Korean National Standard Reference Variome Database Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Connecting the Human Variome Project to Nutrigenomics
Genes Nutr (2010) 5:275–283 DOI 10.1007/s12263-010-0186-6 COMMENTARY Connecting the Human Variome Project to nutrigenomics Jim Kaput • Chris T. Evelo • Giuditta Perozzi • Ben van Ommen • Richard Cotton Received: 17 September 2010 / Accepted: 24 September 2010 / Published online: 15 October 2010 Ó Springer-Verlag 2010 Abstract Nutrigenomics is the science of analyzing and phenotypic variability and indications of human disease or understanding gene–nutrient interactions, which because of phenotype. Since nutrigenomic research uses genetic the genetic heterogeneity, varying degrees of interaction information in the design and analysis of experiments, the among gene products, and the environmental diversity is a HVP is an essential collaborator for ongoing studies of complex science. Although much knowledge of human gene–nutrient interactions. With the advent of next gener- diversity has been accumulated, estimates suggest that ation sequencing methodologies and the understanding of *90% of genetic variation has not yet been characterized. the undiscovered variation in human genomes, the nutri- Identification of the DNA sequence variants that contribute genomic community will be generating novel sequence to nutrition-related disease risk is essential for developing a data and results. The guidelines and practices of the HVP better understanding of the complex causes of disease in can guide and harmonize these efforts. humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject. Keywords Nutrigenomics Á Human Variome Project Á org/) is an international effort to systematically identify Harmonization genes, their mutations, and their variants associated with Introduction Note: The views in this article do not necessarily represent those of the U.S. -
Kovariome: Korean National Standard Reference
www.nature.com/scientificreports OPEN KoVariome: Korean National Standard Reference Variome database of whole genomes with Received: 22 September 2017 Accepted: 16 March 2018 comprehensive SNV, indel, CNV, Published: xx xx xxxx and SV analyses Jungeun Kim1, Jessica A. Weber 2, Sungwoong Jho1, Jinho Jang3,4, JeHoon Jun1,5, Yun Sung Cho5, Hak-Min Kim3,4, Hyunho Kim5, Yumi Kim5, OkSung Chung1,5, Chang Geun Kim6, HyeJin Lee1, Byung Chul Kim7, Kyudong Han8, InSong Koh9, Kyun Shik Chae6, Semin Lee3,4, Jeremy S. Edwards10 & Jong Bhak 1,3,4,5 High-coverage whole-genome sequencing data of a single ethnicity can provide a useful catalogue of population-specifc genetic variations, and provides a critical resource that can be used to more accurately identify pathogenic genetic variants. We report a comprehensive analysis of the Korean population, and present the Korean National Standard Reference Variome (KoVariome). As a part of the Korean Personal Genome Project (KPGP), we constructed the KoVariome database using 5.5 terabases of whole genome sequence data from 50 healthy Korean individuals in order to characterize the benign ethnicity-relevant genetic variation present in the Korean population. In total, KoVariome includes 12.7M single-nucleotide variants (SNVs), 1.7M short insertions and deletions (indels), 4K structural variations (SVs), and 3.6K copy number variations (CNVs). Among them, 2.4M (19%) SNVs and 0.4M (24%) indels were identifed as novel. We also discovered selective enrichment of 3.8M SNVs and 0.5M indels in Korean individuals, which were used to flter out 1,271 coding-SNVs not originally removed from the 1,000 Genomes Project when prioritizing disease-causing variants. -
A Survey of the Population Genetic Variation in the Human Kinome
Journal of Human Genetics (2009) 54, 488–492 & 2009 The Japan Society of Human Genetics All rights reserved 1434-5161/09 $32.00 www.nature.com/jhg ORIGINAL ARTICLE A survey of the population genetic variation in the human kinome Wei Zhang1, Daniel VT Catenacci1, Shiwei Duan1 and Mark J Ratain1,2,3 Protein kinases are key regulators of various biological processes, such as control of cell growth, metabolism, differentiation and apoptosis. Therefore, protein kinases have been an important class of targets for anticancer drugs. Health-related disparities such as differential drug response have been observed between human populations. A survey of the human kinases and their ligand genes for those containing population-specific genetic variants could provide new insights into the mechanisms of these health disparities and suggest novel targets for ethnicity-specific personalized medicine. Using the International HapMap Project genotypic data on single-nucleotide polymorphisms (SNPs), the protein kinase complement of the human genome (kinome) and some experimentally verified ligand genes were scanned for the existence of population-specific SNPs (eSNPs). In general, protein kinases were found to contain a much higher proportion of eSNPs than the whole genome background, indicating a stronger pressure for adaptation in individual populations. In contrast, the proportion of ligand genes containing eSNPs was not different from that of the whole genome background. Although with some important limitations, our results suggest that human kinases are more likely to be under recent positive selection than ligands. Our findings suggest that the health-related disparities associated with kinase signaling pathways are more likely to be driven by the genetic variation in the kinase genes than their cognate ligands. -
The First Insight Into the Genetic Structure of the Population Of
www.nature.com/scientificreports OPEN The frst insight into the genetic structure of the population of modern Serbia Tamara Drljaca1, Branka Zukic2, Vladimir Kovacevic3, Branislava Gemovic1, Kristel Klaassen‑Ljubicic2, Vladimir Perovic1, Mladen Lazarevic3, Sonja Pavlovic2* & Nevena Veljkovic1,4* The complete understanding of the genomic contribution to complex traits, diseases, and response to treatments, as well as genomic medicine application to the well‑being of all humans will be achieved through the global variome that encompasses fne‑scale genetic diversity. Despite signifcant eforts in recent years, uneven representation still characterizes genomic resources and among the underrepresented European populations are the Western Balkans including the Serbian population. Our research addresses this gap and presents the frst ever targeted sequencing dataset of variants in clinically relevant genes. By measuring population diferentiation and applying the Principal Component and Admixture analysis we demonstrated that the Serbian population difers little from other European populations, yet we identifed several novel and more frequent variants that appear as its unique genetic determinants. We explored thoroughly the functional impact of frequent variants and its correlation with the health burden of the population of Serbia based on a sample of 144 individuals. Our variants catalogue improves the understanding of genetics of modern Serbia, contributes to research on ancestry, and aids in improvements of well‑being and health equity. In addition, this resource may also be applicable in neighboring regions and valuable in worldwide functional analyses of genetic variants in individuals of European descent. In the era of high-throughput next generation sequencing (NGS) technology, the common goal for clinical use of sequencing data is the identifcation of pathogenic variants that can afect an individual’s health through link- ing genes and diseases1–3. -
Next Steps in the Sequence
Next steps in the sequence The implications of whole genome sequencing for health in the UK PHG Foundation project team and authors Dr Caroline Wright* Programme Associate Dr Hilary Burton Director Ms Alison Hall Project Manager (Law) Dr Sowmiya Moorthie Project Coordinator Dr Anna Pokorska-Bocci‡ Project Coordinator Dr Gurdeep Sagoo Epidemiologist Dr Simon Sanderson Associate Dr Rosalind Skinner Senior Fellow ‡ Corresponding author: [email protected] * Lead author Disclaimer This report is accurate as of September 2011, but readers should be aware that genome sequencing technology and applications will continue to develop rapidly from this point. This report is available from www.phgfoundation.org Published by PHG Foundation 2 Worts Causeway Cambridge CB1 8RN UK Tel: +44 (0)1223 740200 Fax: +44 (0)1223 740892 October 2011 © 2011 PHG Foundation ISBN 978-1-907198-08-3 Cover photo: http://www.sxc.hu/photo/914335 The PHG Foundation is the working name of the Foundation for Genomics and Population Health, a charitable organisation (registered in England and Wales, charity no. 1118664; company no. 5823194) which works with partners to achieve better health through the responsible and evidence-based application of biomedical science. Acknowledgements Dr Tom Dent contributed the section on risk prediction in the Other Applications chapter. Dr Richard Fordham contributed to the Health Economics chapter. Professor Anneke Lucassen, Dr Kathleen Liddell and Professor Jenny Hewison contributed to the Ethical, Legal and Social Implications chapter. Dr Ron Zimmern contributed to the Policy Analysis and Recommendations chapters. The PHG Foundation is grateful for the expert guidance and advice provided by the external Steering Group, in particular to Dr Jo Whittaker, Mr Chris Mattocks and Dr Paul Flicek for their extensive comments on the manuscript. -
The 4Th Industrial Revolution AI, Iot, Big Data and Disruptive Innovations Contents
The 4th Industrial Revolution AI, IoT, Big Data and Disruptive Innovations Contents 1 Fourth Industrial Revolution 1 1.1 Industrial revolutions ......................................... 1 1.1.1 First Industrial Revolution .................................. 1 1.1.2 Second Industrial Revolution ................................. 1 1.1.3 Third Industrial Revolution .................................. 1 1.1.4 Fourth Industrial Revolution ................................. 1 1.2 See also ................................................ 2 1.3 References ............................................... 2 2 Artificial intelligence 3 2.1 History ................................................ 3 2.2 Goals ................................................. 4 2.2.1 Reasoning, problem solving ................................. 4 2.2.2 Knowledge representation .................................. 5 2.2.3 Planning ........................................... 5 2.2.4 Learning ........................................... 6 2.2.5 Natural language processing ................................. 6 2.2.6 Perception .......................................... 6 2.2.7 Motion and manipulation ................................... 7 2.2.8 Social intelligence ...................................... 7 2.2.9 Creativity ........................................... 7 2.2.10 General intelligence ..................................... 7 2.3 Approaches .............................................. 7 2.3.1 Cybernetics and brain simulation ............................... 8 2.3.2 Symbolic -
Reducing the Complexity of OMICS Data Analysis
Julius-Maximilians-Universität Würzburg Reducing the complexity of OMICS data analysis Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg Vorgelegt von Beat Wolf aus Fribourg, CH, 2017 Eingereicht am: 5 April 2017 bei der Fakultät für Mathematik und Informatik 1. Gutachter: Prof. Dr. Thomas Dandekar 2. Gutachter: Prof. Dr. Pierre Kuonen Tag der mündlichen Prüfung: 31 August 2017 Summary The field of genetics faces a lot of challenges and opportunities in both research and diag- nostics due to the rise of next generation sequencing (NGS), a technology that allows to sequence DNA increasingly fast and cheap. NGS is not only used to analyze DNA, but also RNA, which is a very similar molecule also present in the cell, in both cases producing large amounts of data. The big amount of data raises both infrastructure and usability problems, as powerful computing infrastructures are required and there are many manual steps in the data analysis which are complicated to execute. Both of those problems limit the use of NGS in the clinic and research, by producing a bottleneck both computationally and in terms of manpower, as for many analyses geneticists lack the required computing skills. Over the course of this thesis we investigated how computer science can help to improve this situation to reduce the complexity of this type of analysis. We looked at how to make the analysis more accessible to increase the number of people that can perform OMICS data analysis (OMICS groups various genomics data-sources). To approach this problem, we developed a graphical NGS data analysis pipeline aimed at a diagnostics environment while still being useful in research in close collaboration with the Human Genetics Depart- ment at the University of Würzburg.