ORE DEPOSITS and MANTLE PLUMES Ore Deposits and Mantle Plumes

Total Page:16

File Type:pdf, Size:1020Kb

ORE DEPOSITS and MANTLE PLUMES Ore Deposits and Mantle Plumes ORE DEPOSITS AND MANTLE PLUMES Ore Deposits and Mantle Plumes by Franeo Pirajno Geological Survey ofWestern Australia, Perth, Australia SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication Data ISBN 978-90-481-4026-8 ISBN 978-94-017-2502-6 (eBook) DOI 10.1007/978-94-017-2502-6 Cover illustration: The image on the cover is a modified version of that shown in Figure 5.7B in the text and represents a computer simulation of mantie processes; hot regions are red and cold regions are blue and green. The hot mantie material rises and uplifts the surface of the planet. The rising hot mantie simulates a mantie plume. This convection simulation model was created by Walter Kiefer Lunar and Planetary Institute, Houston, USA) and Louise Kellogg (University of California, Davis, USA) for the planet Mars, but is not specific to Mars, and is applicable to mantie plumes that occur on Earth. The element symbols represent those that may be directiy or indirectly linked to mantie plume activities on Earth, resulting in anomalous concentrations of these elements in the crust where they form ore deposits. The image is used by permission of the authors. Printed on acid-free paper Ali Rights Reserved © 2000 F. Pirajno Originally published by Kluwer Academic Publishers in 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To Mariateresa, my wife CONTENTS PREFACE XI ACKNOWLEDGEMENTS XIII INTRODUCTION XVII PARTONE CHAPTER 1 The Earth's Interna! Structure and Convection in the Mantle 1 1.1 Introduction 1 1.2 Early planetary evolution 2 1.3 The Earth's interna1 structure 5 1.3.1. The crust 7 1.3.2. The mantle 11 1.3.3. The core-mantle boundary (CMB) and D" 1ayer 20 1.3.4. The core 25 1.4 Convection in the mantle; theories and models 27 1.4.1. Theories and dynamics of convection 29 1.4.2. Physical parameters ofmantle convection 31 1.4.3. Whole mantle and two-layers mantle convection models 32 1.5 Mantle geochemistry 41 1.6 Mantle evolution through time and implications for Earth's h~~cy % 1. 7 Concluding remarks 53 1.8 References CHAPTER 2 Mantle Plumes and Superplumes; Contineotal Breakups, Supercontinent Cycles and Ore Deposits 59 2.1 Introduction 59 2.2 Hotspots: distribution and relationship to rifting 61 2.3 Labaratory modelling, structure and dynamics of mantle plumes 65 2.4 Doming ofthe crust (hotspot swells) and associated topographic and drainage features 71 VIII Contents 2.5 Mantle plume-lithosphere interactions and plume-generated melts 77 2.5.1. Crustal stress regimes in response to mantle plumes 85 2.6 Superplumes and continental breakup 86 2.6.1. Gondwana and Rodinia breakups, mantle plumes or plate forces? 90 2.6.2. Supercontinent cycles and ore deposits 94 2.7 The "other side" ofthe mantle plume theory 100 2.8 Concluding remarks 104 2.9 References 105 CHAPTER 3 Oceanic Islands, Large lgneous Provinces, Mafic Dyke Swarms, and Intracontinental Alkaline Magmatism 111 3.1 Introduction 111 3.2 Oceanic volcanic islands 112 3.2.1. The Hawaiian-Emperor seamounts chain 116 3.2.2. Marquesas Islands 119 3.2.3. Walvis Ridge and Tristan da Cunha 119 3.2.4. leeland 124 3.2.5. Reunion Island 127 3.2.6. Geochemical and isotopic characteristics of oceanic volcanic island basalts 128 3.3 Large igneous provinces (LIP): oceanic p1ateaux and continenta1 flood basalts (CFB) 135 3.3.1. lntroduction 135 3.3.2. Isotope systematics 139 3.3.3. Oceanic plateaux 140 3.3.4. Volcanic-rifted continental margins 149 3.3.5. Continental flood basalts (CFB) 151 3.4 Mafic dyke swarms 183 3.4.1. Mafic dyke swarms in the Kaapvaal Craton, South Africa 189 3.4.2. The Mackenzie dyke swarm, Canada 190 3.4.3. Parami-Etendeka dykes 192 3.5 Intracontinental alkaline magmatism 193 3.5.1. Teetonic settings, ages and controls of intracontinental alkaline magmatism in Africa 194 3.5.2. The Damaraland alkaline province, Namibia 198 3.5.3. Carbonatites 199 3.5.4. Kimberlites and lamproites 200 3.6 Concluding remarks 201 3.7 References 202 CHAPTER 4 Rifting Proeesses, Volcano-Sedimentary Basins and the Role ofMantle Plumes 215 4.1 Introduetion 215 4.2 Rifting dynamies: passive and aetive 220 4.2.1. Passive rifting 221 4.2.2. Aetive rifting 222 4.3 Rifting and basie formation related to eompression in thiekened erust 223 4.4 Geophysieal signatures of rifts 227 4.5 Stratigraphie sueeessions as reeords ofbasin evolution 230 4.5.1. The Stratigraphie reeord ofintraeontinental basins and aulaeogens 230 4.6 The East Afriean Rift System and the Afar Triangle: examples of modern eontinental rifting where mantle plume aetivity is reeognised 239 4.6.1. Introduetion 239 4.6.2. The East Afriean Rift System (EARS) 240 4. 7 Examples of aneient eontinental rifts where mantle plume aetivity is assumed: Thuli-Sabi-Lebombo hotspotjunetion; Damara and Irumide hotspot junetions 244 4.7.1. Tuli-Sabi-Lebombo hotspotjunetion 244 4. 7.2. Damara and Irumide hotspot junetions, southwestern Afriea 248 4.8 Sequenee stratigraphy, eustasy and mantle plumes 252 4.9 Concluding remarks 254 4.10 Referenees 256 CHAPTER 5 The P1anetary and Meteorite Impact Context of Mantle P1umes 261 5.1 Introduction 261 5.2 Moon 263 5.3 Mercury 265 5.4 Venus 265 5.5 Mars 269 5.6 Large meteorite impaets and possible eorrelations with mantle plumes 274 5.6.1. Ore deposits and impaet structures 277 5.6.2. Can meteorite mega-impaets trigger eontinental breakup and the ascent of mantle plumes? 279 5.7 Concluding remarks 285 5.8 Referenees 286 X Contents PARTTWO CHAPTER 6 Intracontinental Magmatism, Anorogenic Metamorphism, Ore Systems and Mantle Plumes 291 6.1 Introduction 291 6.2 Intracontinenta1layered igneous intrusions 291 6.3 Anorogenic prograde metamorphism and hydrothermal convention in hotspot-related rift systems 299 6.3.1. Anorogenic metamorphism in the Central Zone ofthe Damara Orogen, Namibia 301 6.3.2. Anorogenic metamorphism in the eastern Pyrenees 302 6.3.3. Anorogenic metamorphism and intraplate magmatism around the Vredefort Dome, South Africa 303 6.3.4. Metamorphism and fluid generation; metamorphogenic hydrothermal systems 306 6.4 Concluding remarks 317 6. 5 References 317 CHAPTER 7 Direct Links; Magmatic Ore Deposits- Fundamental Features and Concepts 323 7.1 Introduction 323 7.1.1. Definitions and terminology 323 7.1.2. Geometry of layered intrusions and magmatic processes 331 7.2 Magmatic oxide ores 342 7.2.1. Crystallisation of spine1s from mafic-ultramafic magmas 344 7.3 Magmatic sulphides and platinum group elements (PGE) ores 347 7.3.1. The formation ofNi sulphide ores 347 7.3.2. Platinum group elements (PGE) 355 7.4 Concluding remarks 378 7.5 References 380 CHAPTER 8 Magmatic Ore Deposits 387 8.1 lntroduction 387 8.2 Large layered igneous complexes 388 8.2.1. The Great Dyke, Zimbabwe 389 8.2.2. The Bushveld lgneous Complex, South Africa 401 8.2.3. Molopo Farms Complex, South Africa and Botswana 425 8.3 Magmatic ore deposits in igneous complexes associated with continental flood basalts 426 8.3.1. Duluth Complex, Mid-continent Rift System, USA 426 8.3.2. Noril'sk-Talnakh, Siberian Traps, Russia 428 8.3.3. The Insizwa Complex, Karoo lgneous Province 433 8.3.4. Skaergaard and Kap Edvard Holm, East Greenland 438 8.4 magmatic ores in Proterozoic troctolite-anorthosite complexes 441 8.4.1. Voisey's Bay Ni-Cu-Co 442 8.5 Komatiite-related magmatic ore deposits 445 8.5.1. Komatiite volcanology 446 8.5.2. Komatiite mineralogy and whole rock geochemistry 447 8.5.3. Komatiite-hosted Fe-Ni-Cu sulphide ores 449 8.6 Hydrothermal Ni-cu and PGE mineralisation in ultra- ultramafic rocks 453 8. 7 Concluding remarks 458 8.8 References 459 CHAPTER 9 Indirect Links: Hydrothermal Mineral Deposits 469 9.1 Introduction 469 9.2.1. Ring complexes and carbonatites 471 9.2.2. Proterozoic Cu-Au-U-REE-Fe deposits 473 9.2.3. Mesothermal ore deposits 480 9.2.4. Carlin-type epithermal ore deposits 483 9.2 Ore deposits associated with intracontinental anorogenic magmatism 471 9.3 Metallogeny ofthe Damara and Irumide orogens, Soutb- western Africa, and the Mid Continent Rift System, USA 491 9.3.1. Metallogeny ofthe Damara and Irumide orogens 491 9.3.2. Metallogeny ofthe Mid-continent Rift System, N orth America 497 9.4 Archaean 1ode Au deposits 498 9.5 Concluding remarks 502 9.6 References 504 CHAPTER 10 Indirect Links: Sedimentary Rock-Hosted Ore Deposits. Epilogue 509 10.1 Introduction 509 10.2 Metallogeny in modern rift settings 511 10.2.1. The East African Rift System 511 10.2.2. The Red Sea brine pools 516 10.3 Sedimentary-hydrothermal ore deposits 520 10.3.1. Mississippi Valley-type sulphide deposits 520 10.3.2. Sedimentary exhalative (SEDEX) massive sulphide deposits 523 10.3.3. Stratabound Cu-Ag and Cu-Co ore deposits 528 10.4 Metalliferous black shales 531 XII Contents 10.4.1. Mo-Ni-V-PGE-Au in black shales, southern China 533 10.5 Iron-formations and manganese deposits 534 10.6 Concluding remarks and epilogue 539 10.7 References 540 APPENDIX 547 INDEX 549 PREFACE PERTH Western Australia March 2000 Increasingly explorationists are seeking to find new ore deposits in poorly prospected areas, be they geographically remote, such as in the Arctic, or geologically remote, such as those under sedimentary cover.
Recommended publications
  • F Makwara (PDF)
    CHROMITE GEOLOGY OF ZIMBABWE AND RELATED MINING CHALLENGES PRESENTATION GREAT DYKE : MUTORASHANGA AUGUST 2017 2 WORLD CHROME RESOURCE Estimate World Chromite Resource : +-12 Billion Tonnes • South Africa : 72% of world Resource - Stratiform • Zimbabwe: 12% -Stratiform & podiform • Kazakhstan: 4% - Podiform • Finland : 2% -Podiform • India : 1% -Podiform • Turkey and others : 9% -Largely podiform But Zimbabwe companies producing at full capacity is not in the top 5 producing companies . STRATIFORM & PODIFORM GEOLOGY LOCATION GEOLOGY MAP - ZIMBABWE MASHONALAND CENTRAL MASHONALAND WEST CHIRUMANZU MIDLANDS MASVINGO MBERENGWA 5 LOCATION OF STRATIFORM CHROMITE RESOURCE • Mashonaland Central: North Dyke Tengenenge Impinge Birkdale Mutorashanga • Mashonaland West: Middle Dyke Ngezi Darwendale Maryland Lembe/Mapinga Mutorashanga • Midlands: South Dyke Lalapanzi Mapanzure Bannockburn CSC LOCATION OF PODIFORM CHROMITE RESOURCES • Midlands: Valley Nhema Chirumanzu Mberengwa • Masvingo: Mashava THE GREAT DYKE AND PODIFORMS GEOLOGY • THE GREAT DYKE • Tengenenge to Mberengwa, Location • Stretches for 550km and is 4-11km wide. • PODIFORM • Isolated chrome resources in Shurugwi,Mashava ,Nhema ,Valley, Chirumanzu and Mberengwa • THE DYKE : STRATIFORM • Chromite hosts rocks are :Harzburgite, dunite, serpentinite and pyroxenite Host Rock • PODIFORM • Chromite host rocks are: Serpentinite ,Silicified Talc Carbonate and Talc Carbonate • 10 known seams, The 11 th seam is poorly exposed in the North Dyke • 8cm to 40cm thickness Chrome Seams • Average vertical spacing of seams is 30-40m • Geotechnical Parameters considered fore seams are: Seam Widths, quality, dip, friability, & continuity • Platinum Group Metals Known Minerals in • Chrome the Dyke • Asbestos • Nickel 8 CHROMITE RESOURCES • The dyke intruded as an ultramafic sill ,estimated age 2.7 Ga . STRATIFORM • 11 seams are known to exist on the Great Dyke, but not evenly distributed through out the dyke.
    [Show full text]
  • Mining Within Zimbabwe's Great Dyke: Extent , Impacts & Opportunities
    Mining Within Zimbabwe’s Great Dyke: Extent , Impacts & Opportunities Authors: Gilbert Makore & Veronica Zano Published by: Zimbabwe Environmental Law Association (ZELA) Sponsored by: International Alliance on Natural Resource in Africa (IANRA) Authors: Gilbert Makore and Veronica Zano Editor: Muduso Dhliwayo Copyright: 2012. Zimbabwe Environmental Law Association (ZELA) This publication may be reproduced in whole or in part and in any form for educational or non-profit uses, without special permission from the copyright holder, provided full acknowledgement of the source is made. No use of this publication may be made for resale or other commercial purposes without the prior written permission of ZELA. Year of Publication: 2012 Available from: Zimbabwe Environmental Law Association (ZELA), No. 6 London Derry Road, Eastlea, Harare, Zimbabwe: Tel: 253381; 252093, Email: , Website: www.zela.org Zimbabwe Environmental Law Association International Alliance on Natural Resource in Africa International Alliance on Natural Resources in Africa MINING WITHIN ZIMBABWE’S GREAT DYKE: EXTENT , IMPACTS AND OPPORTUNITIES I Table of Contents Executive Summary: 1 The Great Dyke Mineral Belt: 2 Mining and Mining Development Contribution to Economic Growth: 5 Companies operating in the Great Dyke: 10 Communities along the Great Dyke: 12 Impacts of Mining on the Great Dyke Communities: 14 Recommendations: 19 Conclusion: 20 MINING WITHIN ZIMBABWE’S GREAT DYKE: EXTENT , IMPACTS AND OPPORTUNITIES ii Executive Summary The Great Dyke is a seam of ore-bearing rock that goes from the north to the south of Zimbabwe. The Dyke spans a total length of 550kms and has a maximum width of 11kms. This geological feature represents an important resource for Zimbabwe's national economy and the local communities' livelihoods.
    [Show full text]
  • A Semi-Quantitative Model for the Formation of Great Dyke-Type Platinum Deposits
    A Semi-Quantitative Model for the Formation of Great Dyke-Type Platinum Deposits William P. Meurer1 and Alan E. Boudreau2 1Dept. of Geosciences, Univ. of Houston, 312 Sci. & Res. Bldg. 1, Houston, TX 77204-5007 2Div. Earth Sci., Nicholas School of the Env. and Earth Sci., Box 90227, Duke University, Durham, NC 27708 email: [email protected] The uppermost parts of the ultramafic 2) The PGE-sulfide mineralization is sections of some layered intrusions host significant commonly found below the ultramafic-mafic deposits of the platinum-group elements (PGE). contact. In addition, there are typically significant The type example of this class of PGE deposit is stratigraphic “offsets” between the maximum the Great Dyke of Zimbabwe. The Munni Munni concentrations of the PGE, base metals and sulfur. deposit has a similar occurrence (e.g., Hoatson and 3) At discrete horizons, just below the Keays, 1989). In the Stillwater Complex of ultramafic-mafic boundary, the rocks have higher Montana there are local shows of PGE-sulfide incompatible trace-element concentrations, greater enrichments at the top of the Ultramafic series but modal proportions of interstitial minerals, and more they are not laterally continuous (fig. 1). evolved mineral compositions. These features are These deposits have a number of common interpreted to reflect a marked enrichment in features: crystallized interstitial liquid in these rocks. 1) Each is characterized by a lower A number of investigators have suggested sequence of ultramafic rocks consisting mainly of that these zones are the result of a complex pyroxene and olivine overlain by mafic rocks interplay of extreme fractionation, magma mixing, containing 50 to 60 % plagioclase.
    [Show full text]
  • The Plate Theory for Volcanism
    This article was originally published in Encyclopedia of Geology, second edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author’s institution, for non-commercial research and educational use, including without limitation, use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation, commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: https://www.elsevier.com/about/policies/copyright/permissions Foulger Gillian R. (2021) The Plate Theory for Volcanism. In: Alderton, David; Elias, Scott A. (eds.) Encyclopedia of Geology, 2nd edition. vol. 3, pp. 879-890. United Kingdom: Academic Press. dx.doi.org/10.1016/B978-0-08-102908-4.00105-3 © 2021 Elsevier Ltd. All rights reserved. Author's personal copy The Plate Theory for Volcanism Gillian R Foulger, Department of Earth Sciences, Science Laboratories, Durham University, Durham, United Kingdom © 2021 Elsevier Ltd. All rights reserved. Statement of Plate Theory 879 Background, History, Development and Discussion 879 Lithospheric Extension 880 Melt in the Mantle 881 Studying Intraplate Volcanism 882 Examples 883 Iceland 883 Yellowstone 885 The Hawaii and Emperor Volcano Chains 886 Discussion 888 Summary 888 References 888 Further Reading 889 Statement of Plate Theory The Plate Theory for volcanism proposes that all terrestrially driven volcanism on Earth’s surface, including at unusual areas such as Iceland, Yellowstone and Hawaii, is a consequence of plate tectonics.
    [Show full text]
  • Plate Tectonics on Early Earth? Weighing the Paleomagnetic Evidence
    spe440-12 3rd pages The Geological Society of America Special Paper 440 2008 Plate tectonics on early Earth? Weighing the paleomagnetic evidence David A.D. Evans* Department of Geology & Geophysics, Yale University, New Haven, Connecticut 06520-8109, USA Sergei A. Pisarevsky* School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, Scotland, UK ABSTRACT Paleomagnetism is the only quantitative method available to test for lateral motions by tectonic plates across the surface of ancient Earth. Here, we present several analyses of such motions using strict quality criteria from the global paleomagnetic database of pre–800 Ma rocks. Extensive surface motion of cratons can be documented confi dently to older than ca. 2775 Ma, but considering only the most reliable Archean data, we cannot discern differential motion from true polar wander (which can also generate surface motions relative to the geomagnetic reference frame). In order to fi nd evidence for differential motions between pairs of Precambrian cratons, we compared distances between paleomagnetic poles through precisely isochronous intervals for pairs of cra- tons. The existing database yields several such comparisons with ages ranging from ca. 1110 to ca. 2775 Ma. Only one pair of these ages, 1110–1880 Ma, brackets signifi cantly different apparent polar wander path lengths between the same two cratons and thus demonstrates differential surface motions. If slightly less reliable paleomagnetic results are considered, however, the number of comparisons increases dramatically, and an example is illustrated for which a single additional pole could constrain differential cratonic motion into the earliest Paleoproterozoic and late Neoarchean (in the interval 2445–2680 Ma).
    [Show full text]
  • PLATINUM the PGE Resources of the Great Dyke
    PLATINUM The PGE resources of the Great Dyke - C Mwatahwa and C Musa 1 Presentation Overview PLATINUM (2/2*,&$/(77,1* 758&785($1'75$7,*5$3+< ,1(5$/2*< • ((),1(5$/2*< • 5(,1(5$/2*< Ò5(6285&(6 ,1,1*Ä52&(66,1* • (() '(17,),&$7,21 • 3(1&$67,1,1* • 1'(5*5281',1,1* • 52&(66,1* 2 Geological Setting PLATINUM 5($7<.(,6$1(/21*$7(/$<(5(' ,17586,21Ì 1758'(',0%$%:($1$5&+$($1 &5$721*5$1,72,'6$1'*5((16721(%(/7 52&.6 03/$&(0(17$*( ÐÓÕÒ ±Ð$ÌÆ,1*$7(ÐÎÎÎËË%Ç :20$,1&+$0%(56:,7+),9( 68%&+$0%(56 0$//(676Ë$985$'21+$68%&+$0%(5Ê //8%&+$0%(56+$9( 5(6285&(6 3 Transverse Section PLATINUM O 2&&856$7 6$0( /,7+2675$7,*5$3+,& 81,7,1$// 68%&+$0%(56 O 76%(+$9,285 )2//2:675(1'2) /$<(5,1*:,7+,1 Ï$1',6 6<00(75,&Ì O ,36$5(6+$//2: 5$1*,1*)520ÏÒ 72Î Stratigraphy PLATINUM $),&81,7$77+(723 2:(5/75$0$),& 6(48(1&(P%52.(1,172 3<52;(1,7($1''81,7( 68&&(66,216 5(6285&(62&&85 1($57+(7232)7+( 8/75$0$),&68&&(66,21Ì 5 Local Stratigraphy PLATINUM • Mafic unit up to 300-1200m thick at axis • Chromite seam at base of mafic unit • Mafic mainly gabbronorite –opx,cpx with plag • Upper P1-plagioclase websterite ±6m thick • Plagioclase websterite underlain by poikilitic plagioclase pyroxenite (so called bronzitite) • MSZ (2-3m)occurs at the top of the plagioclase pyroxenite unit and extends into the base of the websterite • MSZ can be correlated in all subchambers • The S1 Layer=MSZ Mineralogy PLATINUM • 50% of PGEs associated with base metal sulphides(BMS).
    [Show full text]
  • Geological Archive of the Onset of Plate Tectonics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Geological archive of the onsetprovided by espace@Curtin of plate tectonics rsta.royalsocietypublishing.org Peter A. Cawood1,2, Chris J. Hawkesworth2,3, Sergei A. Pisarevsky4, Bruno Dhuime3,5, 1 1 Research Fabio A. Capitanio andOliverNebel 1 Cite this article: Cawood PA, Hawkesworth School of Earth, Atmosphere and Environment, Monash University, CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Melbourne, VIC 3800, Australia 2 Nebel O. 2018 Geological archive of the onset Department of Earth Sciences, University of St Andrews, of plate tectonics. Phil.Trans.R.Soc.A376: St Andrews, Fife KY16 9AL, UK 20170405. 3School of Earth Sciences, University of Bristol, Wills Memorial http://dx.doi.org/10.1098/rsta.2017.0405 Building, Queens Road, Bristol BS8 1RJ, UK 4ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Accepted:21June2018 Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin One contribution of 14 to a discussion meeting University, GPO Box U1987, Perth, WA 6845, Australia issue‘Earthdynamicsandthedevelopmentof 5CNRS-UMR 5243, Géosciences Montpellier, Université de plate tectonics’. Montpellier, Montpellier, France Subject Areas: PAC, 0000-0003-1200-3826;BD,0000-0002-4146-4739; plate tectonics, geochemistry, geology ON, 0000-0002-5068-7117 Keywords: Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a plate tectonics, Archaean, palaeomagnetics, characteristic feature of our planet, but estimates lithosphere, early Earth of how long it has been the modus operandi of lithospheric formation and interactions range from Author for correspondence: the Hadean to the Neoproterozoic.
    [Show full text]
  • The Oxidized Ores of the Main Sulphide Zone, Great Dyke, Zimbabwe: Turning Resources Into Minable Reserves – Mineralogy Is the Key
    The Southern African Institute of Mining and Metallurgy Platinum 2012 T. Oberthür, F. Melcher, P. Buchholz, M. Locmelis THE OXIDIZED ORES OF THE MAIN SULPHIDE ZONE, GREAT DYKE, ZIMBABWE: TURNING RESOURCES INTO MINABLE RESERVES – MINERALOGY IS THE KEY T. Oberthür Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) F. Melcher Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) P. Buchholz Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) M. Locmelis Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (CCFS) Abstract The Great Dyke of Zimbabwe constitutes the world’s second largest reserve of platinum group elements (PGE) after the Bushveld Complex in neighbouring South Africa. Within the Great Dyke, economic concentrations of PGE are restricted to sulphide disseminations of the Main Sulphide Zone (MSZ), which are currently mined at the Ngezi, Unki, and Mimosa mines. Near-surface oxidized MSZ ores have a large potential. Their total resources are in the range of ca. 160 – 250 Mt; however, all previous attempts to extract the PGE from this ore type proved uneconomic due to low PGE recoveries (<< 50 per cent) achieved by conventional metallurgical methods. Within the ores of pristine, sulphide-bearing MSZ, the PGE are bimodally distributed. Platinum occurs mainly in the form of discrete platinum group mineral (PGM) grains (mainly bismuthotellurides, sulphides, and arsenides), whereas approximately 80 per cent of the Pd (and some Rh) is hosted in pentlandite. Within the oxidized MSZ ores, the PGE are polymodally distributed. Whereas arsenide- and sulphide-PGMs, making up ca. 25 per cent of the original Pt content of the ore, largely remain stable (relict PGMs), the remaining PGMs are disintegrated.
    [Show full text]
  • A Rheological Investigation of the Behaviour of Two Southern African Platinum Ores ⇑ M
    Minerals Engineering 49 (2013) 92–97 Contents lists available at SciVerse ScienceDirect Minerals Engineering journal homepage: www.elsevier.com/locate/mineng A rheological investigation of the behaviour of two Southern African platinum ores ⇑ M. Becker a, , G. Yorath a, B. Ndlovu a,b, M. Harris a, D. Deglon a, J.-P. Franzidis a a Centre for Minerals Research, Department of Chemical Engineering, University of Cape Town, South Africa b Julius Kruttschnitt Mineral Research Centre, University of Queensland, Australia article info abstract Article history: With the installation of ultrafine grinding on many platinum operations in southern Africa, there were Received 21 February 2013 concerns as to whether this would cause rheologically complex behaviour during the subsequent flota- Accepted 7 May 2013 tion of the ore. Rheologically complex behaviour refers to the non-Newtonian behaviour experienced Available online 5 June 2013 by some suspensions, associated with exponential increases in yield stress and viscosity with increasing solids content. This is attributed to particle size and solids concentration effects, surface chemistry, and Keywords: mineralogy. In this study, the rheological behaviour of two different platinum ores; a western limb UG2 Rheology ore and a Great Dyke platinum ore were investigated and compared with that of single mineral studies of Platinum ores the major gangue minerals of platinum ores (chromite, orthopyroxene, plagioclase and talc). The results Phyllosilicate minerals show that Great Dyke ore is considerably more rheologically complex than UG2 ore. Great Dyke flotation concentrate shows high yield stress and viscosity at low solids concentrations (>20 vol.% solids). Should the ROM ore in a Great Dyke flotation operation suddenly show significant changes in ore mineralogy, the rheological properties of the slurry should be considered since they may be detrimental to the overall performance of the operation (e.g.
    [Show full text]
  • South Africa): Revealing Multiple Events of Dyke Emplacement
    U-Pb baddeleyite dating of intrusions in the south-easternmost Kaapvaal Craton (South Africa): revealing multiple events of dyke emplacement Emilie Larsson Dissertations in Geology at Lund University, Master’s thesis, no 457 (45 hp/ECTS credits) Department of Geology Lund University 2015 U-Pb baddeleyite dating of intrusions in the south-easternmost Kaapvaal Craton (South Africa): revealing multiple events of dyke emplacement Master’s thesis Emilie Larsson Department of Geology Lund University 2015 Contents 1 Introduction ........................................................................................................................................................ 7 2 Regional geology ................................................................................................................................................. 7 2.1 Mafic dyke intrusions 3 Field Geology and Petrography ...................................................................................................................... 10 3.1 SE-trending dykes 3.1.1 SED01 3.1.2 SED02 3.2 Sub-horizontal intrusion (sill) 3.2.1 SED03 3.3 ENE-trending dykes 3.3.1 ENED03 3.3.2 ENED08 3.3.3 ENED09 4 Analytical protocol ........................................................................................................................................... 14 4.1. U / Pb dating of baddeleyite 5 Results ............................................................................................................................................................... 14 5.1
    [Show full text]
  • Mineralogy and Geochemistry of Soils of Ultramafic
    MINERALOGY AND GEOCHEMISTRY OF SOILS OF ULTRAMAFIC ORIGIN FROM THE GREAT DYKE, ZIMBABWE AND GILLESPIE COUNTY, TEXAS A Dissertation by COURAGE BANGIRA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Soil Science Mineralogy and Geochemistry of Soils of Ultramafic Origin from the Great Dyke, Zimbabwe and Gillespie County, Texas Copyright December 2010 Courage Bangira MINERALOGY AND GEOCHEMISTRY OF SOILS OF ULTRAMAFIC ORIGIN FROM THE GREAT DYKE, ZIMBABWE AND GILLESPIE COUNTY, TEXAS A Dissertation by COURAGE BANGIRA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Richard. H. Loeppert Committee Members, Charles T. Hallmark Youjun Deng Alan E. Pepper Head of Department, David D. Baltensperger December 2010 Major Subject: Soil Science iii ABSTRACT Mineralogy and Geochemistry of Soils of Ultramafic Origin from the Great Dyke, Zimbabwe and Gillespie County, Texas. (December 2010) Courage Bangira, B.S., University of Zimbabwe; M.S., Gent University, Belgium Chair of Advisory Committee: Dr. Richard H. Loeppert Although soils developed from ultramafic parent materials have significance to agriculture, ecology and health, their bio-geochemistry is poorly understood. The mineralogical and bio-geochemistry of soils formed from the ultramafic parent materials of the Great Dyke, Zimbabwe and Gillespie County, Texas was investigated. The objectives were to determine the mineralogical and bio-geochemical properties of the soils in order to assess the potential impact and challenges to agriculture, and environmental quality.
    [Show full text]
  • Stratiform Chromite Deposit Model
    Stratiform Chromite Deposit Model Chapter E of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–E U.S. Department of the Interior U.S. Geological Survey COVER: Photograph showing outcropping of the Bushveld LG6 chromitite seam. Photograph courtesy of Klaus J. Schulz, U.S. Geological Survey. Stratiform Chromite Deposit Model By Ruth F. Schulte, Ryan D. Taylor, Nadine M. Piatak, and Robert R. Seal II Chapter E of Mineral Deposit Model for Resource Assessment Scientific Investigations Report 2010–5070–E U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Schulte, R.F., Taylor, R.D., Piatak, N.M., and Seal, R.R., II, 2012, Stratiform chromite deposit model, chap. E of Mineral deposit models for resource assessment: U.S.
    [Show full text]