Highway Construction Details (700 Series) Volume 1: General Details
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Highlight / Progress Report
HIGHLIGHT / PROGRESS REPORT PROJECT NAME: Kinloch Road Regeneration Project Manager: Ian Imlah Reporting Period: 28/03/2012 – 15/08/12 Date report prepared: 9 August 2012 Implementation of the Full Business Project stage: Project stage completion date: 31 May 2013 Case Tolerance levels for this stage: Project Plan + / - 15 working days Project budget + / - 10%, or £10,000 whichever is greater Progress – please refer to Project Plan Key products completed this period Key products outstanding this Revised Key products for next reporting Delivery date (including those completed ahead of schedule) period delivery date period (including brief explanation of why product outstanding) New Road Construction Works is underway Agreement on how to progress with 31/12/2012 Delivery of footway works 31 October land adjacent to former council 2012 depot site Detailed Design for Footway Works Completed Delivery of soft landscaping works 31 May 2013 Soft landscaping design agreed with ABC. Contract documents to be finalised and issued for tender. Royal Hotel Footway Works Complete. Risk Management – please refer to Risk Register (updates risks below in bold italic text) o:\a_campbeltown\cn03_kinloch_road\board_papers\l_150812\cn03_highlight_prog_rep_august 2012.doc Budget Management – please refer to Resource Allocation Schedule Total budget available to complete FBC stage: £100,000 Actual expenditure £102,209 Variance explanation if required: Revenue budget now used – Business Case developed and now progressing implementation stage (capital expenditure) Budget approved – implementation of public £2,080,000 realm and soft landscaping works: Actual expenditure to date (as at 31 July 2012) £715,013 Variance explanation if required: Budget approved - ACHA £800,000 Actual expenditure to date (as at 31 July 2012) £0 Variance explanation if required: Any further information Status update on elements: Public Realm - • Public realm associated with the new road has been procured through the road contract. -
Road Drainage in This Chapter
Road Drainage In this chapter 01 Introduction 3 02 Design principles 5 2.1 Water sensitive design (WSD) or Integrated Stormwater Management (ISM) 5 2.2 Integration of drainage 6 2.3 Tiered objectives for stormwater management design in road reserves 7 2.4 Major/minor drainage 11 03 Surface water management 12 04 Stormwater management devices 13 4.1 Treatment /Management Options Tool Box 15 4.2 Bio-retention swales, rain gardens and tree pits 16 4.3 Pervious paving 17 4.4 Sand filters, gravel trenches and rain tanks 18 4.5 Ponds and wetlands 18 4.6 Swales and vegetated swales 19 4.7 Soakage pits 20 4.8 Proprietary devices 20 05 Kerbs and channels 20 06 Catchpits 22 6.1 Catchpit location 22 6.2 Catchpit design 23 6.3 Catchpit approved types 25 6.4 Catchpit selection criteria 25 6.5 Catchpit inlet selection 25 6.6 Catchpit leads 26 07 Manholes 27 08 Rural road drainage 27 09 Subsoil drains 29 10 Minor culverts 29 11 Special areas 31 2 TDM | ENGINEERING DESIGN CODE Road drainage & surface water control 01 Introduction PURPOSE This chapter gives guidance for the design of drainage in the road reserve. It specifies limitations on design choices to achieve consistency across the region, while catering for local conditions. It aims to promote efficiency, effectiveness and economy of capital investment and operational management water sensitive design. SCOPE The situations covered include: • Drainage of surface water within road reserves. • Collection, conveyance and treatment of run-off from roads. • Management of stormwater discharging from land onto road reserves. -
Final Report Prepared for Albany, NY Joseph D. Tario Senior Project
DEMONSTRATION OF ROUNDABOUT LIGHTING BASED ON THE ECOLUMINANCE APPROACH Final Report Prepared for THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Albany, NY Joseph D. Tario Senior Project Manager and THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION Albany, NY Humayun Kabir Project Manager Prepared by THE LIGHTING RESEARCH CENTER , RENSSELAER POLYTECHNIC INSTITUTE 21 Union Street Troy, NY 12180 John D. Bullough and Mark S. Rea Principal Investigators Jeremy D. Snyder, Nicholas P. Skinner, Rosa I. Capó, Patricia Rizzo, Ute Besenecker Project Team Members Project Nos. 18233 / C-08-03 August 2012 NOTICE This report was prepared by the Lighting Research Center at Rensselaer Polytechnic Institute in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority and the New York State Department of Transportation (hereafter the "Sponsors"). The opinions expressed in this report do not necessarily reflect those of the Sponsors or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, the Sponsors and the State of New York make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. The Sponsors, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report. -
Draft Alternatives Development and Screening Report
APPENDIX C Draft Evaluation of Managed-lane Concepts Draft Evaluation of Managed-lane Concepts Little Cottonwood Canyon Environmental Impact Statement S.R. 210 - Wasatch Boulevard to Alta Lead agency: Utah Department of Transportation April 3, 2020 This page is intentionally left blank. Contents 1.0 Introduction ....................................................................................................................................................... 1 1.1 Study Area for Managed Lanes .............................................................................................................. 1 1.2 Traffic Operations ................................................................................................................................... 3 1.3 Roadway Context .................................................................................................................................... 3 2.0 Reversible-lane Concepts ................................................................................................................................. 4 2.1.1 Moveable Barrier ....................................................................................................................... 4 2.1.2 Reversible-lane Control Signals and Signs ............................................................................. 11 2.1.3 Other Reversible-lane Technologies ....................................................................................... 15 3.0 Peak-period Shoulder Lane Concept ............................................................................................................. -
Smart Crosswalk™ Automatic Activation Bollards
SPEC Sheet #3000 Features/Benefits: Aesthetically pleasing Optional audible sounds Smart Crosswalk™ Automatic Activation Easily installed on sidewalk Simple control panel installations Bollards 12 VDC operation (down to 9 VDC) Automatic Activation Series — Bollards Internally illuminated courtesy light LightGuard Systems Part Number: LGS-T3A Directional detecting infrared sensors Description: Automatic Pedestrian Detection Bollards Application Notes: Infrared sensors are housed inside the Bollards and are typically preset by our factory. However, adjustments to the alignment of the sensor modules may be changed in the field. The infrared light beams are projected to the respective receiver module. The Bollard system is directionally sensitive and is activated only when a pedestrian enters into the crosswalk zone not when exiting. A pair of Bollards are placed at each end of the crosswalk, usually four bollards per crosswalk. When pedestrians enter into a crosswalk zone they pass between the Bollards and the Smart Crosswalk™ system is automatically activated. Each Bollard has a 24/7 LED courtesy light making the Bollard visible at night or during inclement weather. In order to capture the most pedestrians crossing the street, it is recommended that the bollards be placed a few feet wider than the crosswalk. General Performance Specifications Parameter Value Maximum separation 60 Feet Power consumption 2.5 Watts Operating temperature -20° to 80°C Operating voltage 9 VDC to 15 VDC Color White (custom colors available) Courtesy light color Amber Size 42” Tall, 8” Diameter © 2016 LightGuard Systems®, Inc. All Rights Reserved. 2292 Airport Blvd., Santa Rosa, CA 95403 | Phone (707) 542-4547 | Fax (707) 525-6333 SPEC Sheet #3000 Bollard Installation Guidelines INSTALLATION STEPS Step 1 Prior to installing Bollards, the proposed site should be inspected several times to observe the everyday habits of local citizens who utilize the crosswalk. -
Primer on Impact Protection for Critical Transportation Infrastructure
Primer on Impact Protection for Critical Transportation Infrastructure December 2018 FHWA-HIF-18-054 Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Cover image source: Poulin/123rf.com TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HIF-18-054 4. Title and Subtitle 5. Report Date Primer on Impact Protection for Critical Transportation December 2018 Infrastructure 6. Performing Organization Code: V-335 7. Author(s) 8. Performing Organization Report No. John Wojtowicz, CPP; Nathan B. Grace* DOT-VNTSC-FHWA-18-17 9. Performing Organization Name and Address 10. Work Unit No. U.S. Department of Transportation 11. Contract or Grant No. John A. Volpe National Transportation Systems Center HW22A1 55 Broadway Cambridge, MA 02142-1093 12. -
Public Transport - VERSION 1 Bus Infrastructure Public Transport – Bus Infrastructure
Public Transport - VERSION 1 Bus Infrastructure Public transport – bus Infrastructure In this chapter 01 Introduction 5 Bus stop types 35 07 02 Design parameters 6 Bus stop elements 40 08 2.1 Design vehicles 6 8.1 Bus stop kerbs 41 2.2 Design for bus drivers 11 8.2 Bus stop passenger area 44 2.3 Design for bus users 11 8.3 Bus shelters 46 8.4 Landscaping 52 03 Movement or upgrading of bus stops 15 Bus stop lighting 56 09 04 Bus stop location 15 4.1 Decisions about bus stop location 15 Bus stop branding 57 10 4.2 Bus stop spacing 16 Public transport interchanges 57 4.3 Bus stops for school bus routes 17 11 4.4 Bus stop capacity 17 Electric buses 57 12 4.5 Bus stop placement 19 4.6 Bus stop locations to avoid 23 Cycleways at bus stops 58 13 05 Bus stop layout 24 Bus layover and driver facilities 60 14 5.1 Bus stop layout types 26 14.1 Factors influencing bus layover location 61 14.2 Bus layover design 61 06 Bus stop signs and markings 33 6.1 Bus stop sign 33 6.2 Bus box road marking 34 6.3 No stopping at all times road marking 34 6.4 Bus stop road text 34 6.5 Coloured surface treatment 35 5794_16.04.21 2 TDM | ENGINEERING DESIGN CODE 3 Public transport – bus Infrastructure 01 Introduction PURPOSE Well-designed bus infrastructure must: • Provide easy access for buses through o accessible and safe walking routes to the bus stop o consider all user groups who will have different needs o making it easy and accessible to board and alight from the bus. -
Accessibility to Public Transport: a Best Practice Guide October 2010
Accessibility to public transport: a best practice guide October 2010 C. O’Fallon Pinnacle Research & Policy Ltd, Wellington Accessibility to public transport: a best practice guide Contents B1 Introduction to the best practice guide ..................................................................................... 4 B1.1 Overview ....................................................................................................................4 B1.2 Definitions .................................................................................................................4 B1.2.1 Users ...............................................................................................................4 B1.2.2 Modes, services and routes covered .............................................................5 B1.2.3 Source of best practice factors ......................................................................5 B1.3 Structure of the guide ...............................................................................................5 B2 Getting to the service by self ......................................................................................................... 5 B2.1 Introduction...............................................................................................................5 B2.2 Footpath ....................................................................................................................6 B2.2.1 Changes in surface level of accessible footpath...........................................6 B2.2.2 -
Detail Sheet Energy Absorbing Bollard (EAB) - Permanent
Detail Sheet Energy Absorbing Bollard (EAB) - Permanent Product summary Status May be used following a site-specific risk assessment Category Permanent Bollard Test Level Test Level 0; 1600kg at 50km/h (AS3845:19999 - superseded) Supplier Roadside Services and Solutions Pty Ltd Description The Energy Absorbing Bollard (EAB; previously named OmniStop bollard) is a non-gating energy absorbing bollard designed for low speed environments. Introduction and purpose Figure 1. Energy Absorbing Bollard This detail sheet is intended to supplement VicRoads Road Design Note 06-04 - Accepted Safety Barrier Products. Please Summary Conditions for Use refer to RDN 06-04 for the current VicRoads acceptance status, information on the product assessment process and general Accepted Energy Absorbing Bollard, with high grade configuration carbon hollow bar (thick walled tube) which is acceptance conditions. inserted into a foam cartridge. The technical details within this document have been extracted Variants from information submitted to VicRoads by the Supplier. Deflection N/A VicRoads requirements take precedence over the product manual. Where a departure from these requirements is Product manual Roadside Services & Solutions Energy required, users should understand the risks and document their reviewed Absorbing Bollard engineering decisions. ASBAP issue Not accepted by ASBAP For more detailed product information, refer to the individual Refer VicRoads conditions for use (below). product manual or contact the System Supplier. Technical information The Energy Absorbing Bollard should be designed, installed and maintained in accordance with the following VicRoads conditions for use. Detail Sheet Page 1 of 3 Third Edition June 2019 Energy Absorbing Bollard (EAB) - Permanent VicRoads Conditions for Use Tested design requirements Vehicle Point of Redirection Minimum Post/Pin Dynamic Working Containment Speed mass (m)* length of Spacing deflection width Notes level (km/h) (kg) Leading Trailing barrier (m) (m)* (m) (m) TL-01 50 16002 N/A N/A N/A N/A N/A N/A Note 1. -
Albert Dock 26 36 29 Bollard Bollard Bollards 31 Bollard Slipway 5 27 29
*=H@I )AN=@H=,HO,? *=H@ )>AHJ,? *=H@ *=H@I *=H@I ALL CLASS ONE OPERATIVES ENGAGED IN TEMPORARY TRAFFIC MANAGEMENT OPERATIONS ARE LANTRA APPROVED AND ACCREDITED TO SECTOR SCHEME 12 +-),418- CHAPTER 8 T.S.M DETAILS DETAIL A ) Prescribed sign to Diagram 610 above and behind cones Running lane(s) Three only close spaced 750mm Hard or 1m high traffic cones Shoulder 45° !# Verge Notes: !! 1) During darkness, a single warning light to BS EN 12352:2006 should be provided. 2) Traffic cones should conform to diagram 7101.1 and to BS EN 13422. !$ DETAIL B Close spaced traffic cones, max. spacing 1.2m ! between cone centres for Type A works and 3m for Type B works, on motorways 1m high cones are recommended for the initial closures of the right hand lane(s) even if 750mm cones are used elsewhere. N.B. Road Danger Lamps complying with Regulation 55 should be provided between the cones at 9m spacing during darkness DETAIL C1 + .* 9m $ Single/Dual carriageway 40mph or less - 450mm traffic cones. Single/Dual carriageway 50mph or more - 750mm traffic cones. ' Notes: 1) During darkness, warning lights to BS EN 12352:2006 should be provided in accordance with Table A1.3 (Appendix 1). *=H@I 2) For relaxation to Detail C1 see Table A1.3 (Appendix 1). # & $ ' Pedestrian Walkway DRAWING DETAILS 56-8-,4-2)+- % WORKSITE # ! MASS BARRIER % 69-42)+- % ' ! Pedestrian Walkway PEDESTRIAN LIGHT HEAD TRAFFIC LIGHT HEAD BASE AND +-),418- DIRECTION PEDESTRIAN LIGHT HEAD BASE AND DIRECTION *=H@ crossing not A1 in use crossingROAD not A2 CLOSEDin use crossing A3 in use 0JA 5EFM=O NOTES : - % & " +56167612)+- 20 ! " DRAWING STATUS : FOR REVIEW REVISION: 1 ! Date Revision Rev by App by % +-)9); 05/02/20 Alteration to footway SP SP 22/07/21 Alterations to site layout SP 20 SP $= # Class One Traffic Management Ltd. -
Dunkeld Court Spinner Street Dunmore Street Buchanan Street
G G no kerb -as existing- RS WH no kerb -as existing- WT WH WT WT parking as existing WH NORTH WH G 70.00 0m 5m 10m 15m 20m MH no kerb -as existing- parking as existing as parking RSWH WT new cycle Street Buchanan stands RS THL G DOOR UK LIBRARY new seat MH UK 69.41 bin relocated WH UK ext 0.8m parking as existing MH MH G radius 69.02 DOOR 69.75 UK new seat G UCF Raised crossing at junction Paved area outside WH Spinner Street DOOR THL to provide a continuous UK ext library with seats, cycle radius LP 0.8m UK footway stands, raised planters FH new seat with trees and shrubs. PHARMACY UK Mk noticeboard UK retained Zebra WH UK crossing with WT flashing GAS DOOR lights UK GAS TK Footway widened, TK (hooded) GAS DK GAS carriageway narrowed GAS DK FH Mk GAS GAS TK TK MH MH 68.60 existing 4.50 68.60 UK GAS GASkerb GAS G 2.00 GAS UK Mk 0.8m radius UK ext PB UK 12.00 LP WH UK UCF parking as existing as parking UK ext UK Dunkeld Court radius 0.8m UK Raised crossing at 12.92 junction to provide a UK continuous footway G 6.50 UK Raised crossing at junction UK ext 0.8m to provide a continuous radius UK No kerb -as existing- footway UCF Buchanan Court UK ext 0.8m radius UK SV R6.45 SV G UK driveway G G WT TK TK Footway widened, MH WH 67.46 DK DK carriageway narrowed No kerb -as existing- UCC TK TK UK LP 5.79 TK DK TK WH no kerb -as existing- 1.27 6.60 14.80 DOOR G disabled space disabled WH DENTIST WT 2.70 driveway S5 Footway widened, WT WT WH WT new no kerb -as existing- carriageway narrowed. -
A Guide to Conserving and Enhancing the Landscape Settings of Our Rural Highways
A Guide to Conserving and Enhancing the Landscape Settings of our Rural Highways Cranborne Chase Area of Outstanding Natural Beauty Craggatak Consulting November 2015 Acknowledgements This guidance was developed by the Cranborne Chase AONB Partnership through its Planning and Transportation Topic Group. The Partnership is grateful to Paul Tiplady of Craggatak Consulting who drafted this guidance. The AONB Partnership would also like to thank their partners’ staff for their helpful comments on the drafts, in particular: Stephen Hardy, Tony Harris of Dorset County Council and Sue Mitchell of Dorset AONB; and Graeme Hay and Fiona Elphick of Wiltshire Council. In addition, James Purkiss, a Senior Transport and Spatial Planner employed by the Halcrow Group Limited has supplied background material and invaluable comments. An initial draft was circulated for comment and was followed by detailed discussion at the Planning & Transportation annual seminar 10th May 2012. A formal consultation was undertaken during autumn 2012 and the AONB hosted a special meeting with representatives from the relevant highway authorities on the 26th February 2013 to review and discuss the final draft of this document. The partnership is grateful to Paul Garrod, Hampshire County Council, and Mike Winter and Tim Lawton from Dorset County Council for attending this meeting and providing invaluable comments and critique. Following this meeting a final version of this document was prepared by Emma Rouse, Wyvern Heritage and Landscape Consultancy. Richard Burden commissioned the project and undertook the editing of this report. The following people and organisations have provided photographs (as shown in the text) and given permission for their use.