On Distributive Meet-Semilattices

Total Page:16

File Type:pdf, Size:1020Kb

On Distributive Meet-Semilattices International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 On Distributive Meet-Semilattices A. Ashtalakshmi1, G. Soundharya2 Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India. -----------------------------------------------------------------***------------------------------------------------------------------ Abstract :- Desire by Gentzen’ s conjunction elimination ruling the Natural Deduction calculus and reading discrimination with join in a natural move, we perceive a perception of Different notions of distributivity for meet-semilattices. In the move we substantiate that those perceptions are linearly ordered. The conjunction -conditional portion of antagonistic logic. Keywords: Meet-semilattice, ND-distributive, K-distributive, H-distributive 1 Introduction Different notions of distributivity for semilattices have been introduced in the article as a ratiocination of the usual distributive property in lattices. As far as we know, notions of distributivity for semilattices have been given. We perceive a notion of distributivity for meet-semilattice. That will be call ND- distributivity. We aspiration to find out whether it is correspondent to any of the perceptions previously present in the article. In doing so, we also analyze the contrasting notion of distributivity for meet-semilattice we have found. Namely, we see that the accustomed perceptions entail each other in the following linear order: GS K (H LR ND) B and we also afford countermodels for the reciprocals. Additionally, we show that H-distributivity may be detect as a very natural adaptation of a move to characterize distributivity for lattice, case that will afford more desire for the use of that perceptions. Indicate that Hickman used the term balmy distributivity for H-distributivity. 2 Preliminaries Definition 2.1 An algebra , is called a lattice if L is a nonempty set, and are binary operation on L. Both and are idempotent, commutative and associative and they satisfy the absorption law. The study of lattices is called the lattice theory. Properties 2.2 An algebra , if L is nonempty set, i. a b = b a ii. a b = b a iii. a (b ) = (a b) c iv. a (b c) = (a b) c v. a (a b) = a vi. a (a b) =a for all a, b, c ϵ L Definition 2.3 A semilattices is a structured S = where . is a binary operations called the semilattices operation such that . is associative (x y) z = x (y z) . is commutative x y = y x . is idempotent xx = x © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2132 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 Definition 2.4 Distributive join- semilattice are defined dually. A join-semilattice is distributive if for all a, b and x. If X ≤ a b then there exists and such that ≤ a, ≤ b and X= Definition 2.5 A meet-semilattice is distributive if for all a, b and X. If a b ≤ X then there exists and such that a ≤ , b ≤ and X = Definition 2.6 In this section we provide the basic notions and notations that will be used in the paper. Let J = (J, ≤) be a poset. For any J S, we will use the notations and to denote the set lower and upper bound of S, respectively. That is, { } { } Lemma 2.7 Let J = (J, ≤) be a poset. For all a, b, c ϵ J the following statement are equivalent. i. For all x ϵ J, if a ≤ x and b ≤ x, then c ≤ x. ii. { } { } iii. c ϵ { } A poset J = (J, ≤) is a meet-semilattice if inf {a, b} exists for every a, b ϵ J. A poset J = (J, ≤) Is a lattice it is meet-semilattice. As usual the notations a b shall stand for inf {a, b}. Given a meet-semilattice J = (J, ≤), we will use the following notions: J is upwards directed iff for any a, b ϵ J, there exists c ϵ J such that a ≤ c and b ≤ c. A nonempty subset J I is said to be an ideal iff (1) if x, y ϵ I, then x y ϵ I and (2) if x ϵ I and x ≤ y, then y ϵ I. The principal ideal generated by an element a ϵ A, noted (a], is defined by (a] = {x ϵ A: a ≤ x}. Id(J) will denote the set of all ideals of J. (J) will denote the subset of ideals that are union of a finite set of principal ideals, that, is { ] ] } In this paper we are concerned with various notions of distributivity for meet-semilattice, all of them generalizing the usual notion of distributive lattice, that is a lattice J =(J, ≤) is distributive if the following equation holds true for any elements a, b, c ϵ J : (D) a (b c) = (a b) (a c) There are several equivalent formulation of this property, in particular we mention the following ones that are relevant for this paper: For all a, b, c ϵ J, if a b = a c and a b = a c then b = c. © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2133 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 For any two ideals of J, the ideal generated by their intersection is defined by = {a b : a ϵ , b ϵ }. The set Id(J) of ideals of J is a distributive lattice. For the case of semilattices, several non-equivalent generalizations of these conditions can be found in the article, already mentioned in the introduction. However, as expected, all of them turn to be equivalent to usual distributivity in the case of lattices. In the contrast, in any sense of distributivity for meet-semilattices that coincides with usual distributivity in the case of a lattice, the class of distributive meet-semilattice is not even a quasi-variety. Definition 2.8 A meet-semilattice J = (J, ≤) is called ND-distributive (ND for Natural Deduction) it satisfies ( ). 3 Different notions of distributivity for meet-semilattices 3.1 GS-distributivity The following seems to be the most popular definition of distributivity for meet-semilattices. Definition 1 A meet-semilattice J = (J, ) is GS-distributive iff (GS) for all a, b, x Proposition 1 Let J = (J, ) be a meet-semilattice. Then the following two statements are equivalent: i. Every pair of elements has upper bound. ii. For all a, b, x Proof: (i) Suppose a . Let be a upper bound of {a, x} and be a upper bound of {b, x}. Then a and b . Also, x and x , which implies that x (ii) (i) Let a, b J . We have a b a. Then by hypothesis there exist a , b such that a . As , it follows that a . Then a, b that is is a upper bound of {a, b} 3.2 K-distributivity The concept given in the following definition is similar to the one in (GS). Definition 2 A meet-semilattice J = (J ; ) is K-distributive iff (K) for all a, b, x Proposition 2 GS-distributivity implies K-distributivity, but not conversely. © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2134 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 Proof The most simple counter-example showing that the reciprocal does not hold is the meet-semilattice in Figure [1], that is not upward directed. Indeed, the given meet-semilattice is K-distributive, as the only way to satisfy the antecedent of (K) is to take a but then the consequent is also true. On the other hand , it is not (GS) distributive, as we have and however , there are no a Figure 1: Meet-semilattice showing that K-does not imply GS-distributivity 3.3 H-distributivity In [10] Hickman introduces the concept of mildly distributive join-semilattices as those join-semilattices whose lattice of their strong ideals is distributive. In [10, Theorem 2.5, p.200] it is stated that it is equivalent in the following statement: (H) for all n and If for all b (if ), Then there exists (x ) The given conditional may be seen as a translation of the following version of distributivity for lattices: If Then In the case of a meet-semilattice J = ( J, ) and using quantifiers, (H) may be rendered as follows: For all n and x, If Then for all y, if for all Then y That is in turn equivalent to: For all n and x, If Then for all y, if (for all z, if x ) Then y Using set-theoretic notation, (H) may also be rendered as follows: (C) for all n and x, If { } { } At this point, the reader may wonder whether the number n of arguments is relevant or whether two arguments are enough. Let us settle this question. Firstly, with that in mind, consider ( ) for all x, If { } { } { } { } { } Now, let us state the following fact. © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2135 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 Lemma 2 ( ) is equivalent to (C). Proof { } { } .Our goal is to see that y . Then we have { } { } { } , and hence ) suppose { } { } { } . We have to prove that ,if { } { } { } { } hence c Proposition 3 Let J = (J, ) be a meet-semilattice. Then, K-distributivity implies H-distributivity.
Recommended publications
  • An Elementary Approach to Boolean Algebra
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason­ able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved.
    [Show full text]
  • Semilattice Sums of Algebras and Mal'tsev Products of Varieties
    Mathematics Publications Mathematics 5-20-2020 Semilattice sums of algebras and Mal’tsev products of varieties Clifford Bergman Iowa State University, [email protected] T. Penza Warsaw University of Technology A. B. Romanowska Warsaw University of Technology Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ math_pubs/215. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Semilattice sums of algebras and Mal’tsev products of varieties Abstract The Mal’tsev product of two varieties of similar algebras is always a quasivariety. We consider when this quasivariety is a variety. The main result shows that if V is a strongly irregular variety with no nullary operations, and S is a variety, of the same type as V, equivalent to the variety of semilattices, then the Mal’tsev product V ◦ S is a variety. It consists precisely of semilattice sums of algebras in V. We derive an equational basis for the product from an equational basis for V. However, if V is a regular variety, then the Mal’tsev product may not be a variety. We discuss examples of various applications of the main result, and examine some detailed representations of algebras in V ◦ S.
    [Show full text]
  • YET ANOTHER SINGLE LAW for LATTICES 1. Introduction Given A
    YET ANOTHER SINGLE LAW FOR LATTICES WILLIAM MCCUNE, R. PADMANABHAN, AND ROBERT VEROFF Abstract. In this note we show that the equational theory of all lattices is defined by the single absorption law (((y x) x) (((z (x x)) (u x)) v)) (w ((s x) (x t))) = x: _ ^ _ ^ _ _ ^ ^ ^ _ _ ^ _ This identity of length 29 with 8 variables is shorter than previously known such equations defining lattices. 1. Introduction Given a finitely based equational theory of algebras, it is natural to determine the least number of equations needed to define that theory. Researchers have known for a long time that all finitely based group theories are one based [2]. Because of lack of a cancellation law in lattices (i.e., the absence of some kind of a subtraction operation), it was widely believed that the equational theory of lattices cannot be defined by a single identity. This belief was further strengthened by the fact that two closely related varieties, semilattices and distributive lattices, were shown to be not one based [9, 7]. In the late 1960s researchers attempted to formally prove that lattice theory is not one based by trying to show that no set of absorption laws valid in lattices can capture associativity. Given one such attempt [6], Padmanabhan pointed out that Sholander's 2-basis for distributive lattices [10] caused the method to collapse. This failure of the method led to a proof of existence of a single identity for lattices [7]. For a partial history of various single identities defining lattices, their respective lengths, and so forth, see the latest book on lattice theory by G.
    [Show full text]
  • Cayley's and Holland's Theorems for Idempotent Semirings and Their
    Cayley's and Holland's Theorems for Idempotent Semirings and Their Applications to Residuated Lattices Nikolaos Galatos Department of Mathematics University of Denver [email protected] Rostislav Horˇc´ık Institute of Computer Sciences Academy of Sciences of the Czech Republic [email protected] Abstract We extend Cayley's and Holland's representation theorems to idempotent semirings and residuated lattices, and provide both functional and relational versions. Our analysis allows for extensions of the results to situations where conditions are imposed on the order relation of the representing structures. Moreover, we give a new proof of the finite embeddability property for the variety of integral residuated lattices and many of its subvarieties. 1 Introduction Cayley's theorem states that every group can be embedded in the (symmetric) group of permutations on a set. Likewise, every monoid can be embedded into the (transformation) monoid of self-maps on a set. C. Holland [10] showed that every lattice-ordered group can be embedded into the lattice-ordered group of order-preserving permutations on a totally-ordered set. Recall that a lattice-ordered group (`-group) is a structure G = hG; _; ^; ·;−1 ; 1i, where hG; ·;−1 ; 1i is group and hG; _; ^i is a lattice, such that multiplication preserves the order (equivalently, it distributes over joins and/or meets). An analogous representation was proved also for distributive lattice-ordered monoids in [2, 11]. We will prove similar theorems for resid- uated lattices and idempotent semirings in Sections 2 and 3. Section 4 focuses on the finite embeddability property (FEP) for various classes of idempotent semirings and residuated lat- tices.
    [Show full text]
  • LATTICE THEORY of CONSENSUS (AGGREGATION) an Overview
    Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 1 LATTICE THEORY of CONSENSUS (AGGREGATION) An overview Bernard Monjardet CES, Université Paris I Panthéon Sorbonne & CAMS, EHESS Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 2 First a little precision In their kind invitation letter, Klaus and Clemens wrote "Like others in the judgment aggregation community, we are aware of the existence of a sizeable amount of work of you and other – mainly French – authors on generalized aggregation models". Indeed, there is a sizeable amount of work and I will only present some main directions and some main results. Now here a list of the main contributors: Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 3 Bandelt H.J. Germany Barbut, M. France Barthélemy, J.P. France Crown, G.D., USA Day W.H.E. Canada Janowitz, M.F. USA Mulder H.M. Germany Powers, R.C. USA Leclerc, B. France Monjardet, B. France McMorris F.R. USA Neumann, D.A. USA Norton Jr. V.T USA Powers, R.C. USA Roberts F.S. USA Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 4 LATTICE THEORY of CONSENSUS (AGGREGATION) : An overview OUTLINE ABSTRACT AGGREGATION THEORIES: WHY? HOW The LATTICE APPROACH LATTICES: SOME RECALLS The CONSTRUCTIVE METHOD The federation consensus rules The AXIOMATIC METHOD Arrowian results The OPTIMISATION METHOD Lattice metric rules and the median procedure The "good" lattice structures for medians: Distributive lattices Median semilattice Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 5 ABSTRACT CONSENSUS THEORIES: WHY? "since Arrow’s 1951 theorem, there has been a flurry of activity designed to prove analogues of this theorem in other contexts, and to establish contexts in which the rather dismaying consequences of this theorem are not necessarily valid.
    [Show full text]
  • Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions
    Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions Section 10. 1, Problems: 1, 2, 3, 4, 10, 11, 29, 36, 37 (fifth edition); Section 11.1, Problems: 1, 2, 5, 6, 12, 13, 31, 40, 41 (sixth edition) The notation ""forOR is bad and misleading. Just think that in the context of boolean functions, the author uses instead of ∨.The integers modulo 2, that is ℤ2 0,1, have an addition where 1 1 0 while 1 ∨ 1 1. AsetA is partially ordered by a binary relation ≤, if this relation is reflexive, that is a ≤ a holds for every element a ∈ S,it is transitive, that is if a ≤ b and b ≤ c hold for elements a,b,c ∈ S, then one also has that a ≤ c, and ≤ is anti-symmetric, that is a ≤ b and b ≤ a can hold for elements a,b ∈ S only if a b. The subsets of any set S are partially ordered by set inclusion. that is the power set PS,⊆ is a partially ordered set. A partial ordering on S is a total ordering if for any two elements a,b of S one has that a ≤ b or b ≤ a. The natural numbers ℕ,≤ with their ordinary ordering are totally ordered. A bounded lattice L is a partially ordered set where every finite subset has a least upper bound and a greatest lower bound.The least upper bound of the empty subset is defined as 0, it is the smallest element of L.
    [Show full text]
  • ON DISCRETE IDEMPOTENT PATHS Luigi Santocanale
    ON DISCRETE IDEMPOTENT PATHS Luigi Santocanale To cite this version: Luigi Santocanale. ON DISCRETE IDEMPOTENT PATHS. Words 2019, Sep 2019, Loughborough, United Kingdom. pp.312–325, 10.1007/978-3-030-28796-2_25. hal-02153821 HAL Id: hal-02153821 https://hal.archives-ouvertes.fr/hal-02153821 Submitted on 12 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ON DISCRETE IDEMPOTENT PATHS LUIGI SANTOCANALE Laboratoire d’Informatique et des Syst`emes, UMR 7020, Aix-Marseille Universit´e, CNRS Abstract. The set of discrete lattice paths from (0, 0) to (n, n) with North and East steps (i.e. words w x, y such that w x = w y = n) has a canonical monoid structure inher- ∈ { }∗ | | | | ited from the bijection with the set of join-continuous maps from the chain 0, 1,..., n to { } itself. We explicitly describe this monoid structure and, relying on a general characteriza- tion of idempotent join-continuous maps from a complete lattice to itself, we characterize idempotent paths as upper zigzag paths. We argue that these paths are counted by the odd Fibonacci numbers. Our method yields a geometric/combinatorial proof of counting results, due to Howie and to Laradji and Umar, for idempotents in monoids of monotone endomaps on finite chains.
    [Show full text]
  • An Efficient Algorithm for Fully Robust Stable Matchings Via Join
    An Efficient Algorithm for Fully Robust Stable Matchings via Join Semi-Sublattices Tung Mai∗1 and Vijay V. Vazirani2 1Adobe Research 2University of California, Irvine Abstract We are given a stable matching instance A and a set S of errors that can be introduced into A. Each error consists of applying a specific permutation to the preference list of a chosen boy or a chosen girl. Assume that A is being transmitted over a channel which introduces one error from set S; as a result, the channel outputs this new instance. We wish to find a matching that is stable for A and for each of the jSj possible new instances. If S is picked from a special class of errors, we give an O(jSjp(n)) time algorithm for this problem. We call the obtained matching a fully robust stable matching w.r.t. S. In particular, if S is polynomial sized, then our algorithm runs in polynomial time. Our algorithm is based on new, non-trivial structural properties of the lattice of stable matchings; these properties pertain to certain join semi-sublattices of the lattice. Birkhoff’s Representation Theorem for finite distributive lattices plays a special role in our algorithms. 1 Introduction The two topics, of stable matching and the design of algorithms that produce solutions that are robust to errors, have been studied extensively for decades and there are today several books on each of them, e.g., see [Knu97, GI89, Man13] and [CE06, BTEGN09]. Yet, there is a paucity of results at the intersection of these two topics.
    [Show full text]
  • DISTRIBUTIVE LATTICES FACT 1: for Any Lattice <A,≤>: 1 and 2 and 3 and 4 Hold in <A,≤>: the Distributive Inequal
    DISTRIBUTIVE LATTICES FACT 1: For any lattice <A,≤>: 1 and 2 and 3 and 4 hold in <A,≤>: The distributive inequalities: 1. for every a,b,c ∈ A: (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c) 2. for every a,b,c ∈ A: a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c) 3. for every a,b,c ∈ A: (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) The modular inequality: 4. for every a,b,c ∈ A: (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ (a ∧ c)) FACT 2: For any lattice <A,≤>: 5 holds in <A,≤> iff 6 holds in <A,≤> iff 7 holds in <A,≤>: 5. for every a,b,c ∈ A: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 6. for every a,b,c ∈ A: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 7. for every a,b,c ∈ A: a ∨ (b ∧ c) ≤ b ∧ (a ∨ c). A lattice <A,≤> is distributive iff 5. holds. FACT 3: For any lattice <A,≤>: 8 holds in <A,≤> iff 9 holds in <A,≤>: 8. for every a,b,c ∈ A:(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ (a ∧ c)) 9. for every a,b,c ∈ A: if a ≤ b then a ∨ (b ∧ c) = b ∧ (a ∨ c) A lattice <A,≤> is modular iff 8. holds. FACT 4: Every distributive lattice is modular. Namely, let <A,≤> be distributive and let a,b,c ∈ A and let a ≤ b. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) [by distributivity] = b ∧ (a ∨ c) [since a ∨ b =b]. The pentagon: The diamond: o 1 o 1 o z o y x o o y o z o x o 0 o 0 THEOREM 5: A lattice is modular iff the pentagon cannot be embedded in it.
    [Show full text]
  • Lattices Without Absorption
    LATTICES WITHOUT ABSORPTION A. B. ROMANOWSKA Warsaw University of Technology Warsaw, Poland (joint work with John Harding New Mexico State University Las Cruces, New Mexico, USA) 1 BISEMILATTICES A bisemilattice is an algebra (B; ·; +) with two semilattice operations · and +, the first inter- preted as a meet and the second as a join. A Birkhoff system is a bisemilattice satisfying a weakened version of the absorption law for lattices known as Birkhoff's equation: x · (x + y) = x + (x · y): Each bisemilattice induces two partial order- ings on its underlying set: x ≤· y iff x · y = x; x ≤+ y iff x + y = y: 2 EXAMPLES Lattices: x + xy = x(x + y) = x, and ≤·=≤+ . (Stammered) semilattices: x · y = x + y, and ≤·=≥+ . Bichains: both meet and join reducts are chains, e.g. 2-element lattice 2l, 2-element semilattice 2s, and the four non-lattice and non-semilattice 3-element bichains: 3 1 3 2 3 3 3 2 2 3 2 1 2 1 2 3 1 2 1 3 1 2 1 1 3d 3n 3j 3m 3 EXAMPLES, cont. Meet-distributive Birkhoff systems: x(y + z) = xy + xz (MD), e.g. 3m. Join-distributive Birkhoff systems: x + yz = (x + y)(x + z) (JD), e.g. 3j. Distributive Birkhoff systems: satisfy both (MD) and (JD), e.g. 3d. Quasilattices: (x + y)z + yz = (x + y)z (mQ), (xy + z)(y + z) = xy + z (jQ), or equivalently: x + y = x ) (xz) + (yz) = xz, xy = x ) (x + z)(y + z) = x + z. 4 SEMILATTICE SUMS Each Birkhoff system A has a homomorphism onto a semilattice.
    [Show full text]
  • Order Dimension, Strong Bruhat Order and Lattice Properties for Posets
    Order Dimension, Strong Bruhat Order and Lattice Properties for Posets Nathan Reading School of Mathematics, University of Minnesota Minneapolis, MN 55455 [email protected] Abstract. We determine the order dimension of the strong Bruhat order on ¯nite Coxeter groups of types A, B and H. The order dimension is determined using a generalization of a theorem of Dilworth: dim(P ) = width(Irr(P )), whenever P satis¯es a simple order-theoretic condition called here the dissec- tive property (or \clivage" in [16, 21]). The result for dissective posets follows from an upper bound and lower bound on the dimension of any ¯nite poset. The dissective property is related, via MacNeille completion, to the distributive property of lattices. We show a similar connection between quotients of the strong Bruhat order with respect to parabolic subgroups and lattice quotients. 1. Introduction We give here three short summaries of the main results of this paper, from three points of view. We conclude the introduction by outlining the organization of the paper. Strong Bruhat Order. From the point of view of strong Bruhat order, the ¯rst main result of this paper is the following: Theorem 1. The order dimension of the Coxeter group An under the strong Bruhat order is: (n + 1)2 dim(A ) = n ¹ 4 º (n+1)2 The upper bound dim(An) · 4 appeared as an exercise in [3], but the proof given here does not rely on the previous bound. In [27], the same methods are used to prove the following theorem. The result for type I (dihedral groups) is trivial.
    [Show full text]
  • Lattice Theory Lecture 2 Distributive Lattices
    Lattice Theory Lecture 2 Distributive lattices John Harding New Mexico State University www.math.nmsu.edu/∼JohnHarding.html [email protected] Toulouse, July 2017 Distributive lattices Distributive law for all x; y; z x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) Modular law if x ≤ z then x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) Definition The lattices M5 and N5 are as follows: z x y z y x M5 N5 Note M5 is Modular, not distributive, and N5 is Non-modular. Both have 5 elements. 2 / 44 Recognizing distributive lattices Theorem Let L be a lattice. 1. L is modular iff N5 is not a sublattice of L 2. L is distributive iff neither M5; N5 is a sublattice of L Proof The \⇒" direction of each is obvious. For 1 \⇐" if L is not modular, there are x < z with x ∨ (y ∧ z) < (x ∨ y) ∧ (x ∨ z) (why?) Then the following is a sublattice of L. x ∨ y x y z y ( ∨ ) ∧ x ∨ (y ∧ z) y ∧ z 3 / 44 Exercise Give the details that the figure on the previous page is a sublattice. Do the 2 \⇐" direction. The lattice N5 is \projective" in lattices, meaning that if L is a lattice and f ∶ L → N5 is an onto lattice homomorphism, then there is a one-one lattice homomorphism g ∶ N5 → L with f ○ g = id. 4 / 44 Complements Definition Elements x; y of a bounded lattice L are complements if x ∧ y = 0 and x ∨ y = 1. In general, an element might have no complements, or many. 5 / 44 Complements Theorem In a bounded distributive lattice, an element has at most one complement.
    [Show full text]