Diversification and Collapse of a Telomere Elongation Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Diversification and Collapse of a Telomere Elongation Mechanism Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 2 3 4 5 6 7 Diversification and collapse of a telomere elongation mechanism 8 9 10 Bastien Saint-Leandre1,2, Son C. Nguyen2,3, and Mia T. Levine1,2* 11 12 13 1Department of Biology, 2Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 14 3Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 15 19104. 16 17 18 19 20 Running title: diversification of Drosophila telomeres 21 22 Keywords: telomere, retrotransposon, domestication, Drosophila 23 24 *Corresponding Author: 25 Mia Levine, Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, 26 PA 19104. p: 215-573-9709 e: [email protected]. 1 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 27 ABSTRACT 28 In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to 29 terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert 30 exclusively at telomeres. This exchange of goods between host and mobile element—wherein the mobile 31 element provides an essential genome service and the host provides a hospitable niche for mobile element 32 propagation—has been called a ‘genomic symbiosis’. However, these telomere-specialized, jockey family 33 retrotransposons may actually evolve to ‘selfishly’ over-replicate in the genomes that they ostensibly 34 serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages 35 and possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with 36 both predictions. Searching the raw reads of the 15-million-year-old melanogaster species group, we 37 generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to 38 delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for 39 this retrotransposon lineage diversity. In D. biarmipes, telomere-specialized elements have disappeared 40 completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of 41 retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA 42 transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a 43 recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon 44 diversification and disappearance suggest that persistently ‘selfish’ machinery shapes telomere elongation 45 across Drosophila rather than completely domesticated, symbiotic mobile elements. 46 2 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 47 INTRODUCTION 48 Transposable elements (TEs) infest eukaryotic genomes, ever-evolving to increase in copy number over 49 time (Feschotte and Pritham 2007; Beauregard et al. 2008). These so-called ‘selfish genetic elements’ 50 enhance their own transmission relative to other elements in the genome, imposing neutral or deleterious 51 consequences on the host (Werren 2011). Deleterious consequences arise when TE insertions disrupt host 52 genes (Hancks and Kazazian 2012), nucleate local epigenetic silencing (Slotkin and Martienssen 2007; 53 Lee and Karpen 2017), and trigger catastrophic recombination between non-homologous genomic regions 54 (Langley et al. 1988; Beck et al. 2011). TEs also provide raw material for genome adaptation (Jangam et 55 al. 2017): across eukaryotes, host genomes re-purpose TE-derived sequence for basic cellular and 56 developmental processes, from immune response (van de Lagemaat et al. 2003) to placental development 57 (Lynch et al. 2015) to programmed genome rearrangements (Cheng et al. 2010; Cheng et al. 2016). These 58 diverse ‘molecular domestication’ events share a common feature—the degeneration or deletion of the 59 TE’s capacity to propagate. Consequently, the TE-derived sequence resides permanently at a single 60 genome location, just like any other host gene sequence. Inability to increase copy number via 61 transposition resolves prior conflict of interest between the host and the TE (Jangam et al. 2017). 62 However, not all adaptive molecular domestication events necessitate TE immobilization; in rare cases, 63 essential host functions rely on retention of the mobilization machinery that promotes recurrent TE 64 insertions into host DNA. The non-canonical telomere elongation mechanism of Drosophila is exemplary 65 (Pardue and DeBaryshe 2003; Casacuberta 2017). 66 67 In most eukaryotes beyond Drosophila, telomerase-added DNA repeats (Greider and Blackburn 1989; 68 Zakian 1989; Blackburn 1991; Zakian 1996) counteract the ‘end-replication problem’ that otherwise 69 erodes unique DNA sequence at chromosome termini (Watson 1972). However, telomeres of select fungi 70 (Starnes et al. 2012), algae (Higashiyama et al. 1997), moths (Osanai-Futahashi and Fujiwara 2011), 71 crustaceans (Gladyshev and Arkhipova 2007), and DNA repair-deficient mammalian cells (Morrish et al. 72 2007) encode not only telomerase-added repeat elements but also TEs that insert preferentially at 3 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 73 chromosome termini. These telomeric mobile elements are typically derived from a single class of TE— 74 the non-long terminal repeat (‘non-LTR’) retrotransposons (Beck et al. 2011), which mobilize via reverse 75 transcription and insertion into new genomic locations. The most extreme example of this co-option is 76 found in Drosophila melanogaster, whose telomeres harbor no telomerase-added repeats. In fact, the 220 77 million-year-old ‘true fly’ insect Order, Diptera, completely lacks the genes encoding the telomerase 78 holoenzyme (Pardue and DeBaryshe 2003; Casacuberta 2017). Instead, D. melanogaster harbors three 79 telomere-specialized retrotransposons–HeT-A, TART, and TAHRE—that preserve distal, unique 80 sequence (Pardue and DeBaryshe 2011). These three retrotransposons represent a monophyletic clade 81 within the larger ‘jockey’ element family (Villasante et al. 2007), whose members are more typically 82 found along chromosome arms (Xie et al. 2013). The telomere-specialized jockey subclade, in contrast, 83 rarely inserts outside the telomere (Pardue and DeBaryshe 2003; Berloco et al. 2005; Pardue and 84 DeBaryshe 2011). 85 86 This molecular domestication of still-mobile retrotransposons into an essential genome function is often 87 referred to as a ‘genomic symbiosis’ (Pardue and DeBaryshe 2008). Evidence for such a mutualism is 88 compelling. The elements that maintain telomere ends in D. melanogaster comprise a monophyletic clade 89 ostensibly specialized to replicate only at chromosome ends (Pardue and DeBaryshe 2008). Elements 90 from this jockey clade also appear at terminal ends in distant Drosophila species, consistent with a single 91 domestication event >40 million years ago followed by faithful vertical transmission (Casacuberta and 92 Pardue 2003; Villasante et al. 2007). Moreover, mobile elements from other families rarely appear at 93 terminal ends (Mason and Biessmann 1995; Biessmann et al. 2005; Mason et al. 2016). These data 94 suggest that retrotransposon-mediated chromosome elongation represents a long-term, conserved 95 relationship between a host genome and its domesticated, but still-mobile, retrotransposons. 96 97 This picture of cooperativity was complicated by the discovery that the telomere-associated subclade of 98 jockey elements evolves rapidly across Drosophila. Leveraging 12 Drosophila genomes that span 40 4 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 99 million years of evolution, Villasante, Abad, and colleagues detected at least one jockey-like, candidate 100 telomeric retrotransposon in all 12 species (Villasante et al. 2007). These data implicated a single 101 evolutionary event in a common ancestral sequence that conferred telomere-specificity. However, these 102 elements represent distinct phylogenetic lineages rather than species-specific versions of the HeT-A, 103 TART, and TAHRE elements well-studied in D. melanogaster. For example, D. melanogaster and its 104 close relatives encode HeT-A, TART, and TAHRE, while the 15 million year-diverged D. ananassae 105 encodes a single, phylogenetically distinct candidate retrotransposon lineage, ‘TR2’. The 30 million-year 106 diverged D. pseudoobscura species encodes yet other phylogenetically distinct lineages within this jockey 107 subclade. This expansive evolutionary lens revealed a previously unappreciated, dynamic evolutionary 108 history of these jockey subclade retrotransposons (Villasante et al. 2008). However, the large evolutionary 109 distances between species left fine scale dynamics unknown and telomere-specific localization was not 110 explored (Villasante et al. 2007). The evolutionary origin(s), ages, between-species differences, and 111 genome locations of these candidate telomere elongators remain obscure. Elucidating the evolutionary 112 history of these elements is essential to address the possibility that this molecular domestication event is 113 less a stable, long-term genomic symbiosis and instead an ever-evolving relationship between the 114 domesticator and the domesticated. Here we investigate the
Recommended publications
  • The Histone Genes Cluster in Rhynchosciara Americana and Its Transcription Profile in Salivary Glands During Larval Development
    Genetics and Molecular Biology, 39, 4, 580-588 (2016) Copyright © 2016, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2015-0306 Research Article The histone genes cluster in Rhynchosciara americana and its transcription profile in salivary glands during larval development Fábio Siviero1, Paula Rezende-Teixeira1, Alexandre de Andrade1, Roberto Vicente Santelli2 and Glaucia Maria Machado-Santelli1 1Departamento de Biologia Celular e Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. 2Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil. Abstract In this work we report the characterization of the Rhynchosciara americana histone genes cluster nucleotide se- quence. It spans 5,131 bp and contains the four core histones and the linker histone H1. Putative control elements were detected. We also determined the copy number of the tandem repeat unit through quantitative PCR, as well as the unequivocal chromosome location of this unique locus in chromosome A band 13. The data were compared with histone clusters from the genus Drosophila, which are the closest known homologues. Keywords: Rhynchosciara, histone cluster, Sciaridae, codon usage. Received: November 24, 2015; Accepted: February 16, 2016. Introduction in the salivary glands of Rhynchosciara, and to provide mo- Rhynchosciara americana is a dipteran belonging to lecular markers for this species. The replication-dependent the family Sciaridae, commonly known as dark-winged histones and their variants are common chromatin compo- fungus gnats. These are known for its exuberant polytene nents of great interest because of their involvement in the chromosomes and developmentally regulated DNA ampli- modulation of the chromatin transcriptional status and with fication loci present in several tissues, the so-called DNA the replication process.
    [Show full text]
  • Dramatic Nucleolar Dispersion in the Salivary Gland of Schwenkfeldina Sp
    www.nature.com/scientificreports OPEN Dramatic nucleolar dispersion in the salivary gland of Schwenkfeldina sp. (Diptera: Sciaridae) José Mariano Amabis & Eduardo Gorab * Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specifc chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be diferentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may refect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae. Transcriptional activity of ribosomal RNA (rRNA) genes in specifc chromosome regions is the primary event for the local assembly of the nucleolus, the starting site of ribosome biogenesis.
    [Show full text]
  • Helitronscanner Uncovers a Large Overlooked Cache of Helitron Transposons in Many Plant Genomes
    HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes Wenwei Xionga, Limei Heb, Jinsheng Laic, Hugo K. Doonerb,d,1, and Chunguang Dua,1 aDepartment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043; bWaksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854; cNational Maize Improvement Center, China Agricultural University, Beijing 100083, China; and dDepartment of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08801 Contributed by Hugo K. Dooner, June 6, 2014 (sent for review January 28, 2014) Transposons make up the bulk of eukaryotic genomes, but are content of maize (14). This tool was based on conserved sequences difficult to annotate because they evolve rapidly. Most of the at the termini of most Helitrons (5′-TC and CTAG-3′)andacon- unannotated portion of sequenced genomes is probably made up served 16- to 20-bp palindromic structure located 10–15 bp up- of various divergent transposons that have yet to be categorized. stream of the 3′ terminus. Using HelitronFinder, we identified Helitrons are unusual rolling circle eukaryotic transposons that almost 3,000 new Helitrons intheB73maizegenome(12). often capture gene sequences, making them of considerable evo- HelSearch (15), another computational tool, is very similar lutionary importance. Unlike other DNA transposons, Helitrons do to HelitronFinder in terms of identifying the 3′ end of Helitrons. not end in inverted repeats or create target site duplications, so Both programs look for the hairpin structure and the CTRR 3′ they are particularly challenging to identify. Here we present terminus. The difference is that users of HelSearch have to ′ HelitronScanner, a two-layered local combinational variable (LCV) manually search for the 5 end of Helitrons, whereas HelitronFinder ′ tool for generalized Helitron identification that represents a major can identify the 5 end automatically.
    [Show full text]
  • Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum Violaceum
    Copyright © 2005 by the Genetics Society of America DOI: 10.1534/genetics.105.042564 Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum Michael E. Hood,*,1 Melanie Katawczik† and Tatiana Giraud‡ *Department of Biology, University of Virginia, Charlottesville, Virginia 22903, †Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and ‡Ecologie, Syste´matique et Evolution, Universite´ Paris-Sud, F-91405 Orsay Cedex, France Manuscript received February 25, 2005 Accepted for publication April 12, 2005 ABSTRACT Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencing multiple copies of the integrase gene of a copia-type transposable element and the helicase gene of a Helitron-type element. In M. violaceum, the targets for RIP mutations are the cytosine residues of TCG trinucleotide combinations. Although RIP is a linkage-dependent process that tends to increase the variation among repetitive se- quences, a chromosome-specific substructuring was observed in the transposable element population. The observed chromosome-specific patterns are not consistent with RIP, but rather suggest an effect of gene conversion, which is also a linkage-dependent process but results in a homogenization of repeated se- quences. Particular sequences were found more widely distributed within the genome than expected by chance and may reflect the recently active variants.
    [Show full text]
  • Methods for Discovery and Characterization of Cellulolytic Enzymes from Insects
    Insect Science (2010) 00, 1–15, DOI 10.1111/j.1744-7917.2010.01322.x REVIEW Methods for discovery and characterization of cellulolytic enzymes from insects Jonathan D. Willis, Cris Oppert and Juan L. Jurat-Fuentes Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA Abstract Cellulosic ethanol has been identified as a crucial biofuel resource due to its sustainability and abundance of cellulose feedstocks. However, current methods to obtain glucose from lignocellulosic biomass are ineffective due to recalcitrance of plant biomass. Insects have evolved endogenous and symbiotic enzymes to efficiently use lignocellulosic material as a source of metabolic glucose. Even though traditional biochemical methods have been used to identify and characterize these enzymes, the advancement of genomic and proteomic research tools are expected to allow new insights into insect digestion of cellulose. This information is highly relevant to the design of improved industrial processes of biofuel production and to identify potential new targets for development of insecticides. This review describes the diverse methodologies used to detect, quantify, purify, clone and express cellulolytic enzymes from insects, as well as their advantages and limitations. Key words biofuels, cellulases, cellulase discovery methods, cellulase substrate, insect digestive fluids, lignocellulosic biomass Insect relevance to lignocellulosic biofuels rent estimates suggest that reducing the cellulase enzyme amounts by half through biotechnology could decrease Current world energy needs demand the development of processing costs by up to 13% (Lynd et al., 2008). industrial-scale processes for the sustainable production Lignocellulosic recalcitrance, which prevents enzy- of fuel from renewable biological resources as economic matic access to fermentable sugars, is derived from the and environmentally sound alternatives to finite fossil tight association of cellulose with hemicellulose and fuels.
    [Show full text]
  • Are the TTAGG and TTAGGG Telomeric Repeats Phylogenetically Conserved in Aculeate Hymenoptera?
    Sci Nat (2017) 104: 85 DOI 10.1007/s00114-017-1507-z ORIGINAL PAPER Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera? Rodolpho S. T. Menezes1 & Vanessa B. Bardella 2 & Diogo C. Cabral-de-Mello2 & Daercio A. A. Lucena1 & Eduardo A. B. Almeida1 Received: 24 July 2017 /Revised: 18 September 2017 /Accepted: 20 September 2017 /Published online: 27 September 2017 # Springer-Verlag GmbH Germany 2017 Abstract Despite the (TTAGG)n telomeric repeat supposed Keywords Apocrita . Chromosomes . Evolution . Insects . being the ancestral DNA motif of telomeres in insects, it was Telomere . TTAGG repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other represen- Introduction tatives of Hymenoptera, this motif was noticed, such as dif- ferent ant species and the honeybee. These findings raise the A telomere is an essential nucleoprotein composed of a short question of whether the insect telomeric repeat is or not phy- and tandemly arrayed motif present at each end of eukaryotic logenetically predominant in Hymenoptera. Thus, we evalu- chromosomes (Blackburn 1991). It prevents chromosome ends ated the occurrence of both the (TTAGG)n sequence and the from degrading and avoids chromosomal rearrangements, such vertebrate telomere sequence (TTAGGG)n using dot-blotting as end-to-end fusions by distinguishing natural chromosome hybridization in 25 aculeate species of Hymenoptera. Our ends from chromosomal breaks. Telomeres also compensate results revealed the absence of (TTAGG)n sequence in all for chromosome shortening resulting from incomplete DNA tested species, elevating the number of hymenopteran families replication at chromosome ends (Blackburn 1991; Greider lacking this telomeric sequence to 13 out of the 15 tested and Blackburn 1996).
    [Show full text]
  • Ginger DNA Transposons in Eukaryotes and Their Evolutionary Relationships with Long Terminal Repeat Retrotransposons Weidong Bao, Vladimir V Kapitonov, Jerzy Jurka*
    Bao et al. Mobile DNA 2010, 1:3 http://www.mobilednajournal.com/content/1/1/3 RESEARCH Open Access Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons Weidong Bao, Vladimir V Kapitonov, Jerzy Jurka* Abstract Background: In eukaryotes, long terminal repeat (LTR) retrotransposons such as Copia, BEL and Gypsy integrate their DNA copies into the host genome using a particular type of DDE transposase called integrase (INT). The Gypsy INT-like transposase is also conserved in the Polinton/Maverick self-synthesizing DNA transposons and in the ‘cut and paste’ DNA transposons known as TDD-4 and TDD-5. Moreover, it is known that INT is similar to bacterial transposases that belong to the IS3,IS481,IS30 and IS630 families. It has been suggested that LTR retrotransposons evolved from a non-LTR retrotransposon fused with a DNA transposon in early eukaryotes. In this paper we analyze a diverse superfamily of eukaryotic cut and paste DNA transposons coding for INT-like transposase and discuss their evolutionary relationship to LTR retrotransposons. Results: A new diverse eukaryotic superfamily of DNA transposons, named Ginger (for ‘Gypsy INteGrasE Related’) DNA transposons is defined and analyzed. Analogously to the IS3 and IS481 bacterial transposons, the Ginger termini resemble those of the Gypsy LTR retrotransposons. Currently, Ginger transposons can be divided into two distinct groups named Ginger1 and Ginger2/Tdd. Elements from the Ginger1 group are characterized by approximately 40 to 270 base pair (bp) terminal inverted repeats (TIRs), and are flanked by CCGG-specific or CCGT-specific target site duplication (TSD) sequences.
    [Show full text]
  • Gene Amplification in Rhynchosciara Salivary Gland Chromosomes (Cdna Clones/DNA Puffs/C Chromosome) DAVID M
    Proc. NatL Acdd. Sci. USA Vol. 79, pp. 2947-2951; May 1982 Developmental Biology Gene amplification in Rhynchosciara salivary gland chromosomes (cDNA clones/DNA puffs/C chromosome) DAVID M. GLOVER*, ARNALDO ZAHA, ANN JACOB STOCKER, ROBERTO V. SANTELLI, MANUEL T. PUEYO, SONIA MARIA DE TOLEDOt, AND. FRANCISCO J. S. LARA* Instituto de, Quimica, Universidade de SAo Paulo; Caixa Postal 20780, Sio Paulo, Brasil Communicated by Joseph G. Gall, February 1, 1982 ABSTRACT Late in the fourth larval instar, several regions 3c 50 30 50 30 50 30 50 of the Rhynchosciara amercana salivary gland chromosomes undergo "DNA puffing. " We have constructed a library ofcloned cDNAs synthesized from poly(A)+RNA isolated from salivary glands'during the period ofdevelopment when the DNA puffs are active. From this library we have studied clones representative of three genes active during this period but not active at earlier developmental periods ofthe gland. One ofthese genes is not am- plified during the developmental process and encodes a 0.6-kilo- base RNA molecule. The other two genes are located within the DNA-puffsites C3 and C8and.encode 1.25-kilobase and 1.95-kldo- r base RNA molecules, respectively. We estimate -from the quan- r - 1.95 titation-of transfer hybridization experiments that each of these m 0- 1.25 genes undergoes 16-fold amplification during DNA puffing. Gene amplification in somatic cells was first detected by mor- 1~~*0.6- phological criteria in the larval salivary glands offlies ofthe fam- ily Sciaridae. Several regions of the Rhynchosciara americana polytene chromosomes were found to show a type ofpuffing in which, after puffregression, there was more DNA in the bands involved compared with neighboring bands as indicated by FIG.
    [Show full text]
  • INTRINSIC and EXTRINSIC EVOLUTION of HELITRONS in FLOWERING PLANT GENOMES by LIXING YANG (Under the Direction of Jeffrey L. Benn
    INTRINSIC AND EXTRINSIC EVOLUTION OF HELITRONS IN FLOWERING PLANT GENOMES by LIXING YANG (Under the Direction of Jeffrey L. Bennetzen) ABSTRACT Helitrons are a recently discovered class of eukaryotic transposable elements that are believed to transpose by a rolling circle mechanism. Because Helitrons frequently acquire and fuse fragments of multiple genes, they may be major contributors to the creation of novel genes by exon shuffling. This dissertation provides a comprehensive study of Helitrons in flowering plant genomes including their identification in several different genomes, their structural features, and their roles in genome evolution. Helitrons can be difficult to identify because they have few and tiny conserved structures. We developed a new approach to effectively identify Helitrons (tested in Arabidopsis and nematodes) and further refined and demonstrated this approach on a few completely sequenced plant genomes (Medicago, rice and sorghum). We discovered a large number of new elements and new element families, and also a few new Helitron characteristics. We identified initiation and termination bypass events that led to new 5′ or 3′ ends that created newly active families and subfamilies of Helitrons. We found that Helitrons preferentially insert into AT-rich regions, that they prefer to insert near other Helitrons, and that the predicted hairpins near their 3′ ends would have high predicted melting temperatures. Maize Helitrons are known to acquire gene fragments frequently. With the completion of the maize genome sequencing project this year, we were able to perform a large-scale search for Helitrons in the maize genome. We discovered 1930 intact elements in the maize genome, and were able to predict more than 20,000 total elements that account for just over 2% of the sequence assembly.
    [Show full text]
  • Insights Into the Transmission of Helitrons and Their Impact on the Genome Architecture of Myotis Lucifugus, the Little Brown Ba
    INSIGHTS INTO THE TRANSMISSION OF HELITRONS AND THEIR IMPACT ON THE GENOME ARCHITECTURE OF MYOTIS LUCIFUGUS , THE LITTLE BROWN BAT by JAINY THOMAS Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON December 2010 iv Copyright © by Jainy Thomas 2010 All Rights Reserved iv I dedicate my dissertation to my loving husband Tharun Jose Puthenkandom iv ACKNOWLEDGEMENTS First and foremost I want to thank my advisor Dr. Ellen J. Pritham. I am extremely grateful for all the support, guidance, and encouragement that she has provided throughout my Ph.D. which made my life at UTA, a productive and stimulating experience. The joy and enthusiasm she has for her research was contagious and motivational for me, even during tough times in the Ph.D pursuit. In addition, she was always accessible and always encouraged to bring the best out of me. Altogether, it was a great learning experience and I am really thankful for all her support and financial assistance she provided that helped me to finish my Ph.D in a timely manner. The members of my Ph.D. committee have contributed immensely to my personal and professional growth at UTA. I am really thankful to Dr. Cedric Feschotte for his stimulating discussions both in and out of the classroom and for all his input and ideas regarding my research. I would like to thank Drs. Esther Betran, Jeff Demuth and Paul Chippindale for kindly serving as my committee members and broadening my perspective on research ideas.
    [Show full text]
  • Characterization of a Novel Helitron Family in Insect Genomes: Insights
    Han et al. Mobile DNA (2019) 10:25 https://doi.org/10.1186/s13100-019-0165-4 RESEARCH Open Access Characterization of a novel Helitron family in insect genomes: insights into classification, evolution and horizontal transfer Guangjie Han1,2, Nan Zhang1, Jian Xu2, Heng Jiang1, Caihong Ji1, Ze Zhang3, Qisheng Song4, David Stanley5, Jichao Fang6* and Jianjun Wang1* Abstract Background: Helitrons play an important role in shaping eukaryotic genomes due to their ability to transfer horizontally between distantly related species and capture gene fragments during the transposition. However, the mechanisms of horizontal transfer (HT) and the process of gene fragment capturing of Helitrons still remain to be further clarified. Results: Here, we characterized a novel Helitron family discontinuously distributed in 27 out of 256 insect genomes. The most prominent characteristic of Hel1 family is its high sequence similarity among species of different insect orders. Related elements were also identified in two spiders, representing the first report of spider Helitrons.Alltheseelements were classified into 2 families, 9 subfamilies and 35 exemplars based on our new classification criteria. Autonomous partners of Helitron were reconstructed in the genomes of three insects and one spider. Integration pattern analysis showed that majority of Hel1A elements in Papilio xuthus and Pieris rapae inserted into introns. Consistent with filler DNA model, stepwise sequence acquisition was observed in Sfru_Hel1Aa, Sfru_Hel1Ab and Sfru_Hel1Ac in Spodoptera frugiperda. Remarkably, the evidence that Prap_Hel1Aa in a Lepdidoptera insect, Pieris rapae, was derived from Cves_Hel1Aa in a parasitoid wasp, Cotesia vestalis,suggestedtheroleofnonregularhost-parasite interactions in HT of Helitrons. Conclusions: We proposed a modified classification criteria of Helitrons based on the important role of the 5′-end of Helitrons in transposition, and provided evidence for stepwise sequence acquisition and recurrent HT of a novel Helitron family.
    [Show full text]
  • Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution
    cells Review Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution Syed Farhan Ahmad 1,2,3,4, Worapong Singchat 1,3,4, Thitipong Panthum 1,3,4 and Kornsorn Srikulnath 1,2,3,4,5,* 1 Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; [email protected] (S.F.A.); [email protected] (W.S.); [email protected] (T.P.) 2 The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand 3 Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand 4 Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand 5 Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan * Correspondence: [email protected] Abstract: The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is inter- linked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite re- peats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex Citation: Ahmad, S.F.; Singchat, W.; and microchromosome evolution.
    [Show full text]