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, and Department of Entomology, The Natural History Museum, London SW7 5BD, UK Abstract.-We present the first survey of spermatodesmata (bundles of spermatozoa connected at the head by an extracellular ‘gelatinous’ matrix) across the sawfly superfamilies. Spermatodes- mata occur in all examined taxa within the sawfly grade (Xyelidae-Orussidae inclusive), but are not found in the Apocrita. Using DAPI staining, the numbers of individual sperm per sperma- todesm were calculated and the values obtained are mapped on to the current phylogenetic hy- pothesis. The plesiomorphic spermatodesm in the Hymenoptera, based on that observed in the putatively basal family Xyelidae, contains relatively few sperm, approximately 16. However, in the Tenthredinoidea and in the Siricidae, far larger numbers are found, reaching up to 256 in the Cimbicidae. In many insects, mature sperm released Until now, spermatodesmata have only from testicular follicles are neither free in- been characterised in a few sawflies, al- dividuals nor packaged into variously most entirely as part of ultrastructural in- complex spermatophores, but are ar- vestigations using transmission electron ranged in organised bundles with their microscopy (Quicke et al. -
New Data on Chromosomes of Sawflies in the Families Argidae, Cimbicidae and Cephidae 347-352 © Download
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomologie = Contributions to Entomology Jahr/Year: 2002 Band/Volume: 52 Autor(en)/Author(s): Westendorff Magdalene, Taeger Andreas Artikel/Article: New data on chromosomes of sawflies in the families Argidae, Cimbicidae and Cephidae 347-352 ©www.senckenberg.de/; download www.contributions-to-entomology.org/ Beitr. Ent. Keltern ISSN 0005 - 805X 52 (2002) 2 S. 347 - 352 16.12.2002 New data on chromosomes of sawflies in the families Argidae, Cimbicidae and Cephidae (Hymenoptera, Symphyta) With 7 figures and 1 table M agdalene W estendorff and Andreas Taeger Summary New data on chromosomes of cytogenetically little known sawfly families are presented. Five argid species {Arge gracilicornis, A. pagana, A. melanochra, A. cyanocrocea, and A, nigripes), Abia candens (Cimbicidae), and Calameuta filiformis (Cephidae) were karyotyped. Zusammenfassung Neue Ergebnisse der Chromosomenanalyse in zytogenetisch weitgehend unbekannten Blattwespenfamilien werden mitgeteilt. Die Karyotypen von fünf Arten der Argidae {Arge gracilicornis, A. pagana, A. melanochra, A. cyanocrocea und A. nigripes) sowie vonAbia candens (Cimbicidae) und Calameuta filiformis (Cephidae) wur den untersucht. Keywords Karyotypes, Hymenoptera / Symphyta: Argidae, Cimbicidae, Cephidae Introduction The karyotypes of sawfly species in the families Argidae, Cephidae, and Cimbicidae are largely unknown. The Argidae is the second largest family of Symphyta and comprises some 800 species (SMITH, 1993). Only three of them have been studied cytogenetically (BENSON, 1950;M a x w e ll, 1958). The haploid chromosome numbers of two of the 150 or more species of Cimbicidae (SMITH, 1993) have so far been reported(BENSON, 1950). -
Cimbex Connatus (Schrank, 1776) (Cimbicidae, Hymenoptera) – First Finding for the Entomofauna of Serbia
Arch. Biol. Sci., Belgrade, 59 (4), 69P-70P, 2007 DOI:10.2298/ABS070469PN CIMBEX CONNATUS (SCHRANK, 1776) (CIMBICIDAE, HYMENOPTERA) – FIRST FINDING FOR THE ENTOMOFAUNA OF SERBIA. Z. Nikolić, M. M. Brajković, S. B. Ćurčić, and Tamara Milivojević. Institute of Zoology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia Key words: Hymenoptera, Cimbicidae, Cimbex connatus, entomofauna, Serbia udc 595.79(497.11):591.4 The family Cimbicidae includes large and medium sized saw- Dipsacaceae ( B o l t o n and G a u l d , 1988). flies with body length fluctuating from 9 to 28 mm. The anten- nae end in a club and have six or seven segments. There is This small family of the superfamily Tenthredinoidea no hippostomal bridge on the head, but sometimes there is a is divided into four subfamilies — one Neotropic and three hypostomal membrane. The pronotum is short, with a convex Holarctic. There are around 50 European species, belonging to back line. The front tibias have two simple claws, but claws are seven genera (Q u i n l a n and G a u l d , 1981) absent on the middle tibias. During study on the sawfly fauna of Belgrade in April The abdomen is laterally concave, dorsally convex, and of 2007, one female specimen of the species Cimbex connatus ventrally flattened. The sawsheath is slightly longer than the (Schrank, 1776) (Fig. 1) was caught in Surčin, nr. Belgrade. This tip of the abdomen. Male genitalia are of the strophandrial is the first finding of the given species for the entomofauna of type. -
A Review of the South American Genera of Cimbicidae (Insecta, Hymenoptera)
European Journal of Taxonomy 482: 1–36 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.482 www.europeanjournaloftaxonomy.eu 2018 · Vilhelmsen L. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:6F3B12C7-2311-48EA-8727-5B90489E26E3 A review of the South American genera of Cimbicidae (Insecta, Hymenoptera) Lars VILHELMSEN 1,*, David R. SMITH 2 & Leonardo A. MALAGÓN-ALDANA 3 1,3 Zoological Museum, Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark. 2 Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington D.C. 20013-7012, USA. * Corresponding author: [email protected] 2 Email: sawfl [email protected] 3 Email: [email protected] * urn:lsid:zoobank.org:author:96FC3783-9FA7-421E-B292-6718A3762D45 2 urn:lsid:zoobank.org:author:B25C3A30-9EF6-4561-8DCE-C95869DFD7E8 3 urn:lsid:zoobank.org:author:4682DF93-FD43-4DDD-BC55-C323F1D2C738 Abstract. The South American genera of the Cimbicidae are reviewed. Five genera and nine species are recognized. Redescriptions of all genera and an identifi cation key to all species are provided. All species are illustrated, including both sexes and aberrant specimens when relevant. The South American Cimbicidae are grouped in the subfamily Pachylostictinae, but there is substantial morphological divergence at the genus level. This and the isolated geographic and phylogenetic position relative to the other subfamilies of Cimbicidae indicates that the Pachylostictinae have evolved in isolation for a substantial amount of time. -
Hymenoptera: Cimbicidae) – a Candidate for Biological Control of Teasels (Dipsacus Spp.
46 Session 1 Pre-Release Testing of Weed Biological Control Agents Laboratory and Open-Field Tests on Abia sericea (Hymenoptera: Cimbicidae) – a Candidate for Biological Control of Teasels (Dipsacus spp.) V. Harizanova1, A. Stoeva1 and B. G. Rector2 1Agriculture University, Plovdiv, Bulgaria [email protected] 2USDA-ARS Exotic and Invasive Weeds Research Unit, Reno, NV, USA Abstract Invasive teasels (Dipsacus spp.) are widespread in the USA (43 states) and listed as noxious in five states. The cimbicid sawfly Abia sericea L. (Linné, 1758) is under evaluation as a potential agent for biological control of teasels. A. sericea lays its eggs under the epidermis of the leaves of Dipsacus plants and the larvae feed on the leaves. Laboratory and open- field experiments to evaluate the host specificity of the sawfly were conducted from 2007- 2010 at Agricultural University of Plovdiv, Bulgaria. In the laboratory, potted plants from twelve plant species belonging to the families Dipsacaceae, Caprifoliaceae, Valerianaceae, Apiaceae, Asteraceae, and Brassicaceae were tested in multi-choice oviposition and feeding tests. They were arranged in plastic cages measuring 40x40x20 cm, with each cage containing one Dipsacus laciniatus L. plant and seven plants of different species. Individual females were released in each cage to oviposit. Number of eggs laid, number of larvae hatching and larval feeding were recorded. Eggs were laid only on D. laciniatus plants with one exception – on Valeriana officinalis L., although no larvae hatched from the latter. Larval feeding was observed only on D. laciniatus, Knautia arvensis (L.) Coult. and Scabiosa sp. (all Dipsacaceae). An open field test was conducted in 2010 with seven plant species from the families Dipsacaceae, Caprifoliaceae, Valerianaceae, Apiaceae, and Brassicaceae arranged in a pseudo Latin square design with a distance of 70 cm between the plants within rows.